

OSISKO MINING INC.

AN UPDATED MINERAL RESOURCE ESTIMATE FOR THE WINDFALL LAKE PROJECT, LOCATED IN THE ABITIBI GREENSTONE BELT, URBAN TOWNSHIP, EEYOU ISTCHEE JAMES BAY, QUÉBEC, CANADA

Report Date: April 3, 2020 Resource Database Effective Date: January 3, 2020 Resource Effective Date: January 3, 2020

Report By:

Charley Murahwi, P.Geo., FausIMM Jorge Torrealba, P. Eng., Ph.D.

Table of Contents

1.0	SUMMARY	1
1.1	INTRODUCTION	1
1.2	CONTRIBUTORS	2
1.3	PROPERTY DESCRIPTION AND OWNERSHIP	2
1	.3.1 Windfall Lake and Urban-Barry Properties	2
1.4	GEOLOGY MINERALIZATION AND EXPLORATION MODEL	3
1	.4.1 Windfall Lake and Urban-Barry Properties	3
1.5	STATUS OF EXPLORATION AND DRILLING	
1	.5.1 Windfall Lake and Urban-Barry Properties	
1.6		
1.7	MINERAL RESOURCE ESTIMATE	
1.8	INTERPRETATIONS AND CONCLUSIONS	
1.9		
1	.9.1 Summary	11
• •	THE OPTICE OF	10
2.0	INTRODUCTION	
2.1	TERMS OF REFERENCE	
2.2	INFORMATION SOURCES	
2.3 2.4	QUALIFIED PERSONS, SITE VISITS AND AREAS OF RESPONSIBILITY UNITS AND ABBREVIATIONS	
2.4	ACKNOWLEDGMENT	
2.3	ACKNOW LEDGIVIEN 1	14
3.0	RELIANCE ON OTHER EXPERTS	15
4.0		
4.0	PROPERTY DESCRIPTION AND LOCATION	
4.1	INTRODUCTION	16
4.1 4.2	INTRODUCTIONLOCATION	16 16
4.1 4.2 4.3	INTRODUCTIONLOCATIONMINING RIGHTS IN QUÉBEC	16 16 16
4.1 4.2 4.3 4	INTRODUCTION	16 16 16 18
4.1 4.2 4.3 4	INTRODUCTION	16 16 16 18
4.1 4.2 4.3 4 4 4.4	INTRODUCTION	16 16 18 18
4.1 4.2 4.3 4 4 4.4 4	INTRODUCTION LOCATION MINING RIGHTS IN QUÉBEC .3.1 The Claim .3.2 The Mining Lease MINING TITLE STATUS .4.1 Windfall Lake Property	16 16 18 18 18
4.1 4.2 4.3 4 4.4 4.4	INTRODUCTION LOCATION MINING RIGHTS IN QUÉBEC .3.1 The Claim .3.2 The Mining Lease MINING TITLE STATUS .4.1 Windfall Lake Property .4.2 Urban-Barry Property	16 16 18 18 18
4.1 4.2 4.3 4 4.4 4.4 4.5	INTRODUCTION LOCATION MINING RIGHTS IN QUÉBEC 3.1 The Claim 3.2 The Mining Lease MINING TITLE STATUS 4.1 Windfall Lake Property 4.2 Urban-Barry Property ROYALTIES	16 16 18 18 18 18
4.1 4.2 4.3 4 4.4 4.4 4.5 4	INTRODUCTION LOCATION MINING RIGHTS IN QUÉBEC 3.1 The Claim 3.2 The Mining Lease MINING TITLE STATUS 4.1 Windfall Lake Property 4.2 Urban-Barry Property ROYALTIES 5.1 Windfall Lake Property	16 16 18 18 18 18 30
4.1 4.2 4.3 4 4.4 4.4 4.5 4	INTRODUCTION LOCATION MINING RIGHTS IN QUÉBEC .3.1 The Claim .3.2 The Mining Lease MINING TITLE STATUS .4.1 Windfall Lake Property .4.2 Urban-Barry Property ROYALTIES .5.1 Windfall Lake Property .5.2 Urban-Barry Property	16 16 18 18 18 30 37
4.1 4.2 4.3 4 4.4 4.4 4.5 4 4.6	INTRODUCTION LOCATION MINING RIGHTS IN QUÉBEC 3.1 The Claim 3.2 The Mining Lease MINING TITLE STATUS 4.1 Windfall Lake Property 4.2 Urban-Barry Property ROYALTIES 5.1 Windfall Lake Property CONSTRAINTS AND RESTRICTIONS	16 16 18 18 18 30 37 37
4.1 4.2 4.3 4 4.4 4.5 4 4.6 4.6	INTRODUCTION LOCATION MINING RIGHTS IN QUÉBEC 3.1 The Claim 3.2 The Mining Lease MINING TITLE STATUS 4.1 Windfall Lake Property 4.2 Urban-Barry Property ROYALTIES 5.1 Windfall Lake Property CONSTRAINTS AND RESTRICTIONS 6.1 Windfall Lake and Urban-Barry Properties	16 16 18 18 18 30 37 37
4.1 4.2 4.3 4 4.4 4.4 4.5 4 4.6	INTRODUCTION LOCATION MINING RIGHTS IN QUÉBEC 3.1 The Claim 3.2 The Mining Lease MINING TITLE STATUS 4.1 Windfall Lake Property 4.2 Urban-Barry Property ROYALTIES 5.1 Windfall Lake Property CONSTRAINTS AND RESTRICTIONS	16 16 18 18 18 30 37 37
4.1 4.2 4.3 4 4.4 4.5 4 4.5 4 4.6 4.7	INTRODUCTION LOCATION MINING RIGHTS IN QUÉBEC 3.1 The Claim 3.2 The Mining Lease MINING TITLE STATUS 4.1 Windfall Lake Property 4.2 Urban-Barry Property ROYALTIES 5.1 Windfall Lake Property CONSTRAINTS AND RESTRICTIONS 6.1 Windfall Lake and Urban-Barry Properties PERMITS AND ENVIRONMENTAL LIABILITIES	16 16 18 18 18 37 37 37 37
4.1 4.2 4.3 4 4.4 4.5 4 4.6 4.6	INTRODUCTION LOCATION MINING RIGHTS IN QUÉBEC .3.1 The Claim .3.2 The Mining Lease MINING TITLE STATUS .4.1 Windfall Lake Property .4.2 Urban-Barry Property ROYALTIES .5.1 Windfall Lake Property .5.2 Urban-Barry Property CONSTRAINTS AND RESTRICTIONS .6.1 Windfall Lake and Urban-Barry Properties PERMITS AND ENVIRONMENTAL LIABILITIES ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE	16 16 18 18 18 37 37 37 37

		Page
5.1.1	Windfall Lake and Urban-Barry Properties	40
5.1.2		
5.2 Lo	OCAL RESOURCES AND INFRASTRUCTURE	40
5.2.1	Windfall Lake Site	43
5.3 C	OMMUNITY	45
5.3.1	Human Environment	45
5.3.2	Information and Public Consultation Process	46
6.0 HIS	TORY	40
	INDFALL LAKE PROPERTY	
6.1.1	Summary of Historical Work	
6.1.2	· · · · · · · · · · · · · · · · · · ·	
	RBAN-BARRY PROPERTY (WESTERN, CENTRAL, EASTERN A	
	OUTHERN SECTORS)	
6.2.1	,	
0.2.1	1 ICVIOUS WOIK	
7.0 GE(DLOGICAL SETTING AND MINERALIZATION	60
7.1 R	EGIONAL GEOLOGY	60
7.2 W	INDFALL LAKE AND URBAN-BARRY PROPERTIES	60
7.2.1	Local Geology	60
7.2.2	Windfall Lake Property Geology	65
7.3 L	ITHOLOGICAL UNITS IN THE WINDFALL LAKE DEPOSIT	
7.3.1	Synvolcanic Rocks (2717 Ma)	67
7.3.2	Syntectonic Intrusions (2701 to 2697 Ma)	67
7.4 L	ITHOGEOCHEMISTRY	69
7.4.1	Alteration	72
7.4.2	Alteration Geochemistry	74
7.5 S	ΓRUCTURAL GEOLOGY	78
7.5.1	Regional Scale Deformation	
7.5.2	Deposit Scale Deformation	
7.5.3	Orientation and control of gold mineralization	
7.5.4	Mineralization Styles and Relative Timing	
	INERALIZED ZONES	
7.6.1	New Discoveries (2018 to 2019)	
7.6.2	Lynx Zone	
7.6.3	Zone 27	
7.6.4	Caribou Zone	
7.6.5	Mallard Zone	
7.6.6	Underdog Zone	
7.6.7	Zones F-17, F-51, F-11 and Windfall North	111
8.0 DEF	POSIT TYPES	113
	VINDFALL LAKE PROPERTY	
8.1.1	Intrusion-Related Gold System	
8.1.2	Orogenic Gold Deposits	
8.1.3	Windfall Lake Deposit	
	•	

		Page
9.0 E	XPLORATION	120
9.1	WINDFALL LAKE AND URBAN-BARRY PROPERTIES	
9.1.	1 2015 Exploration	121
9.1.	2 2016 Exploration	122
9.1.	3 2017 Exploration	122
9.1.	4 2018 Exploration	124
9.1.	5 2019 Exploration	125
9.2	OBSERVATIONS	127
10.0 D	ORILLING	128
10.1	WINDFALL LAKE PROJECT	
10.1	.1 Overview	128
10.1		
10.1		
10.1	.4 Geological Logging	134
10.1	6 66 6	
10.1		
10.1	.7 Drill Hole Validation	135
10.1	.8 Final Validation Rules	135
10.1	.9 Specific Gravity	135
10.1	.10 Drill Spacing	136
10.2	EXPLORATION DRILLING, URBAN-BARRY PROPERTY	137
10.3	CONCLUSIONS	138
11.0 S	AMPLE PREPARATION, ANALYSES AND SECURITY	140
11.1	WINDFALL LAKE AND URBAN-BARRY PROPERTIES	
11.1	.1 Laboratories Accreditation and Certification	140
11.1	.2 Historical Sampling	140
11.1	.3 Osisko Core Handling, Sampling and Security	141
11.1		
11.1		143
11.1	Quality Assurance and Quality Control (QA/QC) Programs	145
11.2	CONCLUSIONS	163
12.0 D	OATA VERIFICATION	164
12.1	CONCLUSIONS	
13.0 M	MINERAL PROCESSING AND METALLURGICAL TESTING.	166
13.1	WINDFALL LAKE	
13.1		
13.1		
13.1		
13.1	· · · · · ·	
13.1		
10.1	("e-GRG")	
13.1		

		Page
13.1.7	PEA (2018) Recovery Options without Gravity	172
	NDFALL LAKE RECENT TESTWORK	175
13.2.1	Mineralogical Study	
13.2.2	·	
13.3 BU	LK SAMPLE TESTS	178
13.3.1	Zone 27 Bulk Sample	
13.3.2	Lynx Bulk Sample	
13.4 OV	'ERALL RECOVERY - WINDFALL LAKE	
13.5 LIS	ST OF ABBREVIATIONS	181
140 MINI	EDAL DECOLIDATE ESTIMATES	103
	ERAL RESOURCE ESTIMATESETHODOLOGY	
	ILL HOLE DATABASE	
	OLOGICAL MODEL	
	TERPRETATION OF MINERALIZATION ZONES	
	DIDS MODEL	
	MPOSITING AND HIGH-GRADE CAPPING	
14.6.1	Compositing	
14.6.1	High-grade Capping	
	NSITY	
	OCK MODEL	
	CK CODING AND SUB-CELLING	
	RIOGRAPHY AND SEARCH ELLIPSOIDS	
14.10.1	Variography	
14.10.1	Search Ellipsoids	
	ADE INTERPOLATION	
	OCK MODEL VALIDATION	
14.12.1	Visual Validation	
14.12.2	Statistical Validation	
	T-OFF PARAMETERS	
	NERAL RESOURCE CLASSIFICATION	
14.14.1	Mineral Resource Classification Definition	
14.14.2	Mineral Resource Classification for the Windfall Lake Gold Deposit	
	NSTRAINING MINEABLE VOLUMES	
	NERAL RESOURCE ESTIMATE	
	MPARISON TO PREVIOUS MINERAL RESOURCE ESTIMATES	
	CON RESOURCE VERIFICATION	
14.18.1	Wireframes	
14.18.2	Composites and Grade Capping	
14.18.3	Estimation Parameters	
14.18.4	Block Models and Grade Interpolation Results	
14.18.5	Resource Categorization	
14.18.6	Reporting Parameters	
14.18.7	Conclusions	
450		•••
15.0 MINI	ERAL RESERVE ESTIMATES	228

		Page
16.0	MINING METHODS	228
17.0	RECOVERY METHODS	228
18.0	PROJECT INFRASTRUCTURE	228
19.0	MARKET STUDIES AND CONTRACTS	228
20.0	ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT	228
21.0	CAPITAL AND OPERATING COSTS	228
22.0	ECONOMIC ANALYSIS	229
23.0	ADJACENT PROPERTIES	230
23.1		
	3.1.1 Gladiator Gold Deposit - Bonterra Resources	
	3.1.2 Barry Gold Deposit - Bonterra Resources (Formerly Métanor Resources	250
_	Inc.)	230
2	3.1.3 Lac Rouleau - Osisko Mining Inc. (Formerly Beaufield Resources Inc.)	
24.0	OTHER RELEVANT DATA AND INFORMATION	233
25.0	INTERPRETATION AND CONCLUSIONS	234
25.1		
25.2	2 METALLURGICAL TESTWORK	235
25.3	PROCESS FLOWSHEET	235
25.4	RISK AND OPPORTUNITIES	236
26.0	RECOMMENDATIONS	
26.1		
•	FUTURE WORK	
	6.1.1 Phase 1	
_	6.1.2 Phase 2	
27.0	DATE AND SIGNATURE PAGE	242
28.0	REFERENCES	243
29.0	CERTIFICATES	253
30.0	APPENDIX - CLAIMS LIST AND STATUS	
30.1		
30.2	2 URBAN-BARRY PROPERTY	266

List of Tables

Table 1.1	Overall Gold Recovery with Gravity and CIL	6
Table 1.2	Windfall Lake Gold Deposit Indicated and Inferred Mineral Resources by Area	8
Table 1.3	Work Program Budget	11
Table 2.1	Abbreviations	13
Table 4.1	Property Summary	16
Table 4.2	Mineral Tenure Summary of the Windfall Lake Property	20
Table 4.3	Mineral Tenure Summary of the Urban-Barry Property	31
Table 6.1	Historical Exploration Work in the Windfall Area.	49
Table 9.1	Summary of Exploration Work Performed at the Windfall Lake Deposit and the Urban-Barry Property	120
Table 10.1	Drill Hole Summary and Number of Assay and Whole-Rock Geochemistry Samples Delivered from 2015 to January 3, 2020 (Osisko)	130
Table 11.1	Analytical Methods Used by Osisko	144
Table 11.2	Samples Submitted to ALS for Analysis Along with Routine Drill Core Samples	146
Table 11.3	Current Sample QA/QC Statuses in DH Logger	146
Table 11.4	Table 11.4: Blanks Submitted For Analysis Along With Routine Drill Core Samples	148
Table 11.5	Certified Standards Values, 95% Confidence and Tolerance Limits for Gold Reference Material (ppm) with Fire Assay	154
Table 11.6	Summary Statistics between Specific Gravity GRA08b and Electronic Densimeter Methods	159
Table 11.7	ALS Analytical Quality Control - Reference Materials, Blanks and Duplicates	161
Table 11.8	Bureau Veritas Analytical Quality Control - Reference Materials, Blanks and Duplicates	162
Table 11.9	Gold Method Priority Ranking	163
Table 12.1	Data Entry Checks	165
Table 13.1	Metallurgical Testwork Samples Head Assays Range	170
Table 13.2	Summary of Average SMC and Bond Comminution Test Results per	170

		Page
Table 13.3	Leaching Test Conditions	173
Table 13.4	Characteristics of Microscopic Gold per Sample	176
Table 13.5	Windfall Lake Crushed Mineralized Material Density Values	177
Table 13.6	Summary of Minimum Outlet Size Requirements for a Hopper	177
Table 13.7	Summary of Maximum Calculated Mass-Flow Wall Angles	177
Table 13.8	Zone 27 Bulk Sample Reconciled Results	178
Table 13.9	Lynx Zone Bulk Sample Reconciled Results	179
Table 13.10	Overall Gold Recovery with Gravity and CIL	180
Table 13.11	Table of Abbreviations	181
Table 14.1	Number of Mineralized Envelopes Modelled Per Area	185
Table 14.2	Statistics on Raw Assays Presented by Area	192
Table 14.3	Compilation of Capping Limits Applied to Composites, by Interpolation Pass	194
Table 14.4	Summary Statistics Comparing the Uncapped and Capped Composites, by Area	195
Table 14.5	Statistics on Specific Gravity by Rock Type	196
Table 14.6	Statistics on Specific Gravity Composites Located Inside Mineralized Zones, by Area	196
Table 14.7	Density Compilation for Rock Types Coded in the Block Models	197
Table 14.8	Block Model Properties - Lynx	197
Table 14.9	`Block Model Properties - Underdog	197
Table 14.10	Block Model Properties - Main Zone (excluding F-Zones)	198
Table 14.11	Block Model Properties - F-Zones	198
Table 14.12	Rock Codes Identified in the Block Models	199
Table 14.13	Variogram Model Parameters Selected for Each Area	200
Table 14.14	Search Ellipsoid Ranges Defined by Interpolation Pass	204
Table 14.15	Composite Search Specifications by Interpolation Pass	206
Table 14.16	Comparison of the Block and Composite Mean Grades at a Zero Cut-Off Grade for Blocks of all Resource Classes	209
Table 14.17	Parameters Used to Estimate the UCoG for the 2020 Mineral Resource Estimate	211
Table 14.18	Main Criteria for Resource Classification	212
Table 14.19	Windfall Lake Gold Deposit Indicated and Inferred Mineral Resources by Area	216

		Page
Table 14.20	Windfall Lake Project Indicated and Inferred Mineral Resource Sensitivity Table.	217
Table 14.21	Windfall Gold Deposit Mineral Resource Estimate by Area (3.5 g/t Au cut-off)	227
Table 25.1	Project Risks (Preliminary Risk Assessment)	237
Table 25.2	Project Opportunities	238
Table 26.1	Work Program Budget	241
Table 30.1	Windfall Lake Claims List	257
Table 30.2	Urban-Barry Claims List	266
	List of Figures	
Figure 1.1	Windfall Lake Project Site locations	3
Figure 4.1	Location of the Windfall Lake Project and the Osisko Claims in the Province of Québec, Canada, with Provincial Administrative Divisions.	17
Figure 4.2	Land Tenure Plan Showing the Various Original Agreements on the Windfall Lake Property	19
Figure 4.3	Net Smelter Return ("NSR") Royalty Agreements for the Windfall Lake Property.	21
Figure 4.4	Claim Map of the Windfall Lake (in gray) and Urban-Barry Properties	33
Figure 5.1	Map of the Windfall Lake Property Area Showing Various Access Routes.	41
Figure 5.2	Topography and Accessibility of the Windfall Lake Project Properties.	42
Figure 5.3	Aerial Photograph Showing the Windfall Lake Camp and Typical Physiography of the Area	44
Figure 6.1	Historical Drill Holes Categorized by Company within the Windfall Lake Property	52
Figure 6.2	Exploration History in the Urban-Barry Greenstone Belt Outside of the Windfall Lake Deposit Area	57
Figure 7.1	Generalized Geology of the Archean Abitibi Subprovince	61
Figure 7.2	Regional Geologic Setting of the Urban-Barry Greenstone Belt	62
Figure 7.3	Regional Magnetic Map of the Urban-Barry Greenstone Belt	63
Figure 7.4	Core Pictures of the Three Main Types of Porphyry Dikes	66

ix

		Page
Figure 7.5	Magmatic Affinity of Windfall Lake Rocks on a Zr vs. Y Diagram	70
Figure 7.6	Discrimination of Rock Units on a TiO2 vs. Zr Diagram	70
Figure 7.7	Petrogenetic Identification of Rock Units from Standard Lithogeochemical Biplots	71
Figure 7.8	Spatial Variability of the Whole-Rock Data Illustrating the Synform Geometry within the Komatiitic Basalt Unit	73
Figure 7.9	Visual Alteration Assemblages Observed in Drill Core at the Windfall Lake Deposit	74
Figure 7.10	Alteration Box Plots (CCPI vs AI) And Tertiary Diagrams (CaO% vs Na ₂ O% vs K ₂ O% CNK)	76
Figure 7.11	Spatial Variability of Four Alteration Assemblages (Sericitization, Silicification, Chloritization and Carbonatization) in the Windfall Lake Deposit	77
Figure 7.12	Spatial Relationship of Gold Thresholds (Regional, Anomalous and Mineralized) Over Multi-Element Analyses Determined by DFA Analysis and the Location of Existing Mineralized Corridors in the Windfall Lake Deposit	78
Figure 7.13	Deformed Felsic Volcanic Rocks Showing the Two Tectonic Deformation Events (D1-S1 and D2-S2) Near the Windfall Lake Deposit	80
Figure 7.14	Interpreted Surface Geology of the Windfall Lake Gold Deposit with Logged Mineralized Zones and Lithologies Projected to Surface	81
Figure 7.15	Interpretation of the Riedel-Type Structural Model Applied to the Windfall Lake Deposit	84
Figure 7.16	Main Types of Mineralization Observed at the Windfall Deposit	85
Figure 7.17	Representative Images of Spectacular Visible Gold Observed in Vein- Type Mineralization at the Windfall Lake Deposit	
Figure 7.18	Other Mineralization Types and Associated Alteration Styles Present at the Windfall Lake Deposit	87
Figure 7.19	Topographic Map With Surface Projection of the Mineralized Zones at the Windfall Lake Deposit (Lynx Zone, Main Zone and Underdog Zone) and the Location of Drill Holes (Osisko) Grouped by Year	89
Figure 7.20	Simplified Northwest-Southeast Vertical Cross-Section of the Geology of the Lynx Zone of the Windfall Lake Deposit	91
Figure 7.21	Simplified Northwest-Southeast Vertical Cross-Section of the Geology of the Main Zone of the Windfall Lake Deposit	92
Figure 7.22	Section View of the Newly Discovered Triple 8 Zone	94

		Page
Figure 7.23	Typical Mineralization and Associated Alteration Styles in the Triple 8 Zone of the Windfall Lake Deposit	95
Figure 7.24	Leapfrog 3D Modelling Illustrating Idealized Vertical Cross-Sections (Looking Northwest) of the Geometry of the Mineralized Zones Plunging 35° to the Northeast	96
Figure 7.25	Simplified Geological Model of the Lynx Zone According to the Relative Timing of Events (T=1 to T=3)	98
Figure 7.26	Lynx Bulk Sample (Zone 311) Floor Geological Mapping in Comparison to Model En-Échelon Sinistral Shear Fractures	100
Figure 7.27	Typical Mineralization and Associated Alteration Styles in the Lynx Zone of the Windfall Lake Deposit	101
Figure 7.28	Typical Mineralization and Associated Alteration Styles in Zone 27 of the Windfall Lake Deposit	104
Figure 7.29	Typical Mineralization and Alteration Style in the Caribou Zone of the Windfall Lake Deposit	106
Figure 7.30	Detailed Geology of the Mallard North Trench (Eagle Hill 2012)	108
Figure 7.31	Chlorite-Sericite Altered QFP Dikes (I1P YL, I1P YB and I2P Frag) With Localized Zones of Strong Silica Alteration Coupled with Pyrite-Gold Mineralization in the Underdog Mineralized Zone	110
Figure 9.1	Location of Bulk Samples (Lynx and Zone 27) and Underground Ramp in Relation to the Mineralized Zones	126
Figure 10.1	Windfall Lake Property Map Showing Drill Holes Completed From 2015 to January 3, 2020 by Oban Mineral Corporation and Osisko. Historical Drill Holes are also Illustrated in Black	129
Figure 10.2	Representative Geological Cross-Section Showing the Distribution of Drill Hole Spacing and Orientation as well as Significant Assay Results in the Lynx Zone (Section 3675E)	131
Figure 10.3	Representative Geological Cross-Section Showing the Distribution of Drill Hole Spacing and Orientation, as well as Significant Assay Results in the Main Zone (Section 2500E)	132
Figure 10.4	Exploration Drilling (2016-2019) and the Location of the Informal Sectors in the Urban-Barry Property	139
Figure 11.1	Time Series Plot for Blank Samples Assayed by ALS (AA24 Method)	149
Figure 11.2	Time Series Plot for Blank Samples Assayed by ALS (AA26 Method)	149
Figure 11.3	Time Series Plot for Blank Samples Assayed by ALS (GRA22 Method)	150
Figure 11.4	Time Series Plot for Blank Samples Assayed by ALS (SCR24 Method)	150

		Page
Figure 11.5	Time Series Plot for Blank Samples Assayed by ALS (SCR24g Method)	151
Figure 11.6	Time Series Plot for Blank Samples Assayed by Bureau Veritas (FA450 Method)	151
Figure 11.7	Time Series Plot for Blank Samples Assayed by Bureau Veritas (FS652 Method)	152
Figure 11.8	Results of Standard OREAS 218 Using AA26 Method	155
Figure 11.9	Results of Standard OREAS 209 Using AA26 Method	155
Figure 11.10	Results of Standard OREAS 215 Using AA26 Method	156
Figure 11.11	Results of Standard OREAS 209 Using AA26 Method	156
Figure 11.12	Post 2014 Mineral Resource Estimate Laboratory Pulp Duplicates for Gold (g/t)	158
Figure 11.13	Laboratory (SG_GRA08b) and Internal Bulk Density Measurement Correlation (Eagle Hill and Osisko)	160
Figure 11.14	ALS Pulp Duplicates for Windfall Samples (AA26)	161
Figure 11.15	Bureau Veritas Pulp Duplicates (Method FA450)	162
Figure 13.1	Plan View of PEA Comminution Sample Hole Locations.	167
Figure 13.2	Looking N050 View of PEA Comminution Sample Hole Locations	168
Figure 13.3	Plan View of PEA (2018) Recovery Sample Hole Locations	169
Figure 13.4	Looking N050 View of PEA Recovery Sample Hole Locations	169
Figure 13.5	Flotation Concentrate Signature Plot	171
Figure 13.6	Yield Stress vs. Slurry Density for Combined Reground Pyrite Concentrate and Flotation Tailings	175
Figure 14.1	Diamond Drill Holes in the Windfall Lake Database Used for the Resource Estimate	184
Figure 14.2	Mineralized Domains Modelled at the Windfall Lake Deposit	186
Figure 14.3	Unmineralized Late Dikes and Modelled Zones in the Windfall Lake Deposit	187
Figure 14.4	Lynx Mineralized Domains in the Windfall Lake Deposit	188
Figure 14.5	Main Zone Mineralized Domains (Excluding F-Zones) in the Windfall Lake Deposit	189
Figure 14.6	Exploration Ramp Intersecting Lynx and Zone 27 Mineralization	190
Figure 14.7	Examples of Three-Step Gold Grade Capping on Composites Using a Grade Distribution Probability Plot	193

		Page
Figure 14.8	Bounding Box of the Block Models (Lynx, Underdog, Main Zone and F-Zones)	198
Figure 14.9	Example of Variogram Models in the Lynx Main Area	201
Figure 14.10	Example of the Dynamic Anisotropy Search Process in Zone 304, Lynx Main	203
Figure 14.11	Gold Grade Distribution in Mineralized Zone 304, Lynx Main Corridor	207
Figure 14.12	Gold Grade Distribution in Mineralized Zone 4103, Underdog Corridor	208
Figure 14.13	Cross-section Swath Plots by Mineralization Area	210
Figure 14.14	Example of Resource Classification for Blocks in Zone 313, Lynx 4-HW Corridor	214
Figure 14.15	Example of Blocks Discarded or Included in the Mineral Resource in Zone 337, Lynx Area	215
Figure 14.16	3D View Looking North Showing the Block Grades of the Reported Mineral Resource in the Lynx Corridor	218
Figure 14.17	3D View Looking North Showing Reported Mineral Resource Classification in the Lynx Corridor.	219
Figure 14.18	3D View Looking North Showing the Block Grades of the Reported Mineral Resource in the Underdog Corridor	220
Figure 14.19	3D View Looking North Showing the Reported Mineral Resource Classification in the Underdog Corridor	221
Figure 14.20	3D View Looking North Showing the Block Grades of the Reported Mineral Resource in the Main Zone Corridor (Excluding F-Zones)	222
Figure 14.21	3D View Looking North Showing the Reported Mineral Resource Classification in the Main Zone Corridor (Excluding F-Zones)	223
Figure 14.22	3D Views Looking North Showing the Reported Mineral Resource in the F-Zones Corridor	224
Figure 14.23	Example Swath Plot Comparing Informing Composites to Block Grades	226
Figure 23.1	Properties and Mineralization in the Vicinity of the Windfall Lake and	231

1.0 SUMMARY

1.1 Introduction

At the request of M. Mathieu Savard, Senior Vice President of Exploration, and Mr. John F. Burzynski, President and CEO of Osisko Mining Inc. ("Osisko"), Micon International Limited ("Micon") has undertaken an independent review of the mineral exploration completed on the Windfall Lake Project and a mineral resource estimate prepared under the direction of Judith St-Laurent, Géo., B.Sc./P.Geo, B.Sc. (OGQ #1023), Géologue de Ressources Sénior/Senior Resource Geologist, an employee of Osisko. The resource estimate has an effective date of January 3, 2020.

Osisko also commissioned Micon to prepare a National Instrument 43-101 ("NI 43-101", Standards of Disclosure for Mineral Projects) technical report for the updated mineral resource estimate supporting its disclosure and public release. Windfall Lake is an advanced gold exploration project located in the Eeyou Istchee James Bay ("EIJB") region of central-northwest Québec, Canada. The purpose of this report is to present a review and compilation of the mineral resources and geological model for this gold project.

This report was prepared in accordance with the guidelines set out under the requirements of NI 43-101 to support the results of the report as disclosed in Osisko's press release entitled "Osisko Windfall Updated Mineral Resource Estimate" dated February 19, 2020.

The Windfall Lake and Urban-Barry properties are situated in the province of Québec, Canada.

Osisko is a mineral exploration company focused on the acquisition, exploration, and development of precious metal resource properties in Canada. The TSX symbol for Osisko is OSK and its headquarters are located in Toronto, Ontario. Micon is an independent mining and exploration consulting firm based in Toronto, Ontario.

This technical report provides a relevant, updated resource estimate for the Windfall Lake Property. The previous technical report was completed in May, 2018 (InnovExplo Inc., 2018). The current technical report reviews the historical work on the Property and all data obtained since the completion of the 2018 report.

The authors believe the information used to prepare the technical report and to formulate its conclusions and recommendations is valid and appropriate considering the status of the project and the purpose for which the report is prepared. The technical data are considered appropriate for estimating the mineral resource of the Windfall Lake Project.

The authors, by virtue of their technical review of the Project's exploration potential, affirm that the work program and recommendations presented in the report are in accordance with NI 43-101 and the CIM Definition Standards for Mineral Resources and Mineral Reserves ("CIM Definition Standards").

All monetary units in the report are in Canadian dollars (CAD or \$), unless otherwise specified. Costs are based on fourth quarter (Q4) 2019 dollars. Quantity and grades are rounded to reflect that the reported values represent approximations.

1.2 CONTRIBUTORS

The Qualified Persons (QP) for this assignment are:

- Charley Murahwi, P.Geo., M.Sc. P.Geo., Pr. Sci. Nat., FAusIMM
- Jorge Torrealba, P. Eng., Ph.D.

The QPs have reviewed various data and studies prepared by Osisko staff and its consultants and have opined upon it.

1.3 PROPERTY DESCRIPTION AND OWNERSHIP

The Windfall Lake Project comprises two different sites: the Windfall Lake and Urban-Barry properties. The Windfall Lake and Urban-Barry properties are located 115 km east of the town of Lebel-sur-Quévillon in the Eeyou Istchee James Bay region of central-northwest Québec, Canada, approximately 620 km north-northwest of Montréal and 155 km northeast of Val-d'Or, as shown on Figure 1.1.

1.3.1 Windfall Lake and Urban-Barry Properties

The Windfall Lake property is 100% owned by Osisko. On January 3, 2020, the Windfall Lake property consisted of 285 individual claims covering an aggregate area of 12,467 ha. The current property was consolidated from several agreements concluded with previous owners.

The main claim blocks inherited from the original agreement are, The Windfall Lake-Noront Option (including the Windfall Lake, Alcane, and South blocks), the 29 Claims Expansion, the 184 Claims Expansion, the Rousseau property, the Windfall Lake 2010, the Windfall Lake 2012, and the Carat Claim. Osisko now holds a 100% interest on all the claim blocks of the property, barring various royalties. The mineral resources discussed herein are located within the Noront-Windfall block of the Windfall Lake option and the 29 Claims Expansion claim blocks.

The Urban-Barry property is 100% owned by Osisko Mining Inc. On January 3, 2020, the property comprised 1,913 individual claims covering an aggregate area of approximately 103,608 ha. The property is mostly constituted of claims that were acquired at different periods from 2015 to 2019, and are subject to various royalties.

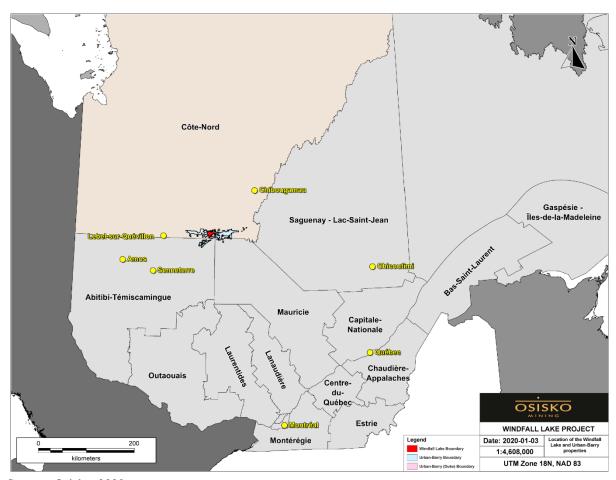


Figure 1.1 Windfall Lake Project Site locations.

Source: Osisko, 2020.

The Windfall Lake property and the northern half of the Urban-Barry property are in the Eeyou Istchee James Bay territory. Osisko has obtained all necessary permits and certifications from government agencies to allow for surface drilling, exploration, and bulk sampling on the Windfall Lake property. The Windfall Lake area is serviced by a complete network of well-maintained logging roads and hosts several infrastructure components at the Windfall Lake property including an exploration camp with a capacity for 300 people. An experienced mining workforce is available in Lebel-sur-Quévillon and in several well-established nearby mining towns, such as Val-d'Or, Rouyn-Noranda, La Sarre, Matagami and Chibougamau.

1.4 GEOLOGY MINERALIZATION AND EXPLORATION MODEL

1.4.1 Windfall Lake and Urban-Barry Properties

The Windfall Lake and Urban-Barry properties occur within the Urban-Barry greenstone belt located in the Northern Volcanic Zone of the Abitibi geological subprovince. The Urban-

Barry greenstone belt contains mafic to felsic volcanic rock units and is cross-cut by several east-trending and east-northeast trending shear zones that delineate major structural domains.

The Windfall Lake property is located in the central part of the Urban-Barry Belt and is located between the Urban and Barry Deformation zones. The northeast-trending Mazères and Milner shear zones traverse the property and are truncated by the east-west trending Urban Deformation Zone.

The Urban-Barry belt is informally divided into the Fecteau, the Chanceux, the Macho and the Urban formations. The Windfall Lake deposit is hosted within the Windfall Member of the Macho Formation, which primarily consists of felsic and intermediate volcanic rocks including tuff and lava units of tholeitic affinity. In the Windfall Lake deposit area, the stratigraphy trends northeast and dips moderately towards the southeast. Volcanic rocks are intruded by a series of younger quartz-feldspar porphyry dikes, commonly referred to as QFP dikes.

At Windfall Lake, the bulk of the gold mineralization is contained in a high-grade, gold-rich extensive anastomosed network of quartz-rich and pyrite-rich veins. These are hosted within strongly silicified volcanic rocks. Gold mineralization has a pyrite-rich and silica > sericite-carbonate-tourmaline mineral association that is zoned outward into erratic to low gold grade. This is associated with sericite > silica-carbonate-tourmaline halos, which in turn passes into an outer, barren chlorite > sericite-rutile zone.

The mineralization is currently known for a vertical extent of approximately 1,800 m. However, the recent mineral resource estimate update is enclosed within a vertical extent of 1,200 m, separated into three sectors: the Lynx zone (Lynx Main, Lynx HW, Lynx SW, Triple Lynx, and Lynx 4), the Main zone (Zone 27, Caribou, Mallard, Windfall North, F-Zones), and the Underdog zone. All zones trend east-northeast and plunge roughly 40° .

Most of the Lynx mineralization zones form an extensive anastomosed network of quartz-rich and pyrite-rich veins hosted within strongly silicified felsic volcanic rocks or gabbros. This system is located on the southern limb of an open fold plunging at 40° towards the east-northeast along the Bank fault-shear zone. It also coincides with the global plunge of most of mineralized zones at Windfall.

The Main and Underdog zones are separated by the thick, low-angle, post-mineral granodiorite sill called "Red Dog". The Main zone is located in the hanging wall, above the Red Dog, and is constrained along east-northeast oriented contacts of narrow sub-vertical granodioritic dikes within tilted volcanic rocks. Most mineralized envelopes in the Main zone are associated with pyritic stringers occurring near contacts between volcanic rocks and younger intrusive rocks.

The Underdog mineralized zone is located in the footwall, beneath the Red Dog sill. The understanding of the mineralization is that the Underdog zone is composed of disseminated to semi-massive pyrite intervals associated with strong silica and sericite alteration, generally following main intrusive contacts and/or structural features. The top of this deeper mineral

zone starts at around 600 m depth and continues to depths of roughly 1,400 m where it is still open towards vertical depth and plunge.

From the early stages of exploration in the Windfall area, the recognition of a relationship between gold and porphyries, in respect to the available information, led to the proposal that the Windfall deposit is an intrusion-related system. Recent exploration advances highlight an important structural component that challenges this early interpretation. The characteristics of the gold mineralization in the Windfall Lake deposit are similar to orogenic gold mineralization.

The porphyry intrusions at Windfall appear to have been emplaced during deformation events (D2), subparallel to the early faults and the orientation of the axial plane of the synform in the Lynx area that trends towards the northeast. However, the occurrence of dikes remains an important criterion for the location of the mineralization as they likely acted as rheological anisotropies within the deformed host volcanic sequences and formed ideal structural traps for the mineralizing fluids.

1.5 STATUS OF EXPLORATION AND DRILLING

1.5.1 Windfall Lake and Urban-Barry Properties

The Windfall Lake property is at an advanced stage of exploration, however, the vast Urban-Barry property is still at an early stage.

The properties' areas have seen a great deal of historical exploration work spanning from 1943 to 2009, with no historical resource estimates or production for that period. The Windfall Lake property area saw renewed exploration activities from 2009 to 2014 by Eagle Hill Exploration, producing three mineral resource estimates and a preliminary economic assessment ("PEA") on the property.

In August 2015, Osisko (formerly Oban Mining Corp) completed the acquisition of Windfall Lake and by 2017 had consolidated the Urban-Barry property. From 2015 to the present, Osisko has overseen the exploration on the properties. Several campaigns of prospecting, till sampling and geophysical surveys have taken place in the Windfall Lake and Urban-Barry properties.

For the 2016 to 2017 period, 93 drill holes for a total of 37,868 m were completed on different prospects outside of the Windfall Lake deposit footprint on the Urban-Barry property (E1, E2, E7, Fox, Fold Hinge, Bobtar, NE Windfall).

The 2018 Urban-Barry drilling program was conducted from January to May. A total of 24 drill holes, representing 7,302 m of drill core, were completed in three sectors, namely Great Bear, Black Dog, and Hébert Centre areas. In 2018, an agreement was signed between Osisko Mining Inc. and Osisko Metals Inc. to create a joint venture for base metal and volcanogenic massive sulphide exploration on the Urban-Barry property (Urban-Barry Base Metals). Work

conducted between May, 2018 and June, 2018 by Osisko included eight (8) exploration drill holes generally in the eastern portion of the claim boundaries. A total of 1,743 m was drilled.

The 2019 Urban-Barry drilling program was conducted from January to August over various sectors of interest in the Urban-Barry area. Drilling was carried out by Orbit Garant. A total of 69 drill holes were completed for a total of 16,234 m. Six main areas were visited in the first part of the program, namely Thubière, Chanceux, Rouleau, Fox, and Macho. The second part of the program focused on the newly named Fox West area located in the Macho block.

For the period from October 20, 2015 to January 3, 2020, Osisko completed 2,415 drill holes for a total of 978,768 m of drilling on the Windfall Lake deposit. The drilling program was designed to better define the mineralized zones, with high priority on expanding the Lynx deposit and better define the Underdog mineral zone.

1.6 MINERAL PROCESSING AND METALLURGICAL TESTING

The metallurgical testwork program conducted as part of the Preliminary Economic Assessment (or "PEA", see Osisko news release dated July 17, 2018) was undertaken on samples prepared from drill holes obtained from the Windfall Lake deposit on three zones: Caribou, Zone 27 and Lynx.

The testwork consisted of chemical characterization, a preliminary evaluation of comminution characteristics, a series of gravity, flotation and leaching tests as well as preliminary rheology and flow property tests. The selected flowsheet for processing material from Windfall Lake includes gravity recovery involving intensive leach reactor ("ILR") followed by carbon-in-leach ("CIL"). No tests were performed on the Underdog Zone; however, the average gold recovery of the Caribou and 27 zones was assigned to Underdog. This assumption was based on mineralogical similarity between the Underdog, Caribou and 27 zones.

The average gold recoveries (based on the latest testwork) per mineralized material zone for Windfall Lake were calculated and used for resource estimate. The average gold recoveries are presented in Table 1.2. Based on the testwork results, the overall Au recovery varies from 90.9% to 93.8% depending on the relative proportion of the mineralized material zones fed to the process plant.

Table 1.1
Overall Gold Recovery with Gravity and CIL

	Gravity		Gravity T	Overall Au		
Composite	Au Distribution (%)	ILR Au Recovery (%)	Au Distribution (%)	Au Recovery (%)	Recovery (%)	
Zone 27	19.8	99.0	80.2	90.9	92.5	
Caribou	9.6	99.0	90.4	90.0	90.9	
Lynx	22.4	99.0	77.6	92.3	93.8	

Subsequent to the 2018 PEA metallurgical test program, two bulk samples (Zone 27 and Lynx Zone) were extracted from the Windfall Lake property between December, 2018 and November 2019. The samples were prepared to reconcile the resource model grade (Nguyên, 2019). Both bulk sample were processed at the Northern Sun Redstone concentrator:

- The first bulk sample (5,500-tonne) was prepared with Zone 27 mineralized material. The conclusions extracted from Osisko's news release dated June 11, 2019 were as followed:
 - O Average grade of 8.53 g/t Au for the bulk sample; 26% higher than predicted in the 12.5 m infill drilling block model.
 - o The sample contained 1,508 ounces Au and 1,450 ounces of Ag.
 - o Average Au recovery of 93.7% achieved using contract mill.
 - o A total of 34.5% of the gold was recovered in the gravity concentrate.
- The second bulk sample (5,716-tonne) was prepared with Lynx Zone mineralized material (Nguyên, 2020). The conclusions were as followed:
 - o Average grade of 17.8 g/t Au for the bulk sample; 89% higher than predicted in the
 - o 12.5 m infill drilling block model.
 - o The sample contained 3,271 ounces Au and 2,176 ounces of Ag.
 - o Average Au recovery of 97.2% achieved using contract mill.
 - o A total of 66.7 % of the gold was recovered in the gravity concentrate.

Both bulk samples (Zone 27 and Lynx) presented higher gravity recovery than the values observed during the PEA gravity testwork program (see Table 1.2). This difference in Au gravity recovery should be studied in the next phase of the Project.

1.7 MINERAL RESOURCE ESTIMATE

The 2020 mineral resource estimate for the Windfall Lake deposit was prepared by Osisko staff and reviewed and approved by the Micon QP. The mineral resource is effective as of January 3, 2020. The estimate follows the November 29, 2019 CIM Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines for reporting mineral resources and reserves.

The resource database contains 2,941 surface and underground diamond drill holes which are located within the resource area, representing 1,101,008 m of drill core.

The 2020 mineral resource estimate is constrained by 292 gold-bearing mineralization envelopes which were modelled in Leapfrog GEO software ("Leapfrog") from hand selected assays using a minimum true thickness of 2.0 m. Equal-length composites of 2.0 m were calculated inside the mineralization zones. A three-step capping strategy was applied to the composites before the grade interpolation to limit the influence of high-grade composites over large distances. The search ellipsoid ranges were defined from variography studies which also determined the parameters for the ordinary kriging-based interpolations.

The block models were generated in Datamine StudioRM ("StudioRM") using a parent cell size of 5 m long (X-axis) by 2 m wide (Y-axis) by 5 m vertical (Z-axis), and a minimum subcell size of 1.25 m long by 0.5 m wide by 1.25 m vertical.

The blocks were assigned to resource categories, or excluded from the resource, based on a series of clipping boundaries delineating areas of blocks with similar confidence levels. Indicated resources were defined in areas where 1) the drill hole spacing is less than 25 m, and 2) the reliability of the geological and grade continuity is good. The inferred resources were defined from areas where 1) the drill hole spacing is less than 100 m, and 2) the confidence in geological and grade continuity is moderate.

The mineral resource presented herein is not solely based on the application of a cut-off grade. Isolated and discontinuous blocks above the cut-off grade (3.5 g/t Au) were excluded from the mineral resource estimate. Additionally, "must-take" material, i.e. isolated blocks below cutoff grade located within a potentially mineable volume, was included in the mineral resource estimate.

Table 1.2 presents the updated mineral resource estimate for the Windfall Lake project.

Windfall Lake Mineral Resource (cut-off grade 3.5 g/t Au) **Indicated Resources Inferred Resources** Mineralized **Ounces** Area Grade

Table 1.2 Windfall Lake Gold Deposit Indicated and Inferred Mineral Resources by Area

Ounces Grade **Tonnes Tonnes** Au Au ('000 t) ('000 t)(g/t Au) (g/t Au) ('000 oz) ('000 oz) Lynx (1) 1,817 11.3 661 6,349 10.9 2,233 Underdog 561 8.0 145 4,776 6.9 1,067 Main zone (2) 1,749 3,407 7.1 401 5.8 638 9.1 14,532 Total 4,127 1,206 8.4 3,938

Notes

- (1) Lynx area includes: Lynx Main, Lynx HW, Lynx SW and Lynx 4, Triple Lynx.
- (2) Main area includes: Zone 27, Caribou, Mallard, Windfall Nord and F-Zones.

Mineral Resource Estimate notes:

- The Windfall 2020 mineral resource estimate, with an effective date of January 3, 2020, was (i) prepared by Judith St-Laurent, P.Geo (OGQ #1023)., B.Sc., Senior Resource Geologist of Osisko, and (ii) reviewed and approved by Charley Murahwi, M.Sc., P.Geo., FAusIMM, each of whom is a qualified person within the meaning of NI 43-101. Mr. Murahwi is an employee of Micon International Limited and is considered to be independent of Osisko for purposes of section 1.5 of NI 43-101.
- The Windfall mineral resource estimate is compliant with the May 10, 2014 CIM Definition Standards - For Mineral Resources and Mineral Reserves and the November 29, 2019 CIM Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines for reporting mineral resources and reserves.
- Resources are presented undiluted and in situ and are considered to have reasonable prospects for economic extraction. Isolated and discontinuous blocks above the stated cut-off grade were excluded from the mineral resource estimate. Must-take material, i.e. isolated blocks below cut-off grade located within a potentially mineable volume, were included in the mineral resource estimate.
- As of January 3, 2020, the database comprised a total of 2,941 drill holes for 1,101,008 m of drilling in the areal extent of the mineral resource estimate, of which 2,280 drill holes (918,273 m) were completed and

assayed by Osisko. The drill hole grid spacing is approximately 25 m x 25 m for infill drilling and larger for extension drilling.

- 5. All core assays reported by Osisko were obtained by analytical methods described above under Quality Control and Reporting Protocols.
- 6. Geological interpretation of the deposit is based on lithologies, mineralization style, alteration and structural features. Most mineralized envelopes are subvertical, striking northeast-southwest and plunging approximately 40° towards the northeast. The 3D wireframing was generated in Leapfrog Geo, a modelling software, from hand selections of mineralized intervals. The mineral resource estimate includes a total of 292 tabular, sub-vertical gold-bearing domains defined by individual wireframes with a minimum true thickness of 2.0 m.
- 7. Assays were composited within the mineralized domains into 2.0-m long composites. A value of 0.00125 g/t Au (¼ of the detection limit) was applied to unassayed core intervals.
- 8. High-grade composites were capped. Capping levels were determined in each area from statistical studies on groups of zones sharing similar mineralization characteristics. Capping levels vary from 15 g/t Au to 130 g/t Au and are applied using a three-step capping strategy where the capping value decreases as interpolation search distances increase.
- 9. Five block models were produced using Datamine™ Studio RM Software. The models are defined by parent cell sizes of 5 m northeast, 2 m northwest and 5 m height, and sublocked to minimum subcell sizes of 1.25 m northeast, 0.5 m northwest and 1.25 m height.
- 10. Ordinary Kriging (OK) based interpolations were produced for each area of the Windfall gold deposit. Estimation parameters are based on composite variography analyses.
- 11. Density values of 2.8 were applied to the mineralized zones.
- 12. The Windfall mineral resource estimate is categorized as indicated and inferred mineral resource as follows:
 - The indicated mineral resource category is manually defined and encloses areas where drill spacing is generally less than 25 m. Blocks are informed by a minimum of two drill holes, and reasonable geological and grade continuity is shown.
 - The inferred mineral resource category is manually defined and encloses areas where drill spacing is less than 100 m. Blocks are informed by a minimum of two drill holes, and reasonable, but not verified, geological and grade continuity is observed.
- 13. The mineral resource is reported at 3.5 g/t Au cut-off. The cut-off grade is calculated using the following economic parameters: gold price at 1,325 US\$/oz, exchange rate at 1.30 USD/CAD, 93% mill recovery; selling cost at 5 C\$/oz, 2% NSR royalties, mining cost at 100 C\$/t milled, G&A cost at 30 C\$/t milled, processing cost at 40 C\$/t, transportation cost at 2 C\$/t considering mill at site, and environment cost at 4 C\$/t.
- 14. Estimates use metric units (metres, tonnes and g/t). Metal contents are presented in troy ounces (metric tonne x grade / 31.10348).
- 15. Micon International Limited, and its QP, are not aware of any known environmental, permitting, legal, title-related, taxation, socio-political or marketing issues, or any other relevant issue, that could materially affect the mineral resource estimate.
- 16. These mineral resources are not mineral reserves as they do not have demonstrated economic viability. The quantity and grade of reported inferred mineral resources in this news release are uncertain in nature and there has been insufficient exploration to define these inferred mineral resources as indicated or measured mineral resources. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

1.8 Interpretations and Conclusions

Since the completion of the 2018 mineral resource estimate update for the Lynx zone, a significant amount of additional infill and exploration drilling on several zones has been completed by Osisko (see Table 10.1). Additionally, two bulk samples have been collected underground and those zones have been mapped. These data and their interpretation have resulted in a significant increase in knowledge about the deposit.

Since project acquisition, continued exploration at the Windfall Lake - Urban-Barry project has resulted in the nearly continuous discovery of new zones and concomitant increases in the mineral resources.

An updated geological model has been produced. A new mineral resource has been estimated and the deposit has been classified as a structurally-controlled orogenic gold deposit in an Archean greenstone belt setting.

The outcomes of the mineral resource estimate review completed by Micon include the following interpretation:

- Indicated Resource: 4.127 Mt at 9.1 g/t Au for 1.21 M oz Au;
- Inferred Resource: 14.532 Mt at 8.4 g/t Au for 3.94 M oz Au;
- Mineral resource estimate occurs above 1,200 m vertical depth;
- 2019 drilling increased indicated mineral resource estimate by 60% (adding 452,000 ounces) and increased inferred mineral resource estimate by 66% (adding 1,572,000 ounces);
- Osisko's Lynx discovery hosts average grade greater than 10 g/t Au and the majority of the indicated and inferred mineral resource estimate. Significant high-grade zones (Lynx 4, Triple Lynx) remain open down plunge.

Two bulk samples have been successfully taken with positive results (see Section 1.6 and Section 13).

Both bulk samples (Zone 27 and Lynx) presented higher gravity recovery than the values observed during the PEA gravity testwork program (see Table 1.1). This difference in Au gravity recovery should be studied in the next phase of the Project.

The drilling and sampling programs have successfully increased the mineral resource and upgraded a significant portion of the inferred resource to the indicated category. Progress towards a feasibility study has been made and further work is justified (See Section 1.9).

1.9 RECOMMENDATIONS

Based on the results of the 2020 mineral resource estimate, and considering the project's advancement, as well as the information provided by the exploration ramp at Windfall, Micon recommends that the project be advanced towards the feasibility stage. In preparation for the feasibility study, additional work, including conversion drilling and further bulk samples, in two phases, is warranted.

A two-phase program of work is proposed by Osisko. Following positive phase 1 and 2 results, a feasibility study would then be recommended.

Osisko has prepared a cost estimate for the recommended two-phase work program. Expenditures for Phase 1 are estimated at C\$60,030,000 (including 15% for contingencies). The estimated cost for Phase 2 is approximately C\$24,150,000 (including 15% for contingencies). The grand total is C\$84,180,000 (including 15% for contingencies). Phase 2 can be performed simultaneously to Phase 1.

Table 1.5 presents the estimated costs for the various phases of the recommended exploration program. Additional details are presented in Chapter 26.

Table 1.3 Work Program Budget

Dhogo 1 Work Drogram	Budget		
Phase 1 - Work Program	Description	Cost (CAD\$)	
Surface Drilling	150,000 m	30,000,000	
Underground Drilling	100,000 m	10,000,000	
Exploration Drilling	60,000 m	12,000,000	
Metallurgical Testing	=	200,000	
Contingencies (~15%)	=	7,830,000	
Phase 1 subtotal	310,000 m	60,030,000	
Phase 2 - Work Program	Budget		
Fliase 2 - Work Flogram	Description	Cost (CAD\$)	
Hydrogeological and Geotechnical Study		1,000,000	
Third Bulk Sample and Underground Ramp for		20,000,000	
Drilling Station Access		20,000,000	
Contingencies (~15%)	=	3,150,000	
Phase 2 subtotal	-	24,150,000	
Total - Phase 1 and Phase 2	·	84,180,000	

1.9.1 Summary

The QP has reviewed the proposed program of work and budget and finds them to be reasonable and justified in light of the observations made in this report. The recommended work program and proposed expenditures are appropriate and well thought out. The proposed budget reasonably reflects the type and scope of the contemplated activities. The QP recommends that Osisko conduct the planned activities subject to availability of funding and any other matters which may cause the objectives to be altered in the normal course of business activities.

2.0 INTRODUCTION

2.1 TERMS OF REFERENCE

At the request of M. Mathieu Savard, Senior Vice President of Exploration and Mr. John F. Burzynski, President and CEO of Osisko Mining Inc. ("Osisko"), Micon International Limited ("Micon") has undertaken an independent review of the mineral exploration completed on the Windfall Lake Project and a mineral resource estimate prepared under the direction of Judith St-Laurent, Géo., B.Sc./P.Geo, B.Sc. (OGQ #1023), Géologue de Ressources Sénior/Senior Resource Geologist, an employee of Osisko.

Since the completion of the 2018 mineral resource estimate update for the Lynx zone a significant amount of additional infill and exploration drilling on several zones has been completed by Osisko (see Table 10.1). This drilling and its results are described in this report and incorporated into a new geological interpretation and resource estimate.

Some of the boiler plate text for this report has been contributed by Osisko and edited by Micon.

Micon and the consultants who prepared this report do not have any material interest in Osisko, any related entities or the Windfall project. The relationship between Micon and Osisko is solely a professional association between client and independent consultant. This report is prepared in return for fees based upon agreed commercial rates and the payment of these fees was in no way contingent on the results of this report.

The requirements of electronic document filing on SEDAR necessitate the submission of this report as an unlocked, editable PDF (portable document format) file. Micon accepts no responsibility for any changes made to the file after it leaves its control.

2.2 Information Sources

Micon was given access to electronic data and previous reports compiled by Osisko and its employees and consultants. Many of the illustrations in this report are reproduced from those data and documents.

2.3 QUALIFIED PERSONS, SITE VISITS AND AREAS OF RESPONSIBILITY

The primary authors of this report and Qualified Persons are:

- Charley Murahwi, P.Geo., M.Sc. P.Geo., Pr. Sci. Nat., FAusIMM
- Jorge Torrealba, P. Eng., Ph.D.

Mr. Murahwi's site visits to the Windfall Lake Project were conducted between November 17 to 20, 2019 and from October 29 to 31, 2018. The project site northeast of Val d'Or and east of Lebel-sur-Quévillon was accessed by four-wheel drive truck. The QP visited the field

locations of the principal drilling areas, the core sheds, the field offices as well as a trip underground to view the bulk sample locations at Lynx and Zone 27. As the local topography is generally flat and low, and with somewhat limited outcrop, frequent swampy areas and snow cover, very limited surface exposure of mineralization or local host rocks were available to be seen. Drill set-up locations were also viewed and surveyed locations of a few were checked by GPS. This was followed by visits to Osisko's core storage yard and logging facility at site to inspect core and review procedures with the logging geologists. The core from several typical diamond drill holes was reviewed to assess the quality of drilling, core recovery and sampling and to view the lithologic, alteration and structural controls of the mineralization. Several operating drills were visited to view procedures being implemented.

2.4 Units And Abbreviations

All currency amounts are stated in Canadian (CAD) or US dollars (USD) as indicated. Quantities are generally stated in metric units, the standard Canadian and international practice, including metric tons (tonnes, t) and kilograms (kg) for weight, kilometres (km) or metres (m) for distance, hectares (ha) for area. Wherever applicable, Imperial units have been converted to Système International d'Unités (SI) units for reporting consistency. Precious metal grades may be expressed in grams (g) or grams per tonne (g/t), parts per million (ppm) or parts per billion (ppb) and their quantities may also be reported in troy ounces (ounces, oz), a common practice in the mining industry. A list of abbreviations which may be used in the report is provided in Table 2.1.

Table 2.1 Abbreviations

Abbreviation	Meaning	Abbreviation	Meaning
μ	micron	km ²	square kilometre
°C	degree Celsius	kPa	kilopascal
°F	degree Fahrenheit	kVA	kilovolt-amperes
0	azimuth/dip in degrees	kW	kilowatt
μg	microgram	kWh	kilowatt-hour
A	ampere	L	litre
A	annum	L/s	litres per second
Au	gold	m	metre
Bbl	barrels	M	mega (million)
Btu	British thermal units	m^2	square metre
C\$	Canadian dollars	m^3	cubic metre
Cal	calorie	min	minute
Cfm	cubic feet per minute	MASL	metres above sea level
Cm	centimetre	mm	millimetre
cm ²	square centimetre	mph	miles per hour
D	day	MVA	megavolt-amperes
dia.	diameter	MW	megawatt
Dmt	dry metric tonne	MWh	megawatt-hour
Dwt	dead-weight ton	m ³ /h	cubic metres per hour
Ft	foot	opt, oz/st	ounce per short ton
ft/s	foot per second	OZ	Troy ounce (31.1035g)
ft ²	square foot	ppm	part per million

Abbreviation	Meaning	Abbreviation	Meaning	
ft ³	cubic foot	psia	pound per square inch absolute	
G	gram	psig	pound per square inch gauge	
G	giga (billion)	RL	relative elevation	
Gal	Imperial gallon	S	second	
g/L	gram per litre	st	short ton	
g/t	gram per tonne	stpa	short ton per year	
Gpm	Imperial gallons per minute	stpd	short ton per day	
Hr	hour	t	metric tonne	
На	hectare	tpa	metric tonne per year	
Нр	horsepower	tpd	metric tonne per day	
In	inch	US\$	United States dollar	
in ²	square inch	USg	United States gallon	
J	joule	USgpm	US gallon per minute	
K	kilo (thousand)	V	volt	
Kcal	kilocalorie	W	watt	
Kg	kilogram	wmt	wet metric tonne	
Km	kilometre	yd ³	cubic yard	
km/h	kilometre per hour	yr	year	

2.5 ACKNOWLEDGMENT

Micon is pleased to acknowledge the helpful cooperation of Osisko personnel, all of whom made any and all data requested available and responded openly to all questions, queries and requests for material.

3.0 RELIANCE ON OTHER EXPERTS

A description of the properties, and ownership thereof, is provided in Section 4 of this report for general information purposes only, as required by NI 43-101.

The QPs have not reviewed any of the documents or agreements under which Osisko holds title to the claims of the Windfall Lake Project and offers no opinion as to the validity of the mineral titles claimed.

Osisko has supplied Micon with written descriptions of the property outlining the current claim status and any underlying royalties.

The QPs have relied on the property descriptions and claim status for completion of Section 4 of this report. The QPs have also relied on information regarding royalties provided by Osisko.

4.0 PROPERTY DESCRIPTION AND LOCATION

4.1 Introduction

The Windfall Lake Project consists of the following two properties:

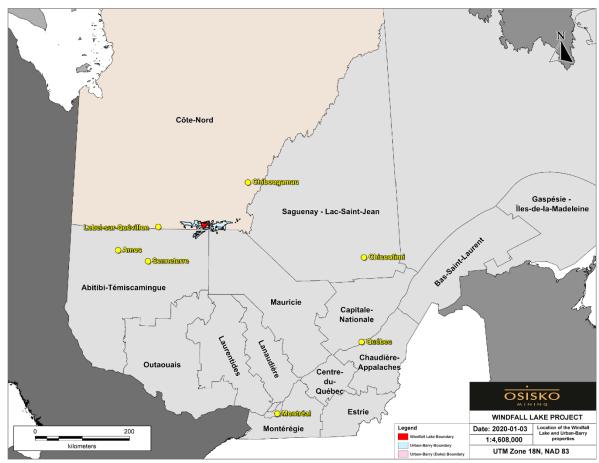
- Windfall Lake.
- Urban-Barry.

The mineral resource estimate in this report is based on mineral resources from the Windfall Lake property.

Table 4.1 Property Summary

Property	Au Deposit	Claims	Area (ha)
Windfall Lake	Windfall Lake	285	12,467
Urban-Barry		1,913	103,608
Total		2,198	116,075

4.2 LOCATION


The Windfall Lake and Urban-Barry properties are located in the province of Québec, Canada. The land package covering the properties is located to the east of the town of Lebel-sur-Quévillon, approximately 620 km north-northwest of Montréal and 155 km northeast of Val d'Or. The Urban-Barry property lies approximately 115 km east of the town of Lebel-sur-Quévillon and surrounds the Windfall Lake property. The centre of the Windfall Lake Project is located at approximately 75.66° west longitude and 49.05° north latitude (Figure 4.1).

4.3 MINING RIGHTS IN QUÉBEC

The following discussion on the mining rights in the province of Québec was mostly summarized from Guzun (2012), Gagné and Masson (2013), and from the Act to amend the Mining Act (Bill 70; the "Amending Act") assented on December 10, 2013 by the National Assembly.

Figure 4.1
Location of the Windfall Lake Project and the Osisko Claims in the Province of Québec, Canada, with Provincial Administrative Divisions.

Source: Osisko, 2020.

In the province of Québec, mining is principally regulated by the provincial government. The Ministry of Energy and Natural Resources ("MERN": Ministère de l'Énergie et des Ressources Naturelles du Québec) is the provincial agency entrusted with the management of mineral substances in Québec. The ownership and granting of mining titles for mineral substances are primarily governed by the Mining Act and related regulations. In Québec, land surface rights are distinct property from mining rights. Rights in or over mineral substances in Québec form part of the domain of the State (the public domain), subject to limited exceptions for privately owned mineral substances. Mining titles for mineral substances within the public domain are granted and managed by the MERN. The granting of mining rights for privately owned mineral substances is a matter of private negotiations, although certain aspects of the exploration for and mining of such mineral substances are governed by the Mining Act.

4.3.1 The Claim

A claim is the only exploration title for mineral substances (other than surface mineral substances, petroleum, natural gas and brine) currently issued in Québec. A claim gives its holder the exclusive right to explore for such mineral substances on the land subject to the claim but does not entitle its holder to extract mineral substances, except for sampling, and only in limited quantities. In order to mine mineral substances, the holder of a claim must obtain a mining lease. The electronic map designation is the most common method of acquiring new claims from the MERN whereby an applicant makes an online selection of available pre-mapped claims. In rare territories, claims can be obtained by staking.

In March 2013, the Québec government converted all remaining staked claims of the Windfall Lake property into one or more map-designated claims. Unlike the perimeter of a staked claim, which is defined by posts staked in the ground, the map-designated claims perimeter is defined by the geographic coordinates as determined by the Québec government. The basic unit is 30 seconds of latitude in a north-south direction, and 30 seconds of longitude in an east-west direction. Depending on the latitude, the designated claim cells vary from 40 ha to 60 ha in area.

4.3.2 The Mining Lease

Mining leases are extraction (production) mining titles that give their holder the exclusive right to mine mineral substances (other than surface mineral substances, petroleum, natural gas, and brine). A mining lease is granted to the holder of one or several claims upon proof of the existence of indicators of the presence of a workable deposit on the area covered by such claims and compliance with other requirements prescribed by the Mining Act. A mining lease has an initial term of 20 years, but may be renewed for three additional periods of 10 years each. Under certain conditions, a mining lease may be renewed beyond the three statutory renewal periods.

4.4 MINING TITLE STATUS

4.4.1 Windfall Lake Property

The Windfall Lake property is 100% owned by Osisko Mining Inc. "Osisko"). The property is mainly located in the National Topographic System ("NTS") map sheet 32G04 and in Urban Township. On January 3, 2020, the property consisted of 285 individual claims covering an aggregate area of 12,467 ha. The actual property was consolidated from several agreements concluded with previous owners and presented in Figure 4.2.

445000 450000 455000 460000 465000 OSISKO WINDFALL PROJECT Original Agreements on the Windfall Lake Property Gold Mineralization (modeled) Date: 2020-03-27 NORONT Windfall (18) 29 Claims Expansion 1:80 000 NORONT Alcane (24) 184 Claims Expansion Windfall Lake Property UTM Zone 18N, NAD 83 NORONT South Block (20) 455000 450000 445000 460000 465000

Figure 4.2
Land Tenure Plan Showing the Various Original Agreements on the Windfall Lake Property.

Source: Osisko 2020

A summary of the tenure information as extracted from the Québec government GESTIM (Gestion des Titres Miniers) website (as of the effective date of this technical report) is presented in Table 4.2. A complete listing of the mineral titles is presented in Appendix A at the end of this report. All claims are in good standing, with expiry dates varying between January 22, 2020 and September 24, 2021. Osisko has sufficient work credit to renew all the claims and maintain them in good standing.

Table 4.2 Mineral Tenure Summary of the Windfall Lake Property (December 31, 2020)

Option / Joint Venture	Registered Owner	No. of Claims	Area (ha)	Expiry Date	Mineral Resource	Percentage Held by Osisko Mining Inc.
Windfall Lake-	Osisko	6	76.48	22-Jan-20	Yes	100%
Noront Option	Mining Inc.	50	1,794.54	25-Sep-20	103	100%
The 29 Claims	Osisko	2	112.74	10-Jun-21		100%
Expansion	Mining Inc.	9	405.5	05-Mar-21	Yes	
Expansion	willing flic.	13	429.64	10-Mar-21		
	Osisko Mining Inc.	27	1,521.29	10-Jun-21	Yes	100%
		13	732.76	24-Sep-21		
104 (7)		15	578.85	4-Dec-20		
184 Claims		6	338.13	5-Dec-20		
Expansion Includes the Carat Claims		40	2,253.41	10-Dec-20		
the Carat Claims		43	2,222.26	05-Mar-21		
		16	282.82	10-Mar-21		
		9	274.06	20-Mar-21		
D	Osisko	11	620.11	2-May-20	-	100%
Rousseau	Mining Inc.	7	394.61	3-May-20		
Windfall Lake 2010	Osisko Mining Inc.	13	148.15	2-Aug-20		100%
Windfall Lake 2012	Osisko Mining Inc.	5	281.65	14-Aug-20	-	100%
Total		285	12,467	-	-	-

The active underlying royalties affecting the different portions of the property are presented in Figure 4.3. The boundaries of the claims have not been surveyed legally.

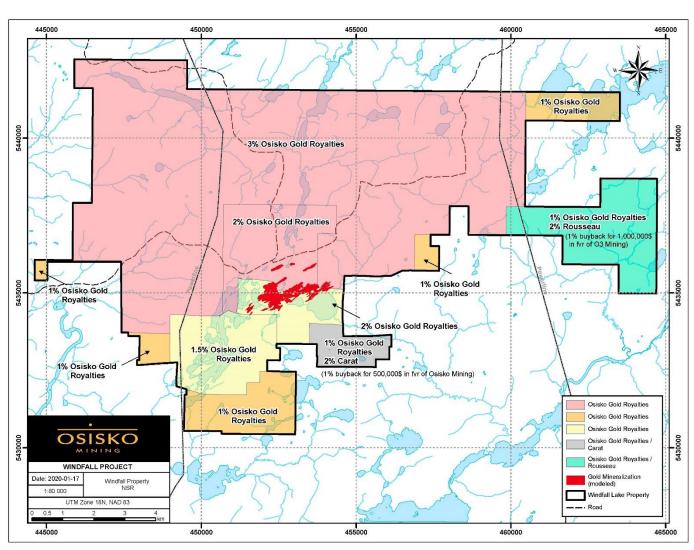


Figure 4.3
Net Smelter Return ("NSR") Royalty Agreements for the Windfall Lake Property.

Source: Osisko 2020

Osisko Mining's rights to the property arose from several distinct agreements that are discussed in Section 4.4.1.1. The main claim blocks inherited from the original agreement are: The Windfall Lake-Noront Option (including the Windfall, Alcane, and South blocks), 29 Claims Expansion, 184 Claims Expansion, Rousseau property, Windfall Lake 2010, Windfall Lake 2012, and the Carat Claim. Following a series of transactions during the first half of 2014, Eagle Hill Exploration Corp. (now Osisko Mining Inc.) acquired a 100% interest in all the claim blocks of the property, barring various net smelter return ("NSR") royalties discussed in Section 4.5.

The mineral resources discussed herein are, in the vast majority, located within the Noront-Windfall block of the Windfall Lake option and the 29 Claims Expansion claim blocks. Very limited mineral resources are located on the 184 claims block as shown in Figure 4.2. The vast majority of the claims located within the Windfall mineral resource estimate are subject to a 2% NSR to Osisko Gold Royalties, except for the Alcane Block (1.5% NSR) and the 184 Block (3% NSR) (Figure 4.2 and Figure 4.3).

4.4.1.1 Windfall Lake Property Surface Rights Option Agreement

On August 25, 2015, Osisko acquired Eagle Hill, which held the Windfall Lake property, resulting in Eagle Hill becoming a wholly-owned subsidiary of Osisko. On January 1, 2019, Eagle Hill was amalgamated into Osisko, resulting in it becoming the successor to Eagle Hill's interest in the Windfall Lake property.

The rights to the Windfall lake property held by Osisko (then Eagle Hill) arise from a series of option agreements executed by Eagle Hill with various third parties during 2009, 2010, 2013, and 2014:

- The original property option agreement with Noront Resources Ltd. ("Noront") in July, 2009.
- The 29 Claims Expansion with Noront, Murgor, and Freewest Resources Canada Ltd. ("Freewest) (since acquired by Cliffs) in October, 2009.
- The 184 Claims Expansion with Murgor and Cliffs in October, 2009.
- The Rousseau joint venture with Murgor on the Rousseau property in March, 2010.
- The purchase of Noront's remaining 25% interest in August, 2013.
- The purchase of Murgor's and Cliffs' remaining interests in April, 2014.
- The purchase of the Duval and the Boudreault royalties in May, 2014.

4.4.1.2 Original Windfall Lake Property Option Agreement with Noront

On July 20, 2009, Eagle Hill entered into an option agreement with Noront, pursuant to which Eagle Hill earned a 75% interest in Noront's interests in 80 claims (156 claims prior to the Québec government conversion) in the property area. Eagle Hill could earn, at Noront's option, a 100% interest subject to a 1% NSR. The property included four contiguous blocks (80 claims) covering a total area of 2,757 ha. Noront had a 50% interest in 24 of the claims

post-conversion (the 29 Claims Expansion) and a 100% interest in the remaining 56 claims (127 claims prior to conversion) (the Windfall Lake block of claims). Eagle Hill's primary obligations, as outlined in the option agreement, were as follows:

- Complete an equity financing of at least \$1,500,000 on or before October 15, 2009.
- Make an initial consideration payment of \$400,000 upon completion of the above financing and receipt of regulatory approval.
- Incur exploration expenditures on the claims and option payments to earn an interest in the claims as follows:
 - o \$500,000 in exploration expenditures and a cash payment of \$200,000 to Noront on or before December 31, 2010 to earn 10% of Noront's interest in the claims.
 - o \$2,000,000 in additional exploration expenditures on or before December 31, 2011 to earn 51% of Noront's interest in the claims.
 - \$2,500,000 in additional exploration expenditures and a cash payment of \$400,000 to Noront on or before December 31, 2012 to earn 75% of Noront's interest in the claims.

Purchase of the 100% Interest from Noront

As of April 20, 2012, Eagle Hill had earned the initial 75% interest in Noront's interest in the property, after completing the required expenditures and payments. On June 28, 2013, Eagle Hill entered into a binding letter agreement to acquire the remaining 25% ownership, all royalties, and all other interests in the mineral claims of the property from Noront, by making aggregate cash payments of \$5,000,000 and issuing 25,000,000 freely tradable common shares of Eagle Hill to Noront. The transaction was completed on August 14, 2013, and as a result, Eagle Hill now held 100% of the Windfall Lake block. A further result was that Eagle Hill held a 75% interest in the 29 Claims Expansion.

The property, originally owned by Noront, is further divided into three blocks, characterized by different NSR agreements with third parties (Figure 4.3).

The Noront-Windfall block, which contains most of the mineral resource, is subject to a 2% NSR as follows:

• 0.5% NSR: On July 26, 2004, Noront and Alto Ventures Ltd. ("Alto") entered into an agreement under which Noront acquired Alto's interest in the Noront-Windfall block (50%) and the Alcane Block (100%) in exchange for Alto retaining a 0.5% NSR royalty over the Noront-Windfall block and the Alcane Block. On April 7, 2014, Virginia Mines Inc. ("Virginia") and Alto entered into a royalty acquisition agreement under which Virginia acquired the 0.5% NSR royalty. On February 17, 2015, Osisko Gold Royalties Ltd. acquired Virginia, resulting in Virginia becoming a wholly-owned subsidiary of Osisko Gold Royalties Ltd. Then, on December 31, 2015, Osisko Gold Royalties entered into an assignment agreement with Osisko Explorations James Bay Inc. (formerly named Virginia), its wholly-owned subsidiary, such that Osisko Gold Royalties Ltd. now holds this 0.5% NSR royalty directly.

- 0.5% NSR: On January 16, 2020, Osisko and Osisko Gold Royalties Ltd. entered into a royalty agreement pursuant to which a 0.5% NSR royalty was re-granted to Osisko This royalty was repurchased by Osisko from Scandium Gold Royalties Ltd. International Mining Corp., as successor to EMC Metals, Golden Predator Mines, and the successor in interest to Fury Explorations ("Scandium"), and re-granted to Osisko Gold Royalties Ltd. on account of buy-back rights being exercised by Osisko Gold Royalties Ltd. under the investment agreement dated August 25, 2015 between Osisko and Osisko Gold Royalties Ltd. This royalty was originally granted on June 9, 2004 under a letter agreement between Noront and Scandium (then named Fury Explorations) pursuant to which Noront agreed to purchase an assignment of an option agreement dated September 4, 2002 between Scandium (then named Fury Explorations) and Alto. As part of the consideration for the option assignment, Scandium retained a 1% NSR over the interests held by Noront only (i.e., a 50% interest in the Noront-Windfall block). Noront was granted the right to repurchase the 1% NSR for \$1 million (or \$500,000 for each 0.5% NSR), and prior to being exercised, such repurchase rights were held by Osisko.
- 1% NSR: On October 4, 2016, Osisko and Osisko Gold Royalties Ltd. entered into a royalty agreement pursuant to which a 1% NSR royalty was granted to Osisko Gold Royalties Ltd. over all of the properties held by Osisko as of August 25, 2015 (including the Noront-Windfall block). Osisko Gold Royalties was granted the right to receive a 1% royalty over all such properties in exchange for a \$5 million cash payment under the investment agreement dated August 25, 2015 between Osisko and Osisko Gold Royalties Ltd.

The Noront-Alcane block, which contains some of the mineral resource along its northern boundary, is subject to a 1.5% NSR as follows:

- 0.5% NSR: On July 26, 2004, Noront and Alto entered into an agreement under which Noront acquired Alto's interest in the Noront-Windfall block (50%) and the Alcane Block (100%) in exchange for Alto retaining a 0.5% NSR royalty over the Noront-Windfall block and the Alcane Block. On April 7, 2014, Virginia and Alto entered into a royalty acquisition agreement under which Virginia acquired this 0.5% NSR royalty. On February 17, 2015, Osisko Gold Royalties Ltd. acquired Virginia, resulting in Virginia becoming a wholly-owned subsidiary of Osisko Gold Royalties Ltd. Then, on December 31, 2015, Osisko Gold Royalties entered into an assignment agreement with Osisko Explorations James Bay Inc. (formerly named Virginia), its wholly-owned subsidiary, such that Osisko Gold Royalties Ltd. now holds this 0.5% NSR royalty directly.
- 1% NSR: On October 4, 2016, Osisko and Osisko Gold Royalties Ltd. entered into a royalty agreement pursuant to which a 1% NSR royalty was granted to Osisko Gold Royalties Ltd. over all of the properties held by Osisko as of August 25, 2015 (including the Noront-Alcane block). Osisko Gold Royalties was granted the right to receive a

1% royalty over all such properties in exchange for a \$5 million cash payment under the investment agreement dated August 25, 2015 between Osisko and Osisko Gold Royalties Ltd.

• Other Royalty Buy-Back: On May 6, 2014, Eagle Hill bought back and cancelled the 2% NSR royalty then held by Boudreault on the Noront-Alcane block.

The Noront South block was not subject to any NSR royalty inherited from the Noront. However, as described above, the Noront South block is subject to a 1% NSR royalty in favour of Osisko Gold Royalties as follows:

• 1% NSR: On October 4, 2016, Osisko and Osisko Gold Royalties Ltd. entered into a royalty agreement pursuant to which a 1% NSR royalty was granted to Osisko Gold Royalties Ltd. over all of the properties held by Osisko as of August 25, 2015 (including the Noront South block). Osisko Gold Royalties was granted the right to receive a 1% royalty over all such properties in exchange for a \$5 million cash payment under the investment agreement dated August 25, 2015 between Osisko and Osisko Gold Royalties Ltd.

As noted above, these three blocks are subject to the following NSR royalties: (i) the Noront Windfall block is subject to a 2% NSR royalty in favour of Osisko Gold Royalties Ltd; (ii) the Noront-Alcane block is subject to a 1.5% NSR royalty in favour of Osisko Gold Royalties Ltd; and (iii) the Noront South block is subject to a 1% NSR royalty in favour of Osisko Gold Royalties Ltd.

4.4.1.3 Original Windfall Lake Property Expansion with Murgor and Cliffs

On October 8, 2009, Eagle Hill entered into two separate agreements with Murgor and Cliffs to increase its holdings at the property. Eagle Hill, Murgor, and Cliffs agreed to an amendment to the option agreements on November 23, 2011. The following section describes the details of the option agreements with Murgor and Cliffs.

The 29 Claims Expansion and the 184 Claims Expansion - Murgor and Cliffs

The first of these agreements was an option to acquire the remaining 50% interest in the 29 Claims Expansion block from Murgor and Cliffs. Eagle Hill had acquired the other 50% of these claims through completion of its agreements with Noront. The number of claims was established at 24 claims (for a total of 891 ha), following the consolidation of staked claims into map-designated claims. The terms of the option agreement with Murgor and Cliffs on the 29 Claims Expansion were as follows:

 During the year ended October 31, 2010, Eagle Hill earned an additional 10% interest in the 29 Claims Expansion by issuing 2,500,000 common shares, making a cash payment of \$300,000, incurring \$400,000 in exploration expenditures, and issuing to Murgor and Cliffs a 2% NSR.

- For an additional 15% interest in the 29 Claims Expansion, Eagle Hill had to incur an additional \$1,600,000 in exploration expenditures on or before April 30, 2012.
- For the remaining 25% interest in the 29 Claims Expansion, Eagle Hill had to incur an additional \$2,000,000 of exploration expenditures on or before December 31, 2012.

The second agreement was an option to earn up to 100% interest in an additional 172 claims (184 claims prior to conversion) contiguous to the property from Murgor and Cliffs ("the Optionors"). In the event that Eagle Hill did not earn more than a 50% interest in these claims, Murgor and Cliffs had the right to re-purchase such interest for \$255,000. In the event that Eagle Hill ultimately earned 100% interest in these claims but did not complete a bankable feasibility study within three years from the date the 100% interest was earned, Murgor and Cliffs had the right to re-purchase the 100% interest in these claims from Eagle Hill for \$1,755,000. The terms of this option agreement were as follows:

- For an initial 20% interest in the claims, Eagle Hill had to:
 - o issue 1,000,000 common shares to the Optionors on or before October 31, 2009,
 - o pay \$100,000 to the Optionors on or before December 31, 2010 and
 - o incur \$350,000 of exploration expenditures on or before December 31, 2010.
- For an additional 30% interest in the claims, Eagle Hill had to incur an additional \$500,000 of exploration expenditures on or before April 30, 2012.
- For the remaining 50% interest in the claims, Eagle Hill had to incur an additional \$650,000 of exploration expenditures on or before December 31, 2012.

Consolidation of the Windfall Lake Property Extension

On March 13, 2014, Eagle Hill entered into an agreement with Murgor and Cliffs to purchase the remaining interests in the 29 Claims Expansion and the 184 Claims Expansion. In consideration for the remaining interest in the claims, Eagle Hill paid \$250,000 and issued 9,500,000 common shares to each of Murgor and Cliffs.

In addition, Eagle Hill granted a 0.5% NSR for the 29 Claims and a 1% NSR for the 184 Claims to each of Murgor and Cliffs. Eagle Hill retained the right to buy back any of the NSRs at any time prior to first commercial production, by paying \$500,000 to each holder of the NSR.

On April 7, 2014, Murgor sold all its interests in the property to Gold Royalties Corporation ("Gold Royalties"). The 29 Claims Expansion is subject to a 0.5% NSR to each of Gold Royalties and Cliffs, and the 184 Claims Expansion is subject to a 1% NSR to each of Gold Royalties and Cliffs.

Following the acquisition of Gold Royalties by Sandstorm Gold Ltd. On April 24, 2015, the 29 Claims Expansion subject to a 0.5% NSR and the 184 Claims Expansion subject to a 1% NSR are therefore owned by Sandstorm Gold Ltd.

In addition, one portion of the 29 Claims Expansion was subject to a 2% NSR to Duval, and another distinct portion of the 29 Claims Expansion was subject to a 2% NSR to Boudreault (Figure 4.3). On May 6, 2014, Eagle Hill acquired the NSRs from Duval and Boudreault by paying \$30,000 and issuing 1,666,667 shares of Eagle Hill to each of the vendors.

In order to finance the acquisition of Cliffs Naturals Resources Inc. subsidiaries ("Cliffs Chromite Ontario Inc.") by Noront concluded on April 28, 2015, Noront entered into an amended and restated US\$25 million loan agreement with Franco-Nevada in exchange for 3% NSR over the Black Thor chromite deposit and a 2% royalty over all of Noront's property excluding Eagle's Nest. In addition, Noront received US\$3.5 million in cash consideration as part of the granting of the royalty over the existing Noront property. Considering that Noront acquired Cliffs Chromite Ontario Inc. on March 22, 2015 (amended on April 17, 2015), which owned a 0.5% NSR royalty over 29 Claims Expansion and a 1% NSR over of the 184 Claims Expansion of the Windfall Lake Project, and following the subsequent transaction between Noront and Franco-Nevada, the latter is considered to hold a 0.5% NSR royalty over 29 Claims Expansion and a 1% NSR over of the 184 Claims Expansion.

Both of the NSR royalties on the 29 Claims Expansion and the 184 Claims Expansion were subject to buyback rights. Such royalties were bought back by Osisko (or Eagle Hill) and regranted to Osisko Gold Royalties Ltd. as described below.

The 29 Claims Expansion, which contains some of the mineral resource in its southeastern boundary, is subject to a 2% NSR royalty, and the 184 Claims Expansion is subject to a 3% NSR royalty, as follows:

- 0.5% NSR (29 Claims) and 1% (184 Claims): On November 16, 2018, Osisko (then Eagle Hill) and Osisko Gold Royalties Ltd. entered into an amended and restated royalty agreement pursuant to which a 0.5% NSR royalty over the 29 Claims Expansion and a 1% NSR Royalty over the 184 Claims Expansion was repurchased and re-granted to Osisko Gold Royalties Ltd. These royalties was repurchased by Osisko from Franco Nevada (as successor to the interest of Cliffs Chromite Ontario Inc.) under the royalty agreement dated March 28, 2014, and re-granted Osisko Gold Royalties Ltd. on account of buy-back rights being exercised by Osisko Gold Royalties Ltd. under the investment agreement dated August 25, 2015 between Osisko and Osisko Gold Royalties Ltd.
- 0.5% NSR (29 Claims) and 1% (184 Claims): On November 16, 2018, Osisko (then Eagle Hill) and Osisko Gold Royalties Ltd. entered into an amended and restated royalty agreement pursuant to which a 0.5% NSR royalty over the 29 Claims Expansion and a 1% NSR Royalty over the 184 Claims Expansion was repurchased and re-granted to Osisko Gold Royalties Ltd. These royalties were repurchased by Osisko from Sandstorm Gold Ltd. (as successor in interest to Murgor Resources Inc.) under the royalty agreement dated March 28, 2014, and re-granted to Osisko Gold Royalties Ltd. on account of buy-back rights being exercised by Osisko Gold Royalties Ltd. under the

investment agreement dated August 25, 2015 between Osisko and Osisko Gold Royalties Ltd.

• 1% NSR: On October 4, 2016, Osisko and Osisko Gold Royalties Ltd. entered into a royalty agreement pursuant to which a 1% NSR royalty was granted to Osisko Gold Royalties Ltd. over all of the properties held by Osisko as of August 25, 2015 (including the 29 Claims Expansion and the 184 Claims Expansion). Osisko Gold Royalties was granted the right to receive a 1% royalty over all such properties in exchange for a \$5 million cash payment under the investment agreement dated August 25, 2015 between Osisko Gold Royalties Ltd.

4.4.1.4 The Rousseau Property Joint Venture

In May 2010, Eagle Hill entered into a joint venture agreement with Murgor (the Rousseau Joint Venture) whereby an equal partnership joint venture was formed.

The Rousseau Joint Venture purchased 100% of a group of 18 mineral claims, contiguous to the property, from another non-related company (9187-1400 Québec Inc.) subject to a 2% NSR. Eagle Hill's share of the cost to acquire these claims was \$5,000 and 100,000 common shares.

On August 2, 2011, Eagle Hill entered into an agreement whereby it acquired the remaining 50% of the Rousseau Joint Venture by paying \$5,000 and issuing 200,000 common shares to Murgor. Eagle Hill now holds a 100% interest in the Rousseau property claims block, subject to the NSR provisions of the original agreement. Eagle Hill has the right to buyback the 1% NSR royalty on the Rousseau Joint Venture claims in exchange for \$1 million. On October 3, 2018, Osisko (then Eagle Hill) provided written notice to 9187-1400 Québec Inc. of its buyback of 1% of the NSR royalty in exchange for \$1 million, in accordance with Section 3.2 of the Option Agreement. Osisko (then Eagle Hill) has not yet received a response from 9187-1400 Québec Inc. in respect of its exercise of such buyback rights.

In addition, the remaining 1% NSR royalty on the Rousseau Joint Venture claims is subject to a right of first refusal in favour of Murgor Resources Inc., an indirect wholly-owned subsidiary of O3 Mining Inc., which it acquired further to its business combination with Alexandria Minerals Corp., which closed on August 1, 2019.

The Rousseau Joint Venture claims are subject to a 1% NSR royalty in favour of Osisko Gold Royalties pursuant to a royalty agreement dated October 4, 2016 between Osisko and Osisko Gold Royalties Ltd. Osisko Gold Royalties was granted the right to receive a 1% royalty over all such properties in exchange for a \$5 million cash payment under the investment agreement dated August 25, 2015 between Osisko and Osisko Gold Royalties Ltd.

4.4.1.5 Windfall Lake 2010

In August 2010, Eagle Hill staked 13 mineral claims (7 claims pre-conversion), covering 102.16 ha, to make the property contiguous. These claims were registered under the name Murgor, as Murgor was operating the exploration activities for Eagle Hill at the time and were subsequently transferred to Eagle Hill. These claims are subject to a 1% NSR royalty that was granted to Osisko Gold Royalties Ltd. over all of the properties held by Osisko as of August 25, 2015.

4.4.1.6 Windfall Lake 2012

In August 2012, Eagle Hill staked five claims (281.65 ha) in the northeast corner of the property to cover the extension of a favourable structure in an underexplored sector. These claims are subject to a 1% NSR royalty that was granted to Osisko Gold Royalties Ltd. over all of the properties held by Osisko as of August 25, 2015.

4.4.1.7 4.4.1.7 Virginia Mines Alto' NSR acquisition in 2014.

On July 26, 2004, Noront and Alto entered into an agreement under which Noront acquired Alto's interest in the Noront-Windfall block (50%) and the Alcane Block (100%) in exchange for Alto retaining a 0.5% NSR royalty over the Noront-Windfall block and the Alcane Block. On April 7, 2014, Virginia and Alto entered into a royalty acquisition agreement under which Virginia acquired this 0.5% NSR royalty. On February 17, 2017, Osisko Gold Royalties Ltd. acquired Virginia, resulting in Virginia becoming a wholly-owned subsidiary of Osisko Gold Royalties Ltd. Then, on December 31, 2015, Osisko Gold Royalties entered into an assignment agreement with Osisko Explorations James Bay Inc. (formerly named Virginia), its wholly-owned subsidiary, such that Osisko Gold Royalties Ltd. now holds this 0.5% NSR royalty directly

4.4.1.8 Investment Agreement and Royalty Agreement

On October 4, 2016, Osisko and Osisko Gold Royalties Ltd. entered into a royalty agreement pursuant to which a 1% NSR royalty was granted to Osisko Gold Royalties Ltd. over all of the properties held by Osisko as of August 25, 2015. Osisko Gold Royalties was granted the right to receive such 1% royalty over all such properties in exchange for a \$5 million cash payment under the investment agreement dated August 25, 2015 between Osisko Gold Royalties Ltd.

For additional background, Osisko Gold Royalties Ltd. entered into the investment agreement dated August 25, 2015 in conjunction with the closing of the business combination of Osisko (then Oban Mining Corporation), Eagle Hill, Corona Gold Corporation and Ryan Gold Corp. further to which Osisko Gold Royalties Ltd. invested \$17.8 million in, and became a 19.9% shareholder of, Osisko (then Oban Mining Corporation).

Under the aforementioned investment agreement, Osisko Gold Royalties Ltd. was granted certain rights so long as it holds 10% of the issued and outstanding common shares of Osisko on a non-diluted basis, including: (i) a right of first refusal to participate in royalties and streams created by Osisko, (ii) pro rata financing participation rights, and (iii) a one-time right (which was exercised on October 4, 2016) for a period of five years, should Osisko seek financing in debt or equity markets, to provide financing of \$5 million in exchange for a 1% net smelter return royalty over such properties as are wholly owned by Osisko as of August 25, 2015.

4.4.1.9 Repurchase of Royalty

Osisko Gold Royalties has exercised its rights under the investment agreement dated August 25, 2015 to cause Osisko to buyback and re-grant to it three royalties, as follows:

- 0.5% NSR Noront-Windfall Block: On January 16, 2020, Osisko and Osisko Gold Royalties Ltd. entered into a royalty agreement pursuant to which a 0.5% NSR royalty was re-granted to Osisko Gold Royalties Ltd. This royalty was repurchased by Osisko from Scandium International Mining Corp., as successor to EMC Metals, Golden Predator Mines, and the successor in interest to Fury Explorations (Scandium), and regranted to Osisko Gold Royalties Ltd. on account of buy-back rights being exercised by Osisko Gold Royalties Ltd. under the investment agreement dated August 25, 2015 between Osisko and Osisko Gold Royalties Ltd. See 4.1.2 above.
- 0.5% NSR (29 Claims) and 1% (184 Claims): On November 16, 2018, Osisko (then Eagle Hill) and Osisko Gold Royalties Ltd. entered into an amended and restated royalty agreement pursuant to which a 0.5% NSR royalty over the 29 Claims Expansion and a 1% NSR Royalty over the 184 Claims Expansion was repurchased and re-granted to Osisko Gold Royalties Ltd. These royalties were repurchased by Osisko from Franco Nevada (as successor to the interest of Cliffs Chromite Ontario Inc.) under the royalty agreement dated March 28, 2014.
- 0.5% NSR (29 Claims) and 1% (184 Claims): On November 16, 2018, Osisko (then Eagle Hill) and Osisko Gold Royalties Ltd. entered into an amended and restated royalty agreement pursuant to which a 0.5% NSR royalty over the 29 Claims Expansion and a 1% NSR royalty over the 184 Claims Expansion was repurchased and re-granted to Osisko Gold Royalties Ltd. These royalties were repurchased by Osisko from Sandstorm Gold Ltd. (as successor in interest to Murgor Resources Inc.) under the royalty agreement dated March 28, 2014.

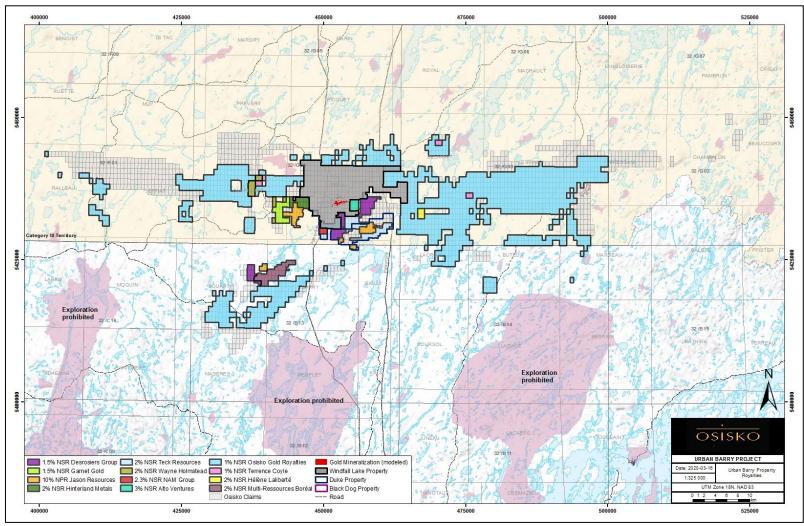
4.4.2 Urban-Barry Property

The Urban-Barry property is 100% owned by Osisko Mining Inc. On January 3, 2020, the property comprises 1,913 individual claims covering an aggregate area of approximately 103,608 ha. The actual property is mostly constituted by claims that were acquired through designation from GESTIM at different period from 2015 to 2019. Claims acquired from

agreement from Multi-Ressources Boréal, from Terrence Coyle, and from Hélène Laliberté were consolidated within the Urban-Barry party as shown in Figure 4.4. Claims that were acquired through the acquisition of Beaufield Consolidated Resources were also merge into the Urban-Barry property as shown on Figure 4.4. The 81 claims from the Duke option, also acquired through the Beaufield acquisition, remain in the Urban-Barry property until their earn-in option to Bonterra is completed. The claims are distributed in 17 townships, Barry, Beaucourt, Belmont, Bressani, Buteux, Carpiquet, Effiat, Chambalon, Lacroix, Lespinay, Marceau, Maseres, Picquet, Prevert, Ralleau, Souart, and Urban. The property lies on NTS map sheets 32B13, 32B14, 32F01, 32G02, 32G03, and 32G04.

A summary of the tenure information, as extracted from the Québec government GESTIM on January 3, 2020, is presented in Figure 4.2. All claims are in good standing, with expiry dates varying between April 7, 2020 and May 17, 2022. A complete listing of the mineral titles is presented in Appendix A. Osisko may not, for strategic or prospectivity reason, renew all of the 1,913 claims of the Urban-Barry property but they are currently all in good standing. Given the size and the scale of the Urban-Barry, Osisko, might, from time to time, abandon or let lapse some claims presenting less potential for mineral exploration. On the other hand, Osisko might also acquire a few claims presenting good potential for mineral exploration.

Table 4.3 Mineral Tenure Summary of the Urban-Barry Property (January 3, 2020)


Option/Joint Venture	Registered Owner	No. of Claims	Area (ha)	Expiry Date (d-m-y)	Mineral Resource	Percentage Held by Osisko Mining
		71	4005.34	24-nov-20		100%
		42	2366.41	25-nov-20		
Urban-Barry		237	13367.49	30-nov-20		
Project Initial	Osisko	101	5696.86	01-déc-20		
Claims	Mining Inc.	103	5806.35	02-déc-20		
Designation		280	15792.4	03-déc-20	No	
		169	9539.8	04-déc-20		
		59	3330.27	29-déc-20		
T	Osisko Mining Inc.	2	112.56	11-janv-21		
Terrence		2	112.72	10-mai-21		
Coyle Claim Acquisition		1	56.35	18-mai-21		
Acquisition		2	112.76	20-août-21		
	Osisko Mining Inc.	4	225.56	07-avr-20		
		15	844.47	25-avr-20		
		1	56.42	17-juin-20		
		1	43.81	21-juin-20		
III D		11	252.67	22-juin-20		
Urban-Barry		23	1295.38	16-juil-20		
Project Additional		4	88.83	21-juil-20		
Claims		10	564.85	14-août-20		
Designation Designation		186	10481.64	30-août-20		
Designation		3	168.91	26-oct-20		
		12	676.19	02-déc-20		
		15	849.63	04-janv-21		
		71	3997.64	08-janv-21		
		5	281.88	30-janv-21		

Option/Joint Venture	Registered Owner	No. of Claims	Area (ha)	Expiry Date (d-m-y)	Mineral Resource	Percentage Held by Osisko Mining
		4	225.64	14-févr-21		
		1	56.52	20-févr-21		
		2	113.11	04-mai-21		
		6	338.81	23-mai-21		
		10	563.75	10-août-21		
		2	112.67	22-sept-21		
		1	56.4	23-sept-21		
		3	169.18	20-nov-21		
		1	56.41	14-mars-22		
		29	1636.03	07-avr-22		
		1	56.38	11-avr-22		
		42	2364.6	25-avr-22		
		2	112.71	17-mai-22		
Multi- Ressources Boréal Claim Acquisition	Osisko Mining Inc.	33	1286.43	30-juil-21		100%
		35	1970.43	04-mai-20		
	Osisko Mining Inc. Osisko Mining Inc.	8	18.33	12-juil-20		
		62	2944.27	10-nov-20		
		8	161.53	22-nov-20		
		2	112.75	25-nov-20		
		2	112.9	07-déc-20		
		5	281.94	14-déc-20		
		21	901.84	31-déc-20		
ļ		3	169.65	04-janv-21		
Urban-Barry		7	394.21	24-janv-21		
Project additional		22	1238.41	29-janv-21		
		14	789.78	04-mars-21		100%
claims from		10	566.23	07-mars-21		
Beaufield		9	298.7	20-mars-21		
		5	282.81	09-avr-21		
		6	338.29	03-mai-21		
		1	56.35	03-mai-21		
		4	225.53	01-juin-21		
		3	169.56	07-juil-21		
		16	56.36	29-juil-21		
		16 12	557.77	08-août-21 13-janv-22		
		9	588.01 507.57	22-avr-22		
Lluban Damer		11	250.15	12-juil-20		
Urban-Barry Duke Option		69	3283.22	12-juii-20 10-nov-20		100%
to Bonterra		1	56.45	28-juil-21		100%
to Domerra		1913	30.43	20-juii-21		

The active underlying royalties affecting the different portions of the Urban-Barry property are presented in Figure 4.4. The boundaries of the claims have not been surveyed legally.

Figure 4.4
Claim Map of the Windfall Lake (in gray) and Urban-Barry Properties
(January 3, 2020) Category III Territory corresponds to Eeyou Istchee land.

Source: Osisko 2020

4.4.2.1 Urban-Barry Surface Rights Agreement Multi Ressources Boréal

On February 2, 2016, Osisko acquired 33 claims from Multi-Ressources Boréal (the Souart property) in exchange for the payment of \$200,000, the issuance of 500,000 shares of Osisko (then Oban Mining Corporation) and a 2% NSR royalty with a buyback of 2% for \$2,000,000. The Souart property is now a part of the Urban-Barry property.

4.4.2.2 Urban-Barry Surface Rights Agreement from Terrence Coyle

On January 19, 2017, Osisko Mining acquired seven claims from Terrence Coyle in exchange for the payment of \$7,000 and a 1% NSR with a buyback of 1% for \$1,000,000. The claims are now part of the Urban-Barry Project.

4.4.2.3 Urban-Barry Surface Rights Agreement from Hélène Laliberté

On April 10, 2018, Osisko acquired a 100% interest in four claims from Hélène Laliberté. Hélène Laliberté has a 2% NSR royalty right over these claims but Osisko can buy back the 2% (100%) NSR in exchange for the payment of \$300,000. Osisko also kept a right of first refusal on any transaction on these claims.

4.4.2.4 Urban-Barry Surface Rights Agreement from Beaufield Resources Inc. acquisition.

On October 15, 2018, Osisko acquired Beaufield Resources Inc. ("Beaufield") by way of a statutory plan of arrangement under the Business Corporations Act (British Columbia). Effective January 1, 2019, Beaufield amalgamated into Osisko, following which Osisko inherited all of Beaufield's claims and agreements in the Urban-Barry area. Several rights affecting the Urban-Barry property have arisen from a series of option agreements executed by Beaufield with third parties during 1986, 2003, 2004, 2014, 2015, 2016, and 2017.

Teck Resources (Formerly Cominco Ltd.) / Agnico Eagle Agreement

Further to an agreement dated on or about May 1993, Teck Resource (formerly Cominco Ltd.) and Agnico Eagle Mines Limited sold their interests in a portion of the Rouleau Block (referred to as the 2% NSR Teck Resources as shown on Figure 4.4) to the joint venture between Falconbridge Limited and Beaufield, further to which a 2% NSR royalty was granted to Teck Resources (51%) and Agnico Eagle Mines Limited (49%) with a first right of refusal in favor of Beaufield (now Osisko). Falconbridge Limited was later acquired by Kinross in 1993. Kinross sold its interest in the claims to Beaufield in 2003, which resulted in Beaufield owning 100% of the claims.

Jason Resources (Dissolved on January 19, 1994).

A portion of the Rouleau Block, Southern part of Macho and a portion of the Kent Block were sold by Jason Resource Inc. to Kidd Creek in 1982. Jason Resource Inc. kept a 10% net profits

royalty ("NPR") over these claims. In 1986, Beaufield acquired a 49% interest in these claims from Kidd Creek. Kidd Creek was acquired by Falconbridge Gold in 1986 which was then acquired by Kinross in 1993. Kinross sold the balance of the property to Beaufield in 2003. Jason Resources Inc. was dissolved on January 19, 1994, with no known successor to this 10% NPR royalty. As a result, Osisko does not acknowledge the existence of this 10% NPR royalty (referred to as 10% NPR Jason Resources as shown on Figure 4.4).

Desrosiers Group

Certain claims from the western portion of the Rouleau Block were acquired by Beaufield from François Des Rosiers, MJL Exploration Inc. and Geotest Corp. ("Desrosiers Group") on October 27, 2004. Each of the three members of the Desrosiers Group kept a separate 0.5% NSR royalty each over the claims for a total of a 1.5% NSR affecting these claims (referred to as 1.5% NSR Desrosiers Group as shown on Figure 4.4).

NAM Group

On April 6, 2019, North American Exploration Inc. (50%), Garry Majerle (25%) and Michel Lavoie (25%) (collectively the NAM Group) sold 100% of their interests in a number of contiguous and non-contiguous mineral claims in the Urban-Barry area to Amseco Exploration Inc. The NAM Group kept a 2.3% NSR royalty on the claims and Amseco kept a buy-back right in respect of 1% of the NSR royalty for \$1 million in cash. Amseco Exploration Inc. transferred the claims to Beaufield in April 2014 for \$3,000 (referred to as 2.3% NSR NAM Group as shown on Figure 4.4).

Hinterland Metals

On March 11, 2016, Hinterland Metals sold its 100% interest in claims located on the Eastern part of the Macho block to Beaufield. Hinterland was granted a 2% NSR royalty over these claims, and Beaufield was granted a right to buy-back 50% of the NSR royalty (i.e., 1% of the NSR royalty) for \$1 million in cash (referred to as 2% NSR Hinterland Metals as shown on Figure 4.4).

Garnet Gold

On July 7, 2015, Beaufield acquired a 100% interest in 14 claims from Garnet Gold Inc. in Urban Township. Garnet Gold kept a 1.5% NSR royalty over these claims. Beaufield has the right to buyback 50% of the NSR royalty (i.e. 0.75% of the NSR royalty) for \$500,000 in cash (referred to as the 1.5% NSR Garnet Gold as shown on Figure 4.4).

Wayne Holmstead

On September 12, 2017, Beaufield acquired a 100% interest in 12 claims from Mr. Wayne Holmstead in the Urban Township. Mr. Holmstead was granted a 2% NSR royalty on these

claims. Beaufield has the right to buy-back 50% of the NSR royalty (or 1% of the NSR royalty) for \$500,000 (referred to as 2% NSR Wayne Holmstead as shown on Figure 4.4).

Alto Ventures

On February 22, 1996, Alcudia Capital Incorporated ("Alcudia") sold a 100% interest in 20 mineral claims to Alto. Alcudia was granted a 2% NSR royalty (1% NSR royalty in favour of the estate of Bulman and 1% NSR royalty in favour of the estate of Haynes) over these claims. On May 24, 2017, Beaufield acquired a 100% interest in nine of these remaining claims (following claim conversion) from Alto. Alto was granted a 1% NSR royalty on these nine claims, which was in addition to the existing 2% NSR royalty held by Alcudia. Beaufield has the right to buy-back 50% of the NSR royalty (or 0.5% of the NSR royalty) for \$500,000 in cash (referred to as 3% NSR Alto Ventures as shown on Figure 4.4).

4.4.2.5 Urban-Barry Earn-In Agreement from Beaufield acquisition with Bonterra Resource.

On October 19, 2018, Osisko inherited the Urban Duke Property by virtue of its acquisition of Beaufield. On January 1, 2019, Beaufield was amalgamated into Osisko, resulting in Osisko becoming the successor to Beaufield's interest in the Urban Duke Property. The Urban Duke Property is 100% owned by Osisko and is located within the Urban-Barry Greenstone Belt, Québec. On July 6, 2018, Beaufield entered into a binding agreement with Bonterra which sets forth the terms of an Exploration Earn-In on the property.

In order to earn a 70% interest on the Urban Duke Property, Bonterra must commit: (i) \$4.5 million in work expenditures over a three-year period, subject to certain annual work expenditure thresholds, including a guaranteed expenditure threshold of \$1.5 million in the first year; and (ii) \$750,000 in cash payments over a two-year period, with \$250,000 due upon signing, \$250,000 due in the first year, and the remaining \$250,000 due in the second year. Upon signing on July 6, 2018, and as further consideration for the granting of the exploration earn-in, Bonterra issued 4 million common shares of Bonterra to Beaufield.

Following the completion of the Exploration Earn-In, Osisko and Bonterra will enter into a joint venture agreement in respect of the property with Bonterra maintaining a 70% interest and Osisko maintaining a 30% interest. So far, Bonterra has not completed the Earn-In agreement (referred to as the Duke Option as shown on Figure 4.4). Until the Duke option is completed, it is considered as a portion of the Urban-Barry property. Bonterra is the operator on the Duke option.

4.5 ROYALTIES

4.5.1 Windfall Lake Property

The following NSR royalties are applicable for various parts of the Windfall Lake property: (i) 2% Carat (buyback 1% for \$0.5 million); (ii) 2% Rousseau (buyback 1% for \$1 million); and (iii) 1.5-3.0% to Osisko Gold Royalties Ltd. (Figure 4.3).

4.5.2 Urban-Barry Property

The following NSRs are applicable for the Urban-Barry property: (i) a 1% NSR royalty in favour of Osisko Gold Royalties; (ii) a 2% NSR royalty to Multi-Ressources Boréal (buyback 2% for \$2 million); (iii) a 1% NSR royalty to Terrence Coyle (buyback 1% for \$1 million); (iv) a 2% NSR royalty to Hélène Laliberté (buyback 2% for \$0.3 million).

Following the acquisition of Beaufield by Osisko Mining on October 15, 2018, and the subsequent amalgamation on January 1, 2019 of Beaufield into Osisko, all of Beaufield's claims and agreements in the Urban-Barry area were inherited by Osisko, including the following royalties: (i) a 3% NSR royalty on Alto claims (2% NSR royalty in favour of Alcudia and 1% NSR royalty in favour of Alto) (buyback 0.5% of Alto's royalty for \$1 million); (ii) a 2% NSR royalty held by Mr. Wayne Holmstead (buyback 1% for \$500,000); (iii) a 1.5% NSR royalty held by Garnet Gold Inc. (buyback 0.75% NSR royalty for \$0.5 million); (iv) a 2% NSR royalty held by Hinterland Metals Inc. (buyback 1% for \$1 million); (v) a 2.3% NSR royalty held by the NAM Group (buyback 1% for \$1 million); (vi) a 1.5% Desrosiers Group NSR royalty; and (vii) a 10% NPR royalty formerly held Jason Resources Inc., which was dissolved with no known successor; (viii) a 2% NSR royalty held by Teck (Beaufield has a right of first refusal on the sale or transfer of the NSR royalty). (Figure 4.4)

4.6 CONSTRAINTS AND RESTRICTIONS

4.6.1 Windfall Lake and Urban-Barry Properties

The Windfall Lake property and the northern half of the Urban-Barry property are in the Eeyou Istchee James Bay territory (Figure 4.4). Since 2013, this area corresponds to Category III lands where exploration is allowed under specific conditions. A claim titleholder is invited to communicate directly with the Cree Nation Government and the Eeyou Istchee James Bay Regional Government.

Five areas where exploration is prohibited under the Mining Act are adjacent to the Urban-Barry property (Figure 4.4). They are designated as a "Biological Refuge" and the status triggers a temporary suspension of issuance of mineral titles. One area is an experimental forest where exploration is allowed under specific conditions.

4.7 PERMITS AND ENVIRONMENTAL LIABILITIES

This section provides a summary of current permits, authorizations and environmental liabilities for the Windfall property. Osisko Mining has obtained all necessary permits and authorizations from government agencies to allow for exploration through surface and underground drilling and bulk sampling.

Permits are required for any exploration program that involves tree cutting to create road access for the drill rig. Permitting timelines are short, typically about three to four weeks. The permits are issued by the Ministère des Forêts, de la Faune et des Parcs ("MFFP").

Osisko Mining has three land use leases with the Ministère de l'Énergie et des Ressouces Naturelles ("MERN") for the Windfall Lake project; one at the camp sector and another one at the ramp sector being 2 km apart. The third lease is for the storage of waste rock and is within the ramp lease boundary.

In order to operate the camp, which has a capacity of 300 persons, Osisko Mining has authorization for three drinking water wells and three septic systems.

For the purpose of taking a bulk sample in Zone 27, Osisko Mining obtained the following authorizations:

- Attestation of exemption from the environmental and social milieu impact assessment and review procedure stipulated under Chapter II of the Environment Quality Act ("EQA") issued October 10, 2017, for the completion of the bulk sampling program.
- Transfer of the certificate of authorization issued under section 22 of the EQA for Noront to collect a bulk sample, to Osisko, authorized by the MDDELCC on March 17, 2017.
- Certificate of authorization issued under section 22 of the EQA to treat water from initial dewatering of the ramp and on-going dewatering during ramp extension and bulk sample extraction, obtained on May 25, 2017.
- MERN authorization, issued on October 16, 2017 under section 69 of the Mining Act, to extract a bulk sample of 5,000 tonnes of mineralized material for the Caribou and 27 zones.

Osisko has filed the same requests to take bulk samples in the Lynx principal and Underdog zones. The following are the authorizations obtained:

• Attestation of exemption from the environmental and social milieu impact assessment and review procedure stipulated under Chapter II of the EQA issued June 20, 2018, to undertake a bulk sampling program in the Underdog and Lynx zones.

- Certificate of authorization (7610-10-01-70090-27 / 401726560), issued under section 22 of the EQA, to take bulk samples of the Lynx and Underdog zones and expand the waste rock stockpile, obtained on August 6, 2018.
- MERN authorization, issued on December 18th, 2018 under section 69 of the Mining Act, to extract two bulk samples of 5,000 tonnes of ore each at the Windfall Lake site Lynx and Underdog zones.

Osisko Mining also obtained additional authorizations to refine the initial water treatment of the effluent.

The first closure plan for the Windfall Lake project was prepared in 2007. As requested by the Mining Act, the closure plan was updated after 5 years in November 2012 and again in June 2017. When Osisko Mining received the authorization to take bulk samples in Lynx and Underdog, an addendum to the closure plan was filed. It was accepted in November, 2019 and the current financial guarantee is now of \$3,512,850. The next update of the closure plan is scheduled for June, 2021.

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

5.1 ACCESSIBILITY

Access to the Windfall Lake and Urban-Barry properties can be achieved through the town of Lebel-sur-Quévillon. The town can be accessed from Val-d'Or travelling east on the paved Québec TransCanada Highway 117 for about 30 km to provincial Highway 113, then 36 km northbound on paved Highway 113 to the village of Senneterre, and then continue northbound on Highway 113 for about 87 km to the town of Lebel-sur-Quévillon.

5.1.1 Windfall Lake and Urban-Barry Properties

Access to the Windfall Lake Project area can be done from Chantier Chibougamau's pulp mill (formerly Domtar) next to the town of Lebel-sur-Quévillon. The property can be reached by travelling eastbound on well-maintained, un-paved logging road R1050 (Road 1000) for about 12 km towards the former Gonzague-Langlois mine (Nyrstar) and continuing east towards the Urban-Barry area for about 55 km on R0853 (Road 5000) to the junction with R1053 (Road 6000), heading east-northeast on road R1053 for about 46 km to the main Windfall Lake camp gravel road turnoff heading south (Figure 5 1, Figure 5 2). The main project zone is located about 2 km south along the main camp road, the camp office and core shack are another 0.5 km south along this main road.

5.1.2 Climate

The climatic conditions are typically temperate characterized by continental extremes ranging from cold winters during the months of December to March with temperature lows usually less than -20°C and warm to hot summers often exceeding 25°C. Precipitation is sufficient to sustain a boreal forest environment including periods of spring-summer drought that often experience sporadic forest fires. Snow accumulation during winter months can be considerable, requiring the use of snow removal equipment to clear access roads and snowmobiles for off-road transportation.

5.2 LOCAL RESOURCES AND INFRASTRUCTURE

The Windfall Lake property is located in a remote area, approximately 115 km east of Lebel-sur-Quévillon. Lebel-sur-Quévillon is the closest municipality to the project with a population of 2,015 (Statistics Canada 2016). The mining and forestry industries are the historical cornerstones of Lebel-sur-Quévillon's local economy.

Although Lebel-sur-Quévillon has its own small airport, Val-d'Or has the closest commercial airport with regularly scheduled direct flights to Montreal. Additionally, the communities of Senneterre, Waswanipi, Chibougamau and Chapais are also in the vicinity of the Windfall Lake property with populations in 2016 of 2,239, 1,759, 6,862 and 1,318, respectively.

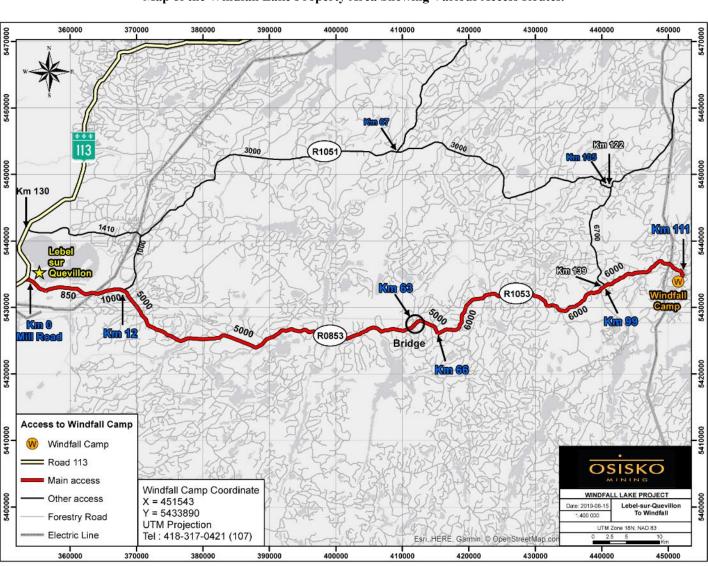
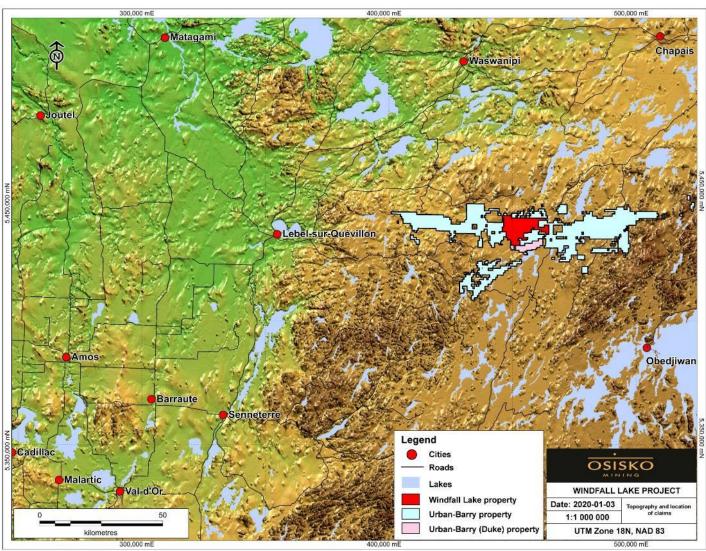



Figure 5.1
Map of the Windfall Lake Property Area Showing Various Access Routes.

Figure 5.2
Topography and Accessibility of the Windfall Lake Project Properties.

Full infrastructure and an experienced mining workforce are available in a number of well-established mining towns nearby, such as Val-d'Or, Rouyn-Noranda, Amos, La Sarre and Matagami. Any future mining project would need to bring in skilled workforce from these surrounding communities by road or, if necessary, from elsewhere in the province, by road or chartered flight. Supplies would also have to be trucked or brought by train to Lebel-sur-Quévillon.

5.2.1 Windfall Lake Site

The Windfall Lake area is serviced by a complete network of well-maintained logging roads R1050 (Road 1000) (Km 12), R0853 (Road 5000) (Km 66) and R1053 (Road 6000) (Km 112). The main users of the logging roads between Lebel-sur-Quévillon and the Windfall Lake camp are workers and other exploration companies' staff in the surrounding areas.

The Windfall camp is powered by three generators each producing 1.6 MW for a total of 4.8 MW of installed power. They provide electricity to the surface and underground infrastructure. In the event that Osisko would decide to connect their operation to the Hydro-Québec provincial grid, there are two existing options. The first interconnection point is the Lebel substation located 103 km west of Windfall. The second is the existing 120 kV transmission line (circuit 1493) located in the vicinity of the former Langlois mine located 95 km west-northwest of Windfall.

Winter access to the Project site is available as the local roads are plowed. Exploration and eventual mining operation activities can be conducted year-round at Windfall.

Several infrastructure components are still present on the Project site from previous owners. These include an unlined waste rock stockpile, an overburden stockpile and a lined stockpile containing mineralized material/waste rock. Also present are a ramp portal dating back to 2008, a sedimentation pond and a polishing pond. Further south is the Windfall Lake exploration camp, which can accommodate 300 people (Figure 5.3). The exploration camp area includes:

- Temporary trailer-type structures for administrative offices, dormitories and infirmary as well as the kitchen and the dining room.
- Septic fields and an enviro-septic unit.
- Four separate core shacks with core racks.
- Two drill core storage areas.
- A core cutting building.
- Three drinking water wells.
- Three megadomes, one for the storage of contaminated residual materials.
- Three temporary maintenance and storage areas for diamond drilling companies (Forages Rouillier Drilling, Orbit-Garant and Major).
- Three generators (2 MW each).

Figure 5.3
Aerial Photograph Showing the Windfall Lake Camp and Typical Physiography of the Area.

Source: Osisko, 2020

- Fuel tanks.
- A helicopter landing area.
- Containers and sheds for storage of equipment.
- Propane storage tank

The ramp portal sector currently includes the following facilities:

- Access roads.
- A portal and a ramp totaling approximately 1,450 m underground (Noront).
- Underground exploration tunnels totaling approximately 4,180 m of advancement (Osisko).
- An overburden pile.
- An unlined waste rock stockpile.
- A lined stockpile (mineralized material and waste rock) with lined perimeter ditches.
- A sedimentation basin and a polishing basin.
- Water treatment units and geotubes.
- A garage with concrete slab (2017).
- Sanitary facilities (septic tank and leaching field) built by Noront for about 15 people.
- Construction trailers serving as offices and drys (2017).
- Magazines for storage of explosives and detonators (2017).
- A megadome with concrete foundations (2017).
- A fuel storage tank (2017).
- A ventilation raise with heaters and propane tank (2018).
- A composting unit

The Windfall Lake Project contains three lease agreements which include one industrial lease agreement for the ramp area, another industrial lease agreement for the camp area and a mining lease.

The location of all potential future mining infrastructure (e.g., processing plant, tailings storage area) is currently being evaluated. Nevertheless, the Windfall Lake Project area is located on Crown land capable of accommodating all mining infrastructure.

5.3 COMMUNITY

5.3.1 Human Environment

The Windfall Lake and Urban-Barry project is located in the Nord-du-Québec administrative region (Region 10). The Eeyou Istchee James Bay territory includes the municipalities of Chibougamau, Chapais, Lebel-sur-Quévillon and Matagami, as well as the nine Cree communities of Nord-du-Québec: Chisasibi, Eastmain, Waskaganish, Wemindji, Whapmagoostui, Mistissini, Nemaska, Oujé-Bougoumou and Waswanipi. With 6,862 inhabitants, Chibougamau has the largest population in the region. Other communities include

Lebel-sur-Quévillon with a population of 2,015 (2016) and Waswanipi with a population of 1,759 (2016).

The Project is located on Category III land, that is, Crown land, part of the domain of the State, most of which is dominated by forestry activities. On this land, First Nations people have an exclusive right to harvest certain aquatic species and certain fur bearing animals.

For the Windfall Lake Project, with the exception of Mr. Icebound's family camp and one non-Aboriginal seasonal hunting camp, the site is characterized by the absence of dwellings. The closest residential areas are in Lebel-sur-Quévillon, Chapais and the Cree community of Waswanipi. Furthermore, there are five outfitters in a 10-km radius of the Project namely, Pourvoirie Lac Hébert, Pourvoirie Lac Lacroix, Pourvoirie St-Cyr Royal, Pourvoirie Lac Berthelot and Pourvoirie WeteNagami (Les Pourvoiries du Québec, 2014).

Lebel-sur-Quévillon, just a little more than 115 km from the Windfall Lake Project, is an urbanized area that groups together residential, public and commercial uses, a small hospital, services, industrial zones and public institutions.

5.3.2 Information and Public Consultation Process

5.3.2.1 Cree Community of Waswanipi

The Windfall Lake Project is located on the traditional lands of the Cree community of Waswanipi, specifically on the trap lines of Mr. Marshall Icebound (W25B) and Mr. Gary Cooper (W25A). The Cree village of Waswanipi is located about 75 km north-northwest of the Project.

Information on exploration work was forwarded to the Chief, the Deputy Chief, the Director of Natural Resources, the Mining Coordinator, the Tallymen, the Cree Trappers' Association, the Cree Mineral Exploration Board and the Apatisiiwin Skills Development (previously the Cree Human Resources Development).

Meetings were held with the Tallymen to explain the nature of the work and to understand how they use the territory. Throughout 2017 and 2018, Osisko shared information about the proposed Windfall Lake Project including information on the on-going surface drilling activities and the bulk sampling project towards Lynx and Underdog with the Cree First Nation of Waswanipi through letters, meetings, focus groups, interviews, open houses and presentations to the band council and general assemblies. This included more than 65 different meetings with Waswanipi representatives, Tallymen, entrepreneurs, a variety of organization representatives, band office employees and community members. In 2019, approximately 20 meetings were held with the Cree First Nation of Waswanipi representatives and/or community members including the monthly meetings of the Windfall Environmental Monitoring Committee that commenced in July, 2019.

Before Osisko acquired the project, several information meetings had been held between Eagle Hill representatives and Waswanipi representatives, including former Chief Paul Gull. These meetings led to the signing in 2012 of an Advanced Exploration Agreement with the Cree First Nation of Waswanipi, the Grand Council of the Crees and the Cree Regional Authority. Osisko continues to honour the terms of the 2012 Exploration Agreement between Eagle Hill and Waswanipi. Among other things, the Agreement stipulates the negotiation of a Social and Economic Participation Agreement (essentially an impact and benefits agreement: IBA) in the event the project is shown to be economically viable. Discussions are underway with Waswanipi representatives and preliminary negotiations for an IBA commenced on December 19, 2017 in Waswanipi.

Roughly 60 people from Cree communities (mainly Waswanipi) work at the Windfall Lake site. More than 80 First Nation people worked on the site in 2017 and approximately 55 First Nation people worked on the site in 2018. Two other First Nation communities have been identified as having an interest in the project: the Algonquin Anishinabeg Nation of Lac Simon and the Atikamekw d'Obedjiwan community. These two communities were visited and the details of the Windfall Lake Project description and of the bulk sampling project towards Lynx and Underdog were presented. The Atikamekw d'Obedjiwan community was met with five times since 2017 and the chief and council visited the Windfall Lake Project site (surface and underground) in July, 2019. The Algonquin Anishinabeg Nation of Lac Simon was met with four times since 2017.

5.3.2.2 Communities of Lebel-sur-Quévillon, Chapais, Chibougamau and Senneterre

Osisko held various meetings and information sessions with representatives and members of local communities. In addition, information letters on exploration activities were sent to municipalities. It should be noted that before Osisko acquired the project, Eagle Hill representatives met informally with Lebel-sur-Quévillon representatives and attended an information session organized by the Economic Development Corporation of Lebel-sur-Quévillon in November, 2014. Osisko presented the Windfall Lake Project to the population in 2016, 2017 and 2018. Two Open House events were organized in Lebel-sur-Quévillon on October 2, 2017 and February 27, 2018 in order to present the proposed Windfall Lake Project to the population. In 2018, Osisko held focus groups and organized interviews with city representatives and local organizations. Since 2016, Osisko met more than 20 times with Lebel-sur-Quévillon representatives and/or community members to share information about the proposed Windfall Lake Project including information on the on-going surface drilling activities and the bulk sampling project towards Lynx and Underdog.

A Collaboration Agreement was signed between Osisko and the city of Lebel-sur-Quévillon in 2017. This collaborative process primarily aims to ensure transparency and effective communication with the city, to foster the social acceptability of the project, and to maximize the socio-economic benefits of the project for Lebel-sur-Quévillon, all in a spirit of partnership.

As for Senneterre, Chapais and Chibougamau, even though the Windfall Lake Project is not on their territory, stakeholders felt that local entrepreneurs could benefit from business opportunities generated by the project.

As the project progresses, Osisko intends that the communication and consultation plan will be adjusted by the Corporation based on input from stakeholders to engage both the Aboriginal and non-Aboriginal communities. The objectives of these activities will be to inform and consult with the First Nations and the public on the project's activities, to address their concerns, and to collect their comments.

6.0 HISTORY

The Windfall Lake and Urban-Barry properties have a long history of exploration. Details of their respective work histories are hereafter presented separately for the purpose of clarity.

6.1 WINDFALL LAKE PROPERTY

6.1.1 Summary of Historical Work

The Windfall Lake Project was subject to several grassroots exploration programs undertaken by various companies from the 1930s to 2020. Below is a summary of all of the historical work completed near the Windfall Lake deposit (Table 6.1) as well as a map illustrating the drilling activities within the Windfall Lake claim boundaries since 1977 (Figure 6.1). Detailed historical work descriptions, by company, can be found in the Preliminary Economic Assessment of the Windfall Lake Project report (BBA, 2018). The Windfall Lake Project has never been in commercial production.

Table 6.1 Historical Exploration Work in the Windfall Area.

Year	Company or Individual	Work Completed	Source	Report
1975 to 1977	Shell Canada	Airborne electromagnetic, prospecting, geological mapping, drilling	Côté (1977)	GM 38828
1983	Ministère des Ressources Naturelles du Québec	Airborne electromagnetic INPUT survey	Relevés Géophysique Inc. (1983)	DP-83-08
1986	Kerr-Addison	Drilling (western part of property; 1.31 g/t Au over 0.3 m)	Frazer (1986)	GM 45089
1987 to 1988	DeMontigny	Line cutting, ground electromagnetic (H.E.M) and magnetic surveys, geological mapping, drilling	Gaudreault (1987); Gaudreault (1988);	GM 46103 GM 47861
1988 to 1990	Shiva Ventures	Geophysical surveys and drilling (no significant results)	Beauregard and Gaudreault (1988); Lambert (1988)	GM 48316
1996 to 1998	Murgor / Freewest Resources / Fury	Line cutting, ground mag, induced polarization, prospecting, trenching, drilling, discovery of Debris showing	Coyle (1996); Coyle (1998); Lavoie (1996c); Fekete (1996)	GM 54544 GM 54545 GM 54546 GM 55971
1996 to 1998	Alto / Noront	Line cutting, ground mag, geological mapping, induced polarization, prospecting, MaxMin II, drilling discovery of Alto and Ritchot showings.	Farrel (1998); Lavoie (1996a); Lavoie (1996b); Tremblay (1996); Tremblay (1999a); Tremblay (1999b); Tremblay (1999c); White (1998); Plante (1997, 1998)	GM 56245 GM 54404 GM 54405 GM 56448 GM 57412 GM 56449 GM 56450 GM 56734
1997	Resources Orient	Drilling (no significant results)	Chainey (1997)	GM 55698

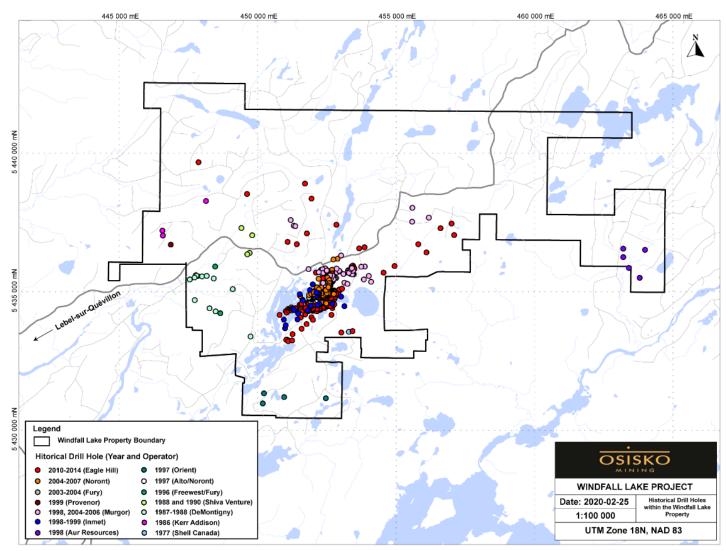
Year	Company or Individual	Work Completed	Source	Report
1998 to	Inmet Mining	Line cutting, Pulse E.M., geological mapping, diamond drilling (27.5 g/t	Bernard (1999a); Bernard (1999b);	GM 57113 GM 57413
1999 2003 to 2004	Fury	Au over 4.3 m) Compilation, line cutting, diamond drilling (85.9 g/t Au over 5.4 m)	Lambert (1999) Thorsen (2004)	GM 57443 -
2004 to 2006	Murgor	Induced polarization, transient electromagnetic surveys, core drilling and trenching. Discovery of the F-17, F-51 and F-11 gold zones (17.8 g/t Au over 6.8 m)	Coyle (2005); Gagnon (2005); Gagnon (2006); Lanthier (2004 and 2005)	GM 63038
2005 to 2009	Noront	Trenching, mapping, diamond drilling, underground exploration ramp and drifts	Armstrong (2006); Armstrong (2007); Chance (2009a)	-
2009	Eagle Hill Exploration	Sampling historical core, trenching, channel sampling, BHPEM, IP survey	Chance (2009b)	-
2010	Eagle Hill Exploration	BHPEM, TDEM, IP survey, diamond drilling	Turcotte (2011)	-
2011	Eagle Hill Exploration	SRK resource November, IP survey	SRK (2011); Armstrong (2011); G&T Metallurgical Services Ltd. (2011)	GM 68042 GM 70727
2012	Eagle Hill Exploration	IP survey, Till survey, SRK resource update March 2012, diamond drilling	SRK (2012); Lambert (2012)	GM 68042
2013	Eagle Hill Exploration	Diamond drilling, down-hole IP & resistivity, ground magnetometer survey, surface IP survey	Cheman (2013); Lambert (2014); Desrochers and Blouin (2015)	GM 69122
2014- (2015)	Eagle Hill Exploration	Diamond drilling, IP survey	Simard (2014); Brown and Cheman (2014); Desrochers and Blouin (2015)	GM 69122 GM 70727

GM (or gîte minier) = geological assessment report.

The Urban-Barry greenstone belt was first mapped during the 1940s by Québec's then Ministry of Mines by B. C. Freeman (1940), R. L. Milner (1943) and, finally, by H. W. Fairbarn (1946). The Urban-Barry greenstone belt, where the Windfall Lake Project is located, has a long history of exploration. Multiple agencies and companies have explored the area in the last eight decades.

Exploration in the belt first began in the 1930s, where many gold showings were uncovered, and continued for the next three decades. Within this timeframe, one exploration shaft (the Nubar shaft) was built near the Souart deposit, approximately 16 km south of the Windfall Lake deposit. In the last half of the 1970s and through the 1980s, several junior companies carried out exploration activities in the Urban township area, mainly focusing on gold mineralization. Multiple geophysical surveys were undertaken in the area where none were successful in outlining economic mineralization.

The first gold discovery in the Windfall Lake claim area was recognized in the 1980s near the current Fox showing by Kerr-Addison Mines Ltd. ("Kerr-Addison") and Resources DeMontigny Inc. ("DeMontigny"). DeMontigny carried out ground magnetic and electromagnetic surveys, geological mapping and drilled ten holes (1,718.8 m) near the current Fox area. The drilling resulted in the discovery of a gold-bearing graphitic argillite, intruded by units of altered quartz-porphyry and mafic units [4.0 g/t Au over 1.8 m (MUR-87-1); 4.1 g/t Au over 0.73 m (MUR-87-6); 41.4 g/t Au over 0.87 m (MUR-87-7); and 8.25 g/t Au over 0.75 m (MUR-87-14)]. In 1988, five additional drill holes (1,088 m) extended the strike extension of the previously intersected gold-bearing graphitic conductor. From 1988 to 1996, Shiva Ventures ("Shiva"), Freewest Resources Canada Inc. ("Freewest") and Fury Exploration Ltd. ("Fury") completed more drilling on the western part of the property to identify extensions of the gold mineralization previously identified by DeMontigny.


In 1994, the discovery of the Barry deposit in Barry Township by Murgor Resources Inc. ("Murgor"), led the industry to reconsider the metallogenic potential of the Urban-Barry greenstone belt and exploration activities grew. In 1996, exploration was funded by Noront Resources Ltd. ("Noront") and managed through option agreements with Alto Minerals Inc. ("Alto") (1996 to 1998). Alto completed a chargeability (IP) and resistivity survey, as well as a magnetic survey. Subsequent trenching and mapping were carried out and two significant gold showings were discovered during this program (the Alto and Richot showings). In 1997, Alto drilled 13 drill holes and optioned the Windfall Lake Project to Inmet Mining Corp. ("Inmet"), which drilled 21 drill holes (10,003 m) in 1998 and 1999. Inmet dropped the option, which Fury subsequently picked up.

In 1998, Murgor drilled six drill holes (1,095 m) to the northeast of the Windfall Lake Main zone. Several narrow intervals with high gold grades were obtained (e.g. 15.1 g/t Au over 1.2 m). In 2003 and 2004, Fury Exploration drilled 26 drill holes (7,152 m) and then assigned its 37.5% option interest to Noront in 2004.

Noront explored the Windfall Lake Project with trenching, mapping and diamond drilling from 2004 to 2006. Following the encouraging results from the 2004 to 2006 surface diamond drilling programs, Noront decided to undertake an underground sampling program. Genivar provided and supported the planning, engineering and permitting for this project. The underground development included the excavation of a 4.5 m by 4.7 m ramp driven for about 1,202 m, with approximately 233 m of access crosscuts and drifts along each of the three zones. The underground excavations were generally restricted, following narrow, high-grade gold intervals that lacked any persistence or continuity. The underground ramp excavation, completed by Noront in 2009, did not reach the Windfall Lake Main zone of gold mineralization delineated subsequently by Eagle Hill through drilling in 2010 and 2011.

Figure 6.1 Historical Drill Holes Categorized by Company within the Windfall Lake Property

Source: Osisko, 2020.

Between November 2004 and July 2006, Murgor commissioned Abitibi Geophysics Inc. ("Abitibi Geophysics") to conduct seven IP surveys (336.8 line-km), and one transient electromagnetic survey (51 line-km). The IP surveys identified 16 moderate to strong chargeability anomalies. Murgor verified some of the anomalies by mechanical trenching and/or diamond drilling. The transient electromagnetic survey identified four significant anomalies. Two small, very conductive anomalies were located in the northeast corner of the surveyed area and were interpreted to lie close to the surface. During this period, Murgor drilled a total of 114 drill holes (15,993 m) to test several showings and geophysical anomalies. They discovered the F-17, F-51 and F-11 gold bearing zones.

Shortly after signing the original option agreement from Murgor, Eagle Hill Exploration Corp. ("Eagle Hill") conducted several phases of drilling where multiple mineralized zones were discovered. During the 2010 drilling program 33 drill holes (12,648 m) were drilled which led to the discovery of Zone 27. The 2011 to 2012 drilling program was designed to follow-up on the positive results of the 2010 program and to better define the lateral extent of the gold zones. In 2011, the Caribou zone was discovered.

Between the winter 2010 and summer 2011 drilling programs, a borehole pulse electromagnetic (BHPEM) survey was conducted on borehole EAG-10-196. This borehole was selected due to the high-grade gold assay intersections and the observation of visible gold in the core. Additionally, a surface gradient time domain electromagnetic (TDEM) survey was conducted over and adjacent to the main mineralized zone on the property. Both the BHPEM and TDEM surveys were completed by Koop Geotechnical Services Inc. during May 2010.

In July 2010, Insight Geophysics Inc. ("Insight") completed surface gradient and deep penetrating IP surveys using the existing grid previously employed by Noront. The survey covered the main mineralized zone and the immediate surrounding area near the main deposit and associated structures. In light of the positive results obtained by the survey during the winter of 2011, Eagle Hill decided to extend the survey further to the west where historical IP surveys had identified important chargeability anomalies.

One objective of the survey was to identify chargeability anomalies below the Red Dog dike. In total, Insight surveyed an area measuring 2.5 km east-west by 1.6 km north-south with surface gradient IP and completed 10 lines of deep-penetrating IP-resistivity sections. The results of the surveys showed a good correlation between the high chargeability anomalies and the known pyrite-rich gold zones delineated by drilling.

In addition, the survey identified additional chargeability anomalies below the shallow-dipping Red Dog intrusion tested by just a few drill holes. The Underdog mineralized zone was discovered. These observations also supported the interpretation that the Red-Dog is a late- to post-gold-mineralization intrusion that cross-cuts the pyritic gold mineralization.

Between January and April, 2012 Eagle Hill again carried out an IP geophysical survey on the property. Géophysique TMC completed 96 line-km of ground survey in two grids situated on

the northwest and northeast portions of the property, respectively. The survey picked up multiple sub-vertical anomalies trending east-west (Lambert, 2012).

The 2012 drilling program focused on two main goals: first, to improve confidence in the continuity of Zone 27 and extend the zone down dip as well as along strike; the second, to test the extensions of the previously intersected high-grade mineralization within the extent of the existing block model.

In 2012, Eagle Hill carried out a till survey on the property. The sampling was done by Eagle Hill personnel and supervised by Les Consultants Inlandsis. Forty-nine samples, 15 kg to 20 kg each, were collected and processed for visual count of gold. Results from multiple samples indicated values higher than background of about five to six gold grains typical of gold-bearing Archean greenstone belts. The results are indicative of a significant bedrock gold source within 100 m to 1,000 m up ice from the till anomalies and in an area that corresponds roughly to the targeted large east-trending regional prospective structural corridor.

In October, 2013 Eagle Hill contracted DGI Geoscience Inc. to survey six historical drill holes (NOT-07-150, EAG-11-259, EAG-11-295, EAG-12-365, EAG-13-466 and EAG-13-469) with an optical and acoustic televiewer. The goal of the survey was to identify the orientation of certain structural features of significance intersected with those drill holes.

Between November 1 and 24, 2013, and between October 16 and November 2, 2014, Abitibi Geophysics completed two geophysical hole-to-hole resistivity/IP surveys. The objective of the surveys was to investigate the outer and inner periphery of the volume encompassing the drill holes and to assess the potential for gold mineralization at depth below the Red Dog intrusion as well as directly below the Main zone. The survey detected chargeability and lower resistivity anomalies below the Red Dog intrusion that are similar to the anomalies associated with the sulphide-rich gold mineralization located above the Red Dog intrusion.

Sixty-eight pairs of receiver drill holes were surveyed at the property to provide the best coverage at a depth of more than 500 m below surface. The collected data were then inverted using Res3D software by Abitibi Geophysics and DCIP3D software by Mira Geoscience Ltd. to provide a possible three-dimensional geometry for the deep gold mineralization at Windfall Lake. The results of the inversion show two high-priority targets located below the Red Dog intrusion.

Between December 6 and 17, 2013, Pro-Tech Géophysique Ltd. completed a magnetic survey to the south of the Main zone. The survey comprised 79.7 line-km on a cut grid consisting of 36 north-south lines with 100 m spacing. Total field readings were measured every 12.5 m along the lines. The results of the survey identified two main east-northeast-trending lineaments that are parallel to the magnetic lineament associated with the Main zone.

Furthermore, in December 2013, Abitibi Geophysics completed a dipole-dipole IP survey using the same survey grid used for the magnetic survey. Sixteen high-priority exploration targets were identified for follow-up exploration work.

Between February 19 and 25, 2014, Géophysique TMC completed a 23.9 line-km dipole-dipole IP survey over the Rousseau claims, located some 10 km to the east of the Main zone. Survey lines were oriented north-south with 100 m separation. Survey station spacing was 25 m along the survey lines. Initial data interpretation showed five anomalies in the survey area.

Approximately 180,000 m were drilled at Windfall and reported by previous operators. Since 2015, drilling has included over 900,000 m of reported drilling from approximately 3,000 holes. In 2015, Osisko (including previous work from Oban Mining) commenced an expansion program that included step-out drilling along fences located 200, 400, 600 and 800 m northeast of the main deposit to test a linear magnetic depression interpreted to be related to a magnetite destructive silica-sericite alteration corridor associated with the Windfall system. Drill hole OSK-W-16-760 located on the 600 m fence line, intersected 65.0 g/t Au over 5.7 m (148 g/t Au over 5.7 m uncut), 76.0 g/t Au over 3.5 m (211 g/t Au over 3.5 m uncut), 100 g/t Au over 0.8 m (591 g/t Au over 0.8 m uncut) at a vertical depth of approximately 200 m. These results led to the discovery of the shallow high-grade Lynx zone.

In 2018 to 2019, further drilling led to the discovery of numerous other mineralized zones, such as the Triple 8, Triple Lynx, Lynx 4 and Windfall North.

6.1.2 Mineral Resource Estimates

In the period between 2011 and April, 2015 Eagle Hill Exploration Corporation mandated three NI 43-101-compliant mineral resource estimates from SRK Consulting (Canada) Inc. (SRK, 2011, 2012 and 2014). In 2018, Osisko contracted InnovExplo for a new NI 43-101 on the Windfall Lake deposit (InnovExplo, 2018). The supporting technical reports are available from SEDAR (sedar.com).

In 2015, Tetra Tech produced a preliminary economic report with an effective date of April 28, 2015, herein also referred to as the PEA, for Eagle Hill Exploration Corporation (Tetra Tech, 2015) in which SRK reviewed the mineral resource estimate in November, 2014. The PEA also proposed mineral processing and metallurgical testing recovery methods and addressed the surface water management, tailings storage and the environmental aspects of the project.

The QP has not verified the results of the estimates and they are not presented here.

In 2018, BBA Inc. completed a PEA, with an effective date of July 12, 2018, for Osisko (BBA, 2018), which included the Windfall Lake deposit and the Osborne-Bell deposit. The PEA also proposed mineral processing and metallurgical testing recovery methods and addressed the tailings, waste and water management of the Project. The 2018 PEA relied on both the 2018 Windfall and Osborne-Bell deposits NI 43-101 reports presented below. Both the 2018 mineral resource estimate and PEA are superseded by the estimates in this technical report.

- NI 43-101 Technical Report and Mineral Resource Estimate Osborne-Bell Deposit, Quévillon Property (InnovExplo, 2018, effective date March 2, 2018).
- NI 43-101 Technical Report and Mineral Resource Estimate for the Windfall Lake Project, Windfall Lake and Urban-Barry properties (InnovExplo, 2018, effective date May 14, 2018).

6.2 URBAN-BARRY PROPERTY (WESTERN, CENTRAL, EASTERN AND SOUTHERN SECTORS)

6.2.1 Previous Work

The exploration history of the Urban-Barry property outside of the Windfall Lake deposit area was subdivided into four different sectors: West, East, Central and South (Figure 6 2). Most of the exploration work was performed in Souart, Barry and Urban Townships. The Urban-Barry belt is host to numerous gold deposits/showings that include the Souart (Nubar) (Osisko), Barry (Bonterra Resources, formerly Métanor Resources), Windfall Lake (Osisko), Lac Rouleau (Osisko, formerly Beaufield Resources) and Gladiator (Bonterra Resources) deposits.

The Urban-Barry greenstone belt has been, in recent years, the subject of several regional mapping surveys performed by the Québec government. The entirety of the belt was covered by 1:50,000 scale mapping from 2001 to 2004. The western area was mapped in 2002 (RG200212), the Windfall Lake claims and the Southern portion in 2001 (RG200114) the central and eastern sectors in 2003 (RG200307), and the southeastern limit of the belt in 2004 (RG200402).

There are over 300 geological assessment reports (gîte minier or GM) on file with the Québec government that describe historical exploration work that was done partly or entirely within the bounds of the current Urban-Barry property. Various companies have conducted prospecting campaigns and secondary environment surveys over the years but due to the general lack of outcrop, exploration has tended to rely upon geophysics to define targets. With the exception of the northernmost part, most of the Urban-Barry belt has been covered by airborne surveys. These included MAG, EM, VLF-EM, and more recently, VTEM surveys. A few companies also re-interpreted the INPUT data from government surveys to generate targets. The largest airborne surveys on file with the government were carried out by Shell Canada Resources Ltd. in the mid-seventies. Ground geophysics such as IP, MAG, VLF and other EM surveys usually followed.

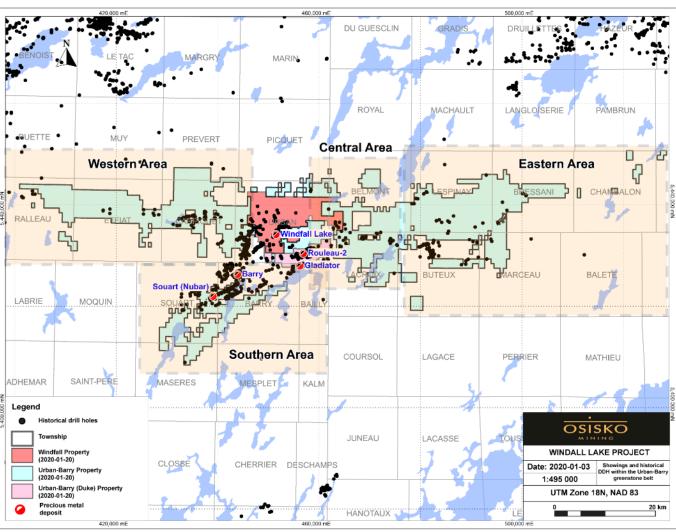


Figure 6.2
Exploration History in the Urban-Barry Greenstone Belt Outside of the Windfall Lake Deposit Area

Subdivided into four sectors: Eastern, Southern, Central and Western areas. Source: SIGÉOM.

6.2.1.1 Western Block

The earliest drilling on the Urban-Barry property that is listed in the SIGÉOM files was done in the Effiat-Carpiquet sector, an area dominated by an east-west oriented band of volcanic rocks with EM conductors that host three gold showings from west to east: Lac Thubière NE, Rivière Panache Ouest and Panache. The drilling was conducted by Merrill Island Mining Corp. in 1957 (GM 05817-A). Six of their 13 drill holes were drilled on the property to the west-southwest of the Lac Thubière NE gold showing, which had been discovered early in the same program.

Between 1959 and 1964, Nightlen Mines drilled four holes approximately 6 km to the east of this showing, but no significant gold values were reported (GM 10409). At the end of this decade, Falconbridge drilled four holes 2.5 km southwest of the Lac Thubière NE showing and reported minor chalcopyrite and sphalerite. In 1986, Mines Sullivan Inc. completed the most important drill program in this sector by drilling 26 holes for a total of 6,112 m to the south and to the west of this showing (GM 45086). However, only a few isolated values up to 0.18 g/t Au were reported with the rest being at or below detection limits. One more hole was drilled on the Urban-Barry property as part of a multi-hole program undertaken by Cambior from 1987 to 1988, but no significant values were reported.

6.2.1.2 Central Block

This area occurs along part of the northeast-southwest oriented Mazères-Barry Lake shear corridor in the townships of Belmont and Lacroix. The Lac Chanceux Ouest gold showing, discovered in 1997 by drilling, is located in this sector as well as the Lacroix alkaline complex.

In 1983, Mines Camchib Inc. drilled 15 drill holes all of which are on the property in this sector (GM 41498). In hole MB-83-07, a 7.62 m interval from 40.48 m to 48.46 m contained samples from 0.187 g/t Au to 0.373 g/t Au. There are a few other isolated samples in this hole within this range as well.

Beaufield Resources Inc. and Falconbridge Ltd. drilled five holes to the southwest of the Lac Chanceux Ouest showing. These holes encountered graphite and iron sulphide and returned mostly trace gold values and a few values up to 100 ppb gold in drill hole 104-05 (GM 49193).

Kinross Gold and Beaufield drilled seven holes in this sector in 1997, four of which are on the Urban-Barry property. The best gold interval from drill hole BUL97-02 into the Lac Chanceux Ouest showing returned 1.384 g/t Au over 0.81 m (GM 56118). A few other intervals returned weak gold values (less than 250 ppb).

Aur Resources drilled ten drill holes in 1998, three of which are on the Urban-Barry property; none of the three reported any significant gold values. The highest value, 1.7 g/t Au over 0.7 m, came from drill hole 13501-10. Lastly, in 2004, Beaufield Resources drilled 11 holes (GM 61527). The last one, BFRL 411, is on the Urban-Barry property just southwest of the Belmont showing; no significant gold value was returned from this drill hole.

6.2.1.3 Eastern Block

This area occurs at the easternmost limit of the Urban-Barry belt and is bordered to the east by the Grenville front. It is dominated by the Freeman and Buteux felsic volcanic complex and most of historical work performed over the area focused on gold and base metals. Nineteen holes were drilled in the volcanic and volcanoclastic rocks in this sector.

In 1977, Shell Canada Resources Ltd. completed a 19 drill hole campaign on their Barry project (GM 38828). Nine drill holes (7515-77-19, -23, -24 and 7515-78-1A, -3, -7, -8, -10 and -13) were completed in this sector of the property. Only trace or below detection limit values were reported from these drill holes. From 1987 to 1989, SOQUEM completed a 32 drill hole campaign on their Freeman-Buteux property (GM 48455 and GM 46447). Of these drill holes, nine are on the Urban-Barry property (87 4, -5, -8, -9, -11, -12, -13, 26 and 88 31). Most of the samples returned gold values at or below the detection limit. Only a few samples reported grades up to a maximum of 0.83 g/t Au over 0.85 m (hole 88 31).

6.2.1.4 Southern Block

This area occurs in the southernmost limit of the Urban-Barry belt. The Souart (Nubar) gold deposit was the main focus of drilling exploration in this area with other gold showings following the northeast-southwest oriented Souart fault. Historical work performed over the area focused on gold and base metals. The Barry deposit (Bonterra Resources) as well as the Black Dog project (Osisko), located approximately 1 km northeast of the Souart (Nubar) deposit, are also located in this sector.

In 1950, three auriferous zones at the Souart (Nubar) deposit were discovered by Roybarn Uranium and Gold Mines Ltd. following a resistivity survey. These are known as the Central, West and East zones (GM 00910). In the same year, underground work began in the auriferous zones and work was suspended in 1951. From 1971, geological mapping, geochemical and geophysical surveys by Shell Canada Resources Ltd. and Exploration Minière Kidd Creek Ltd., led to the discovery of numerous polymetallic showings.

From 1985 to 1988, Oasis Resources Inc. completed a 122 drill hole campaign in the three mineral zones (Central, East and West zones) on their Souart (Nubar) deposit for a total of 27,873 m (GM 47768 and GM 42923). Gold intervals from the West zone allowed for the evaluation of a mineral resource estimate. The QP has not verified the results of the estimate and they are not presented here.

Between December 1988 and February 1989, Société d'Exploration Minière Dufresnoy Inc. completed an 11 drill hole campaign northeast of the Souart (Nubar) deposit for a total of 2,123.9 m. The best gold intervals included 5.15 g/t Au and 28 g/t Ag over 1 m (hole BAO-89-02). A total of 28 drill core intersections higher than 1 g/t Au were intersected.

7.0 GEOLOGICAL SETTING AND MINERALIZATION

7.1 REGIONAL GEOLOGY

The Windfall Lake and Urban-Barry properties are located within the Abitibi subprovince of the Archean Superior Province. The Abitibi greenstone belt, divided into the Southern Volcanic zone ("SVZ") and the Northern Volcanic zone ("NVZ"), represents a collage of two arcs, delineated by the Destor-Porcupine-Manneville Fault zone (Figure 7.1). The SVZ is separated from the Pontiac sedimentary rocks, an accretionary prism to the south, by the Cadillac-Larder Lake Fault zone (Daigneault et al., 2004). The 2735 to 2705 Ma NVZ is ten times larger than the 2715 to 2697 Ma SVZ. Both granitoid bodies and layered complexes are abundant in the former.

The Windfall Lake and Urban-Barry properties occur within the Urban-Barry greenstone belt in the eastern part of the NVZ (Figure 7.1). The Urban-Barry greenstone belt has an east-west extent of 135 km and is 4 km to 20 km wide. It is bounded to the north by the Father plutonic suite, to the east by the Proterozoic Grenville province, to the south by granitoid and paragneiss rocks of the Barry Complex, and to the west by syn- to late-tectonic granitoid rocks of the Corriveau and Souart Plutons (Figure 7.2).

7.2 WINDFALL LAKE AND URBAN-BARRY PROPERTIES

7.2.1 Local Geology

This section presents the geological setting as it appears in the available literature. Although high definition surveys have recently been acquired (airborne SkyTEM and magnetic field), which challenge some previous interpretations, Osisko staff prefer to stick to the traditional view, waiting for a formal proposal. Details and modifications will be addressed as required in the following sections.

The Urban-Barry greenstone belt contains mafic to felsic volcanic rock units and sedimentary units that are cross-cut by several east-trending and east-northeast trending shear zones that delineate three major structural domains easily visible on the regional total magnetic intensity map (Figure 7.3).

The first domain is the Urban Deformation zone, a major sub-vertical, east-west-trending and dextral ductile shear zone extending along the northern margin of the greenstone belt (Bandyayera et al., 2002a).

Opatica Subprovince

Abitibi Subprovince

Northern Volcanic Zone

Southern Volcanic

Zone

Pontiac

Subprovince

50 km

Rouyn-Noranda & Cadillac

Malarctic

Figure 7.1 78° 76° 74°

Late fault Fault zone

Proterozoic rocks

Sedimentary rocks

Urban-Barry volcanics

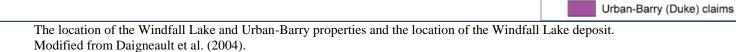
Windfall Lake claims

Urban-Barry claims

Granitoid rocks

Volcanic rocks

Generalized Geology of the Archean Abitibi Subprovince


Lebel-sur-Quévillon

Destor-Porcupine

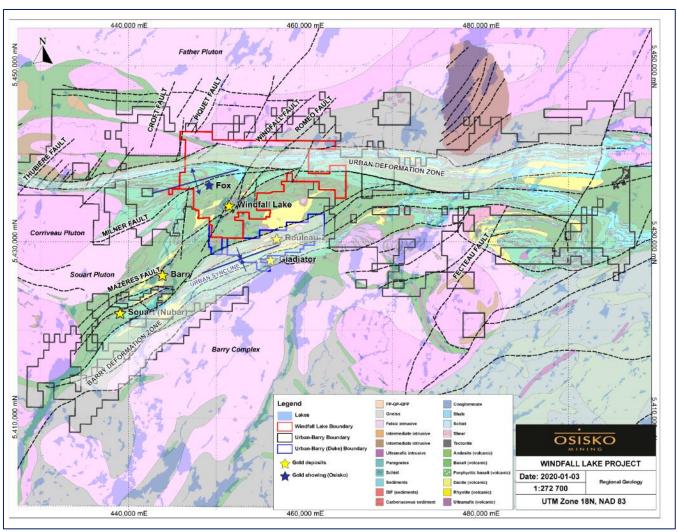
Manneville Fault

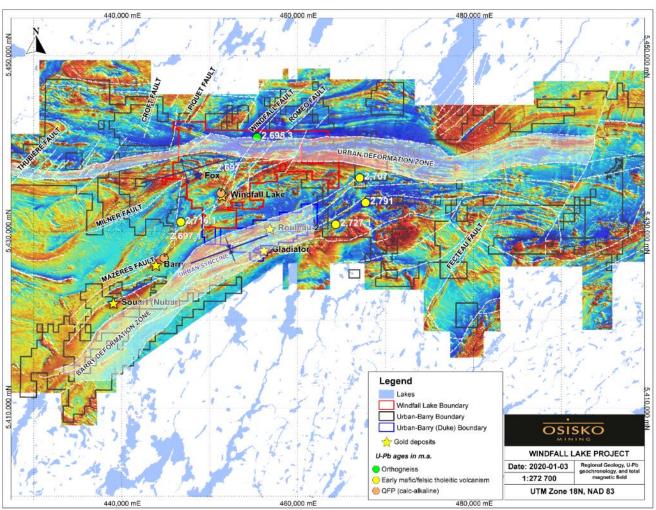
Larder Lake-Cadillac

Fault

Senneterre

Val d'Or




Figure 7.2
Regional Geologic Setting of the Urban-Barry Greenstone Belt

The location of the Windfall Lake, Urban-Barry and Urban-Barry (Duke) claim boundaries. Main gold mineralized deposits are illustrated by the yellow stars. The Fox showing is indicated by the blue star. Geology modified after Bandyayera (2002b).

Figure 7.3
Regional Magnetic Map of the Urban-Barry Greenstone Belt

The location of U-Pb ages is shown by yellow, orange and green circles. Main gold mineralized deposits are illustrated by the yellow stars. The Fox showing is indicated by the blue star. Source: Geotech (2016)

The second domain is located in the central portion of the Urban-Barry belt and consists of a moderate strain, fault-related fold and is referred to as the Urban Syncline. The axial trace of the Urban Syncline is trending to the east-northeast and is interpreted to pass between the Lac Rouleau and Windfall Members. The main foliation in this domain is oriented east-northeast. The central portion of the belt is cross-cut by the east-northeast-trending Milner and Mazères ductile shear zones (Figure 7.2 and Figure 7.3). The latter is a thrust fault that dips 60° towards the southeast. At the deposit scale, the Mazères shear zone is renamed the Bank Fault.

The Milner and Mazères shear zones are truncated by the Urban Deformation zone to the north. The third domain is in the southern portion of the belt and is informally identified as the Barry Deformation zone. The deformation zone is another major east-northeast-trending inverse dextral ductile shear zone extending along the southern margin of the greenstone belt. The Barry Deformation zone is associated with many gold showings, including the Gladiator deposit (Bonterra Ressources).

A set of north-northeast-trending brittle-ductile faults associated with slickenlines and stretching lineations that are moderately plunging to the northeast (Joly, 1990) cross-cut all other structures and include the Thubière, Croft, Picquet, Father, Roméo and Windfall faults (Figure 7.2 and Figure 7.3).

Rocks of the Urban-Barry greenstone belt were deformed during the 2.71 to 2.66 Ga Kenoran orogeny (Card 1990; Hoffman 1991; Jackson and Cruden 1995; Goldfarb et al., 2001). The age of the ductile deformation in the NVZ is bracketed between 2701 and 2692 Ma (Daigneault et al., 2004). Volcanics south of the Urban Deformation zone feature a Z-shape regional fold where the short limb is the site of a second order northeast-trending fault system (including the Milner, Mazères, Windfall and Macho faults). Regional kinematic indicators point to a dextral transpressional setting, whereas these northeast faults express a sinistral movement. Near the Grenville Front, major Proterozoic discontinuities extending northeast become more prominent.

The regional foliation generally strikes northeast to east-northeast with a variable dip from 30 to 85 degrees to the southeast (Hocq, 1989 and Joly, 1990). The regional foliation is associated with a stretching lineation that plunges steeply to moderately to the east (Bandyayera et al., 2002a). Associated regional folds are generally isoclinal with steeply plunging axes (Chown et al., 1992), although Bandyayera et al. (2002a) interpreted the Urban Syncline to be shallowly plunging. Shallowly plunging open folds are also present at the Barry deposit (Kitney et al., 2011).

The Urban-Barry greenstone belt is divided into four informal rock formations that are aged between 2791 and 2707 Ma (Rhéaume and Bandyayera, 2006).

1) The oldest Fecteau formation (2791 Ma) is located in the southeast limit of the belt. It mainly consists of mafic to felsic volcanics including graphitic sedimentary units (Bandyayera et al., 2004).

- 2) The Chanceux formation (2727 Ma) mainly consists of tholeitic basalt, thin beds of rhyodacitic or rhyolitic tuffs interlayered with greywackes and graphitic argillite (Bandyayera et al., 2004). Its geometry and extent are poorly constrained.
- 3) The Macho formation (2718 Ma) located in the central part of the belt, mainly consists of basalt, andesite and basaltic andesite with comagmatic gabbroic sills (Bandyayera et al., 2002a-b, 2004). The Macho Formation includes the Windfall and Rouleau members. Uranium-lead age dating of zircon from a felsic volcanic unit of the Windfall Member collected on the Windfall Lake property indicates an age of $2,716.9 \pm 2$ Ma (Bandyayera et al., 2002a).
- 4) The Urban formation (2707 to 2714 Ma) is the largest formation and consists of glomeroporphyritic tholeitic basalt with minor synvolcanic gabbro inferred to be coeval with the Obatogamau Formation in Chibougamau. It equally includes felsic volcanics and sediments (Bandyayera et al., 2002a). Finally, a series of syntectonic quartz and/or feldspar porphyry dikes cut the volcanic rocks of the Macho Formation, including rocks of the Windfall Member. These QFP dikes were dated at 2697 \pm 0.6 Ma at the Barry gold deposit (Kitney et al., 2011) and at the Windfall Lake deposit, U-Pb zircon ages from pre- and post-mineralization QFP intrusions were dated at 2698 \pm 3 Ma and 2697.6 \pm 0.4 Ma respectively (Davis 2016, unpublished; Figure 7.3). The Barry gold deposit is located approximately 10 km southwest of the Windfall Lake deposit. The pre- and post-mineralization QFP intrusions at the Windfall Lake deposit constrain the timing of gold mineralization between 2701 to 2697.2 Ma as discussed below.

Rocks of the Urban-Barry greenstone belt are generally metamorphosed to greenschist facies, although near intrusions, conditions locally reached amphibolite assemblages (Joly, 1990). The regional metamorphic temperature-pressure gradient generally increases eastward towards the Grenville Front (Joly, 1990).

7.2.2 Windfall Lake Property Geology

The Windfall Lake property is located in the central part of the Urban-Barry greenstone belt. The Windfall Lake deposit is hosted within the Windfall Member, which primarily consists of felsic and intermediate volcanic rocks including tuff and lava units. This Member is part of the Macho Formation which in turn is represented by extensive tholeitic basalt and gabbroic sills, intercalated with volcaniclastic and siliciclastic units.

In the Windfall Lake deposit area, the stratigraphy trends north and dips moderately towards the east. The volcanic rocks are intruded at high angles by a series of calc-alkaline quartz-feldspar porphyry dikes and sills, commonly referred herein as QFP dikes (Figure 7.4). All dikes and volcanic rocks are affected by the regional foliation. The intensity of the foliation and the overall strain vary greatly within individual rock units and the alteration and mineralization can locally be overprinted by foliation.

Post-mineralization Pre- to syn-deformation Pre- to syn-deformation (Fragmental QFP porphyries) (Large QFP porphyries) Granodiorite I1P family 12F and 113 12P & I1 Frag (Lynx Zone) C Mineralized mafic volcanio arge Qtz eye ragment Large Qtz eye I1P Try 12P Fra В D G Ser+Sil Tm fragment Intrusive fragment 2cm 2cm Е Large Qtz eye Ghostly Fsp 1cm I1P YE Time 2698 ± 3 Ma (I2P) 2697 ± 0.4 Ma (I2F) 2695 ± 3.8 Ma (I13)

Figure 7.4
Core Pictures of the Three Main Types of Porphyry Dikes

A) Common pyritized mafic volcanic fragments hosted in syn-deformation fragmental QFP dikes. These dikes vary from massive with small quartz eyes to fragmental (I2P); B) Fragmental intrusion in the Lynx zone (I1 Frag) showing the presence of sericite to silica-altered felsic intrusive fragments and tourmaline fragments; C-D) The syn-deformation granodiorite large quartz eyes porphyry dikes are generally sericite-altered and contain traces (I1P TrY) to 10% (I1P YL) of larger quartz eyes and are spatially associated with the pyrite-rich gold mineralization; E) Ghostly feldspar phenocrysts are identified in the I1P YB in the Underdog mineralized zone; F) The Red Dog granodiorite unit contains similar large quartz eyes as in the large quartz eyes porphyry dikes but its groundmass is well crystallized; the Red Dog unit cross-cuts the gold-bearing pyrite stockwork; G) Finegrained granodiorite (I13) showing the presence of pale micro-fractures displaying preferential orientation, imparting a thinly banded texture.

Reference photos are from Osisko's drill core. U-Pb Geochronology from Davis (2016; unpublished) and Azevedo (2018; unpublished).

7.3 LITHOLOGICAL UNITS IN THE WINDFALL LAKE DEPOSIT

The following paragraphs describe, as per core logging observations and geochemical data, the main features of each rock unit (with associated core logging codes in brackets) described to date in the area of the Windfall Lake deposit.

7.3.1 Synvolcanic Rocks (2717 Ma)

7.3.1.1 Intermediate to Mafic (V3, V2, V2D)

The intermediate to mafic volcanic rocks are of tholeitic affinity and range in composition from basalt to andesite. They consist of massive, pillowed, fragmental and breccia flows that are locally vesicular or porphyritic with phenocrysts of plagioclase. The rock is commonly fine-grained, medium green to dark green in colour and is weakly to moderately foliated.

7.3.1.2 Felsic (V1)

The felsic volcanic rocks are of tholeitic affinity and range in composition from dacite to rhyolite. Texturally they consist of massive and breccia flows that are often porphyritic, containing small (1 to 3 mm) quartz phenocrysts that vary in abundance from 2 to 10%. The rock is commonly fine-grained, yellowish beige in colour that can locally be green when chloritized. It is weakly to moderately foliated. Felsic volcanics are stratigraphically located above the intermediate-mafic volcanic rocks.

7.3.1.3 Mafic Sills (I3A)

Throughout the deposit, mafic to ultramafic sills intrude the mafic and felsic volcanic package. These intrusions are laterally extensive and range from 1 to 300 m in thickness. The intrusions are of tholeitic affinity and range in composition from basalt to komatiite. The rocks are texturally homogenous and massive, have a medium to dark green color, are fine- to medium-grained and locally are weakly foliated.

7.3.2 Syntectonic Intrusions (2701 to 2697 Ma)

In the Windfall Lake deposit, five texturally distinct QFP dikes are observed to cross-cut the volcanic strata at high angles. The QFP dikes are of granodiorite composition. The dikes are divided into three main groups based on several criteria including: texture, colour, size and abundance of quartz phenocrysts, orientation and timing with respect to deformation and mineralization. These groups are: 1) syn-deformation fragmental and small quartz eye QFPs, 2) syn-deformation large quartz eye QFPs and 3) post-mineral hematite altered QFPs.

Intermediate to mafic dikes also cross-cut the volcanic strata and the mineralization. The syndeformation QFPs are generally sub-vertical and plunge 35° east-northeast. They are overprinted by gold mineralization and associated hydrothermal alteration. The post-mineral QFPs strike north and dip 35° towards the east-northeast. The post-mineral intrusions cross-cut gold mineralization and the syn-deformation intrusions.

The following paragraphs describe all of the dike units starting from the oldest unit to the youngest unit as defined by cross-cutting relationships observed in drill core. The three main generations of dikes are illustrated in Figure 7.4.

7.3.2.1 Syn-deformation fragmental and small quartz eye QFPs (I2P, I2P Frag, I1 Frag)

The fragmental granodiorite porphyry dike unit ranges from medium grey, with a greenish to pinkish or reddish tint, to light grey where it is more sericitically altered. It is characterized by 2 to 10% small angular quartz eyes generally less than 2 mm in diameter. This unit has internal texture variations ranging from massive and porphyritic to fragmental with up to 30% subangular to sub-rounded fragments. The fragments are generally 1 cm in diameter but can reach up to 10 cm locally. Fragments are comprised of volcanic fragments of both intermediate and felsic compositions that are locally sericitized, pyritized and affected by the schistosity. The presence of fragments suggests that this intrusive unit was emplaced at shallow crustal levels. The presence of pyritized volcanic fragments in the porphyry dike indicates that pyrite mineralization/alteration occurred in the host volcanic rock units prior to the emplacement of this porphyry dike unit (Figure 7.4a).

In the Lynx zone, another fragmental intrusive phase is present and is referred to as the I1 Frag (Figure 7.4b). The I1 Frag differentiates from the I2P Frag as it contains abundant intrusive fragments that contain large quartz porphyries and disseminated pyrite, minor felsic volcanic fragments and pyrite-replaced fragments. Additionally, the I1 Frag contains abundant, angular, monomineralic tourmaline fragments of unknown origin, which is unique to this unit.

7.3.2.2 Syn-deformation large quartz eye QFPs (I1P YB, I1P YL, I1P TrY)

The quartz-porphyry granodiorite dikes (I1P family) form a series of sub-vertical dikes that range in orientation from north to east-northeast and cross-cut the fragmental and small quartz eye QFPs. These lithologies range from light grey to yellowish beige in color depending on the intensity of alteration. They are composed of an aphanitic matrix that contains variable proportions of sub-rounded quartz eyes and locally feldspars phenocrysts. They are classified according to quartz eye abundance which varies from <1% to 20%. The classifications are: <1% quartz eyes (I1P Try; Figure 7.4c), 1 to 10% quartz eyes (I1P YL; Figure 7.4d) and >10% quartz eyes (I1P YB; Figure 7.4e). QFP dikes located in the Underdog mineralized zone (I1P YB) are distinguished by the presence of large, often ghostly-textured feldspar phenocrysts (5% to 10%) accompanying the quartz phenocrysts (Figure 7.4e). Petrographic descriptions indicate that the larger quartz phenocrysts display well-developed resorbed textures.

7.3.2.3 Post-mineral large quartz eye hematite altered QFP (Red Dog) (I2F)

These hematite-altered granodiorite dikes are geochemically indistinguishable from the above mentioned QFPs. This rock type has a brick-red color, an aphanitic matrix that contains 3 to 10% quartz phenocrysts (up to 1 cm) and 5 to 10% poorly defined relict feldspar phenocrysts (Figure 7.4f). The intense red coloration is caused by hematite alteration of feldspars as identified by petrographic studies. Locally the intrusion is weakly magnetic, which is caused by millimetre-sized magnetite crystals. This intrusion is formerly known as Red Dog. It is a 100 m-thick unit that strikes north-northeast and dips 30° to 40° to the east-southeast. Minor splays of the Red Dog are mapped and are typically up to 15 m-thick. The Red Dog unit is a late intrusive phase that cross-cuts all the volcanic, syn-deformation QFP units, gold

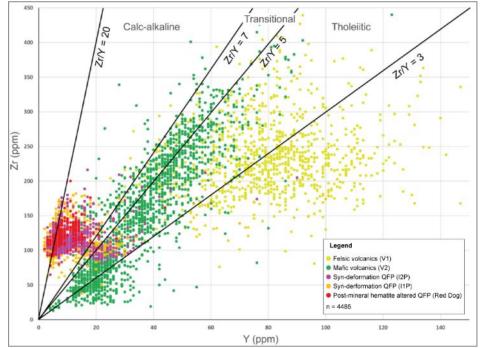
mineralization and associated hydrothermal alteration. Although, it is noted that locally late massive white quartz \pm carbonate tension veins with very rare remobilized gold are observed.

7.3.2.4 Post-mineral fine-grained hematite altered QFP (I13)

These quartz-porphyries are fine-grained hematite-altered granodiorite dikes and are geochemically indistinguishable from the above mentioned QFPs. The rock has a light orange to locally bright red color, it is fine-grained with a saccharoidal-texture, massive and homogenous. Characteristic of this unit is the presence of pale micro-fractures displaying preferential orientation, imparting a thinly banded texture (Figure 7.4g). This unit generally strikes north-northeast and dips 30° to 40° to the east-southeast. These intrusions have similar cross-cutting relationships as the Red Dog noted above and are considered to be part of the Red Dog family of dikes.

7.3.2.5 Intermediate dikes (I2J)

Intermediate to mafic green dikes are characterized by medium to dark green colour and are fine- to coarse-grained. These are generally non-magnetic, massive to weakly foliated and characterized by chlorite and carbonate alteration. They are oriented north-northeast and dip shallowly to the east-southeast. They are a minor unit and cross-cut all volcanic and intrusive units and are therefore the latest magmatic event at Windfall Lake.


7.4 LITHOGEOCHEMISTRY

Rock units at Windfall Lake are often difficult to differentiate due to strong overprinting alteration. Historically, this resulted in the occasional misinterpretation of the rock units in drill core and trenches. Therefore, geochemical analysis is critical to discriminate between the different volcanic units and porphyry dikes (Desrochers, 2013). Since 2015, immobile elements (e.g., TiO₂, Zr and Y) detected by portable XRFs have been used to discriminate between lithological units. However, the small geochemical variations remain insufficient to discriminate between individual porphyry dikes themselves and they are mainly classified based on textural criteria (Figure 7.5).

Where alteration is prevalent and textures are obliterated, the rock types can be distinguished by using binary plots of Y vs. Zr and TiO₂ vs. Zr (Figure 7.6 and Figure 7.7). The Y vs. Zr plot allows for the distinction between calc-alkaline and tholeitic magmatic affinities. The synvolcanic rocks are tholeitic whereas the QFP intrusions are calc-alkaline. The TiO₂ vs. Zr diagram allows for the distinction between different volcanic rocks (e.g. basalt, andesite and rhyolite).

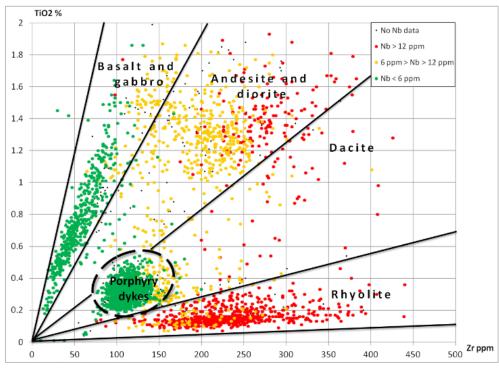
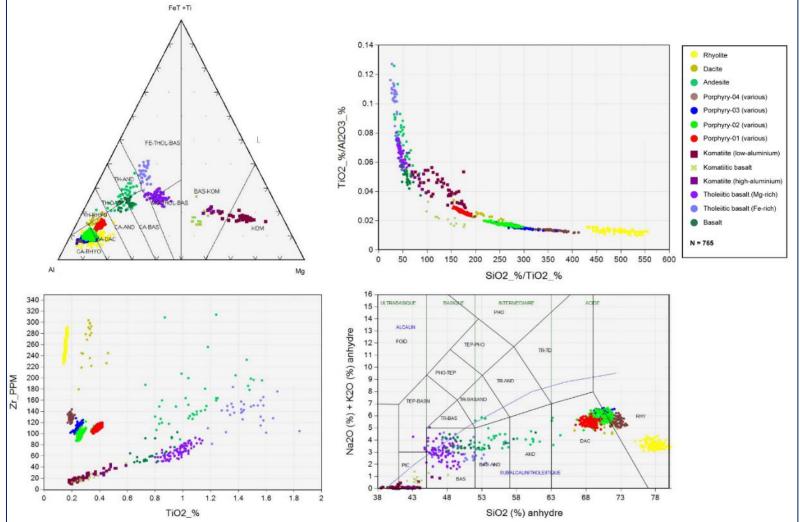


Figure 7.5 Magmatic Affinity of Windfall Lake Rocks on a Zr vs. Y Diagram

Source: Osisko 2020


Figure 7.6 Discrimination of Rock Units on a TiO2 vs. Zr Diagram

Nb values in coloured dots. Source: Osisko 2020

Rhyolite Dacite Andesite Porphyry-04 (various)

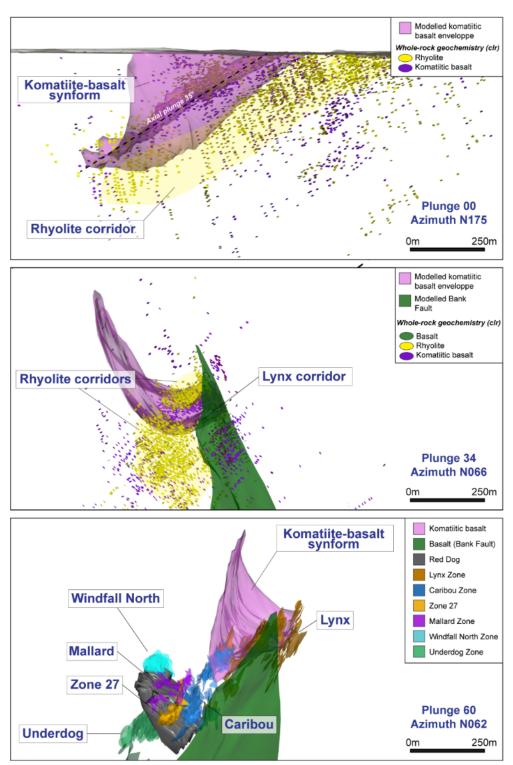
Figure 7.7 Petrogenetic Identification of Rock Units from Standard Lithogeochemical Biplots

From 765 unaltered whole-rock geochemistry core samples. Source: Osisko 2020

On the Y vs. Zr diagram, the intermediate to mafic flows and dikes are localized on the left side of the diagram whereas the felsic volcanic flows are dispersed at the bottom of the diagram. The porphyry dike units, including the Red Dog unit, form a group centered around 100 ppm Zr and 0.35% TiO₂. Those units also have Nb values that are generally <6 ppm, which is lower than the rhyolite (generally >10 ppm). The Nb values are another chemical element used to discriminate between the felsic volcanic rocks and the porphyry intrusions.

Recently, a thorough investigation of the lithogeochemical database was completed. Out of the 18,440 whole rock analyses available, 765 were selected, classified as least altered and given a proper name using a classical petrogenetic scheme (Jensen, Winchester-Floyd, De La Roche and La Bas). For the remainder of the database a discriminant factorial analysis ("DFA") was applied using the centered log-ratio ("clr") transformation in order to overcome the "closure" problem produced by the constant-sum data. Standard biplots of the DFA made it possible to recognize eight distinct rock units: komatiite, komatiitic basalt, tholeiitic Mg-basalt, tholeiitic Fe-basalt, basalt, andesite, rhyodacite and rhyolite (Figure 7.7). It should be noted that use of naming suggesting extrusive lithologies is equivocal and interchangeable with intrusive equivalent (ex. diorite, gabbro, ferro-gabbro, etc.).

Most of the QFP dikes plot in the dacitic field however, major element geochemistry is insufficient to discriminate between the logged QFP dikes (Figure 7.7).


Interestingly, when examining the spatial variability of the whole-rock data in a three-dimensional environment, the komatiitic basalt unit defines an east-plunging synform structure whose southern flank is truncated by the passage of the Bank fault (Figure 7.8). The komatiitic basalt corresponds to the logged gabbro (I3A) in the Lynx zone of the current model. Both fragmental porphyry units (e.g. I2P Frag and I1 Frag) and the rhyolite occupy the axial plane of the synform. The Bank fault is contained in a basaltic protolith and seems to constrain the geometry of the folding in the komatiitic basalts. The spatial relationship between the synform and the Bank fault, as well as the geochemical composition of the komatiitic basalt, plays a crucial role in the concentration of gold in the Lynx zone and will be discussed below.

7.4.1 Alteration

The nature, distribution and intensity of the alteration is controlled mainly by the composition of the original rock type and its proximity to gold-mineralized zones. Throughout the Windfall Lake deposit, several alteration assemblages are visible and mainly include sericite, silica, chlorite, ankerite, fuchsite and biotite. Typically, the gold-proximal alteration haloes consist of sericite and silica (± iron-carbonate) associated with strong sulphidation (mainly pyrite) of the immediate vein selvages. In contrast, hydrothermal alteration more distal to gold mineralization consists mainly of chlorite and biotite. These alteration haloes are observed in all rock types of the deposit. Fuchsite alteration is also found in the Windfall Lake deposit and is mostly spatially associated with gabbroic sills. Visual alteration types observed in drill core are illustrated in Figure 7.9.

Figure 7.8
Spatial Variability of the Whole-Rock Data Illustrating the Synform Geometry within the Komatiitic Basalt Unit

Source: Osisko, 2020.

Irregular, patchy Ser-Sil-Py alteration in **V1** Pervasive Ser alteration in V1 Irregular, patchy Ank-Py alteration in **V1** Ser-Py (stockwork) alteration in V2 atchy Bt alteration in V2 Pervasive Fu-Py alteration in I3A Pervasive Chl alteration in I1 Frag Pervasive Sil-Py alteration in I1P

Figure 7.9
Visual Alteration Assemblages Observed in Drill Core at the Windfall Lake Deposit

Reference photos are from Osisko's drill core.

7.4.2 Alteration Geochemistry

The alteration assemblages are evaluated based on whole-rock lithogeochemical analyses. Given the great compositional variability of the lithological units (ultramafic to rhyolite) and the large number of samples, the database has been divided into four subgroups: 1) rhyolite-rhyodacite, 2) porphyries and dacites, 3) andesites and basalts and 4) komatiitic basalts and

basalts. This division subtracts the variance associated with petrogenetic variations, which allows for the focus on the residual variance potentially linked to alteration and metasomatism.

For each of the subgroups, a Principal Component Factor Analysis ("PCA") was made, considering 54 parameters available in the LithoModeleur module (e.g., alteration indices, multiple precursor mass balance equations and normative mineralogy). The factors were retained and interpreted in terms of alteration process (alteration facies). For each factor, a formal name characterizing the process was established. Since each lithological subgroup presents its statistical distribution parameters and in order to be able to make a global and three-dimensional representation of the database, the results were centered-reduced (Z-score) for each of the factors.

Four alteration assemblages are systematically present in all subgroups: carbonatization, silicification, sericitization and chloritization. In general, the rhyolite units are strongly sericite altered (Figure 7.10a-b), whereas the mafic units are generally chlorite altered (Figure 7.10c). Carbonatization is observed in all rock types but is dominantly observed in ultramafic rocks (Figure 7.10d). Hence, the alteration assemblages are largely dependent on the primary geochemical composition of the lithologies.

When plotting the Z-scores of the PCA analysis of alteration in a three-dimensional space, sericite alteration is mainly developed in Zone 27 whereas silica and sericite alteration dominate the Lynx zone (Figure 7.11). Chloritization and carbonatization alteration facies have specific spatial distributions and are locally exclusive of one another.

The coloring of the points is based on the quartile distribution of the Z-scores of each alteration facies. Chloritization (±sericite, ±silica) is well developed in the Underdog sector, where there is very little carbonatization; however, carbonatization (+silica) appears more prominent along the Lynx corridor at the roof of the komatiitic basalt unit. These observations suggest the presence of envelopes of distinct alterations having specific alteration paragenesis. The zonal distribution of chloritization and carbonatization may suggest a warmer (proximal) fluid for Underdog and a cooler (distal) fluid for the Main/Lynx area.

Additionally, a DFA analysis, with gold as the dependant variable, was undertaken on over 157,000 multi-element analysis samples to determine the relationship between certain thresholds of gold content and elemental groups. The DFA's dependent variable Au was modeled by considering three gold content thresholds: 1) Regional «0 to 20 ppb Au»; 2) Anomalous «21 to 500 ppb Au»; and 3) Mineralized «> 500 ppb Au». This approach removes the potential nugget effect and offers a qualitative assessment of the gold content and validates if certain elemental groups are characteristic or not of the mineralization.

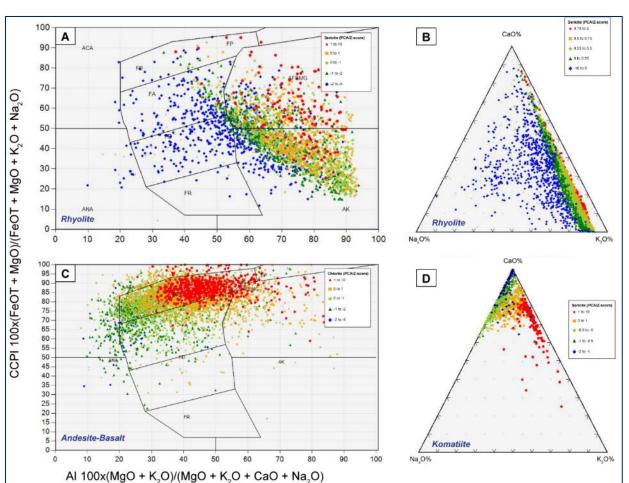


Figure 7.10 Alteration Box Plots (CCPI vs AI) And Tertiary Diagrams (CaO% vs Na₂O% vs K₂O% CNK)

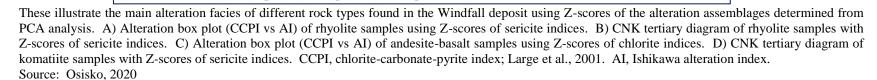
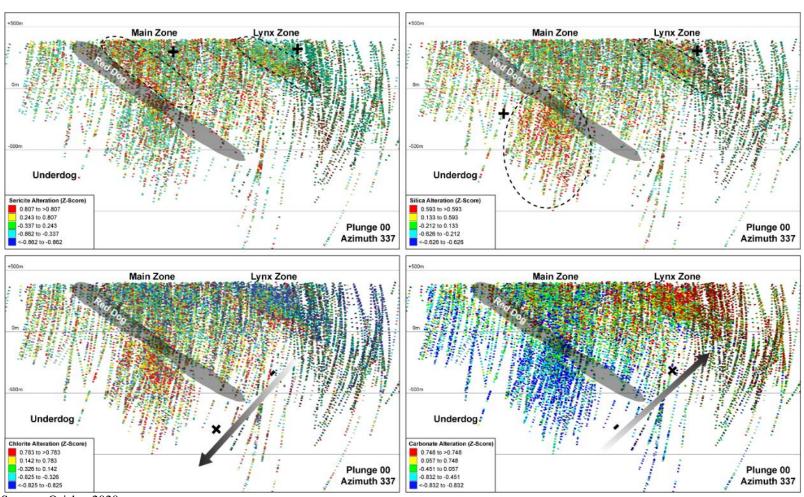
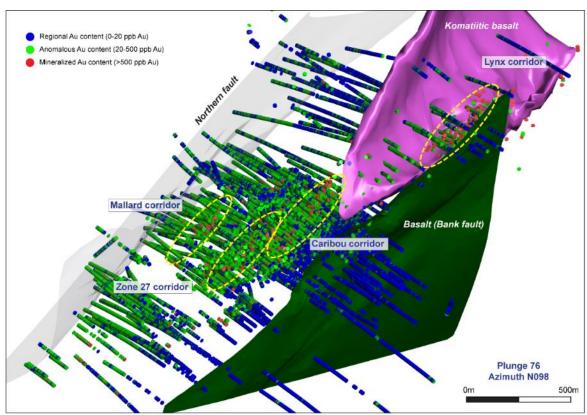



Figure 7.11 Spatial Variability of Four Alteration Assemblages (Sericitization, Silicification, Chloritization and Carbonatization) in the Windfall Lake Deposit



Source: Osisko, 2020

This statistical method highlighted two groups of elements that correlate with high gold content in the deposit. The main elemental assemblage associated with the gold mineralization consists of Ag-As-S-Ba-Cu-K. The second assemblage is represented by a group of elements consisting of: Mg-V-Co-Cr-Fe-Ni. This second group clearly shows a component associated with mafic to ultramafic rocks. Interestingly, ultramafic rocks are proximal in both the Zone 27 and the Lynx zones and gold in these corridors is commonly seen associated with talc alteration, carbonate veins and fuchsite. Additionally, when plotting the gold thresholds in a three-dimensional space, the data clearly demonstrates the geometry of the main gold corridors in the Windfall deposit (Figure 7.12). Only a few mineralized samples are found outside of these corridors. This technique also highlights the large gold-anomalous halo surrounding the corridors. Finally, it is important to specify that these two gold proxies are likely not exhaustive but reflect the available elements of the database as well as the detection limit (censored data).

Figure 7.12
Spatial Relationship of Gold Thresholds (Regional, Anomalous and Mineralized) Over Multi-Element
Analyses Determined by DFA Analysis and the Location of Existing Mineralized Corridors in the
Windfall Lake Deposit

Source: Osisko 2020

7.5 STRUCTURAL GEOLOGY

The structural geology is discussed in three parts including: 1) a summary of documented regional deformation, 2) the observed deposit scale deformation events and 3) the observed

controls of deposit scale deformation and its relationship to the emplacement of gold mineralization.

7.5.1 Regional Scale Deformation

At a regional scale, several major faults and shear zones cross-cut the central portion of the Urban-Barry greenstone belt, including the east-trending Urban deformation zone to the north, the east-northeast trending Barry deformation zone to the south and the east-northeast oriented Milner and Bank deformation zones. The Bank deformation zone is an important structural component as it is observed on the Windfall property and is truncated to the north by the Urban deformation zone. Combined, these structural elements affect the short limb of a regional Z-fold pattern (Figure 7.2 and Figure 7.3). Regional field stresses express a north-northwest oriented principal component. Along the Urban deformation zone, the normal and tangential components define a dextral transpressive setting (Bandyayera et al., 2004; Rhéaume et al., 2004; Rhéaume et al., 2006), whereas along the short limb of the Z-fold (e.g. Bank deformation zone), the normal and tangential components define a sinistral transpressive setting formally documented on the mine site.

7.5.2 Deposit Scale Deformation

At a local scale, major and minor structures observed on the Windfall Lake property are identified in drill core, trenched surfaces and are interpreted from major and minor lineaments in both ground and airborne geophysics (magnetic, gradient EM and IP-resistivity surveys). Extensive drilling and subsequent core logging and mapping have identified the most significant structures that cross-cut the property and a robust database of oriented structural measurements from drill core (n = 117,000) and of lithogeochemistry (n = 18,440) help to interpret the structural features observed.

At the Windfall Lake deposit, four deformations events are observed and are simply denoted as D1-D4 (Choquette et al., in prep.). These include: 1) early folding and local development of a layer-parallel fabric (S1), 2) east-northeast trending faults, shear zones and tectonic fabric (S2), 3) late north-trending brittle faulting (D3) and 4) a late tilting event (D4).

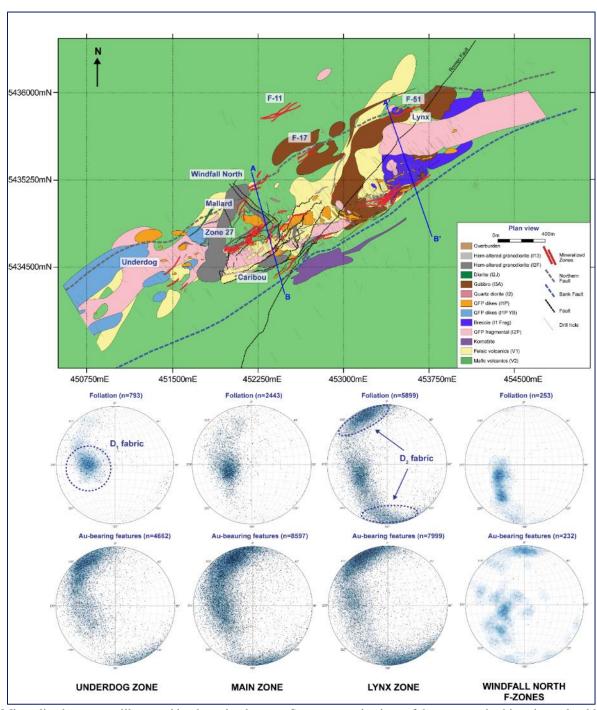
The D1 deformation affects the volcanic package and is characterized by regional scale open to tight folds with axial planes that trend east-northeast and plunge roughly 35 to 40° . These folds are locally associated with a weak to moderate layer-parallel penetrative foliation. At the Windfall Lake deposit, the folds are open. The foliation is locally well developed and strikes on average north and dips roughly 35 to 40° towards the east.

The D2 deformation is defined by subvertical faults, shear zones and a weak to strong penetrative fabric that strikes on average east-northeast dipping roughly 80 to 60° southeast and are locally overturned. These structures are observed to cross-cut the axis and limbs of earlier D1 folds (Figure 7.13; SRK technical report 2014). Importantly, the syn-deformation QFP intrusions and gold mineralization are dominantly aligned within these structures. The faults can be identified by stair-like geometries that are mapped along the contacts of

synvolcanic rock types, whereas the shear zones are identified by intense corridors of deformation that are expressed by an intense flattening fabric and locally boudinaged and folded veins. This deformation event is observed to pre-date and post-date gold mineralization as identified from field relationships.

Figure 7.13

Deformed Felsic Volcanic Rocks Showing the Two Tectonic Deformation Events (D1-S1 and D2-S2) Near the Windfall Lake Deposit



Source: SRK 2014.

The early D2 structures are observed as faults and high strain zones with a weak to moderate penetrative foliation. This deformation triggers intrafolial folding of the earlier S1 fabric forming a sigmoidal-like schistosity (Figure 7.14). The faults dominantly control the emplacement of syn-deformation QFP intrusions, whereas the later overprinting high strain zones control the emplacement of gold mineralization. The high strain zones are often located in areas of rheological anisotropies that are often associated to the contacts of subvertical syndeformation QFP intrusions and the deformed host volcanic rocks.

Figure 7.14
Interpreted Surface Geology of the Windfall Lake Gold Deposit with Logged Mineralized Zones and Lithologies Projected to Surface

Mineralized zones are illustrated by the red polygons. Stereonet projections of the measured schistosity and gold-bearing features from oriented drill core structural measurements within individual mineralized zones show that the mineralization is hosted within sigmoidal-shape features - typical of Riedel-type structures. Refer to Figure 7.20 and Figure 7.21 for vertical cross-sections (A'- B' Lynx zone) and (A - B Main zone), respectively. Figure from Choquette et al., in prep.

The late D2 deformation is associated with the Bank fault which is interpreted as a reverse sinistral fault-shear zone with an unmeasured distance of displacement, but is interpreted to be >1 km. The Bank fault crosscuts and deforms the rocks of the Windfall Lake deposit. The footwall of this structure is host to the Windfall Lake deposit, whereas the hangingwall is characterized by strongly deformed and gold-barren mafic volcanic rocks. The synvolcanic and syn-deformation rocks, the early tectonic fabric and the gold mineralized vein system are observed to parallel this structure as they approach it. Within 50 m of the immediate footwall of this structure, normal drag folding of the rocks and of the mineralized vein system is observed and forms the synform shape observed by the shape of the gabbro sill (i.e. Lynx area). Roughly 650 m to the north-northwest of this structure is the Northern fault which is a smaller, subparallel structure that strikes east-northeast and dips 80° southeast (seen below in Figure 7.19, Figure 7.20 and Figure 7.21).

The D3 deformation is defined by late brittle faults that overprint all lithologies, shear zones and gold mineralization. These late brittle structures are observed in drill core and in underground exposures and are characterized by zones of broken core, fault gouge and cohesive fault breccias. These faults are steep to moderately dipping structures that strike north. The most significant of these structures are the Windfall and Roméo faults, which are easily visible by magnetic discontinuities observed in airborne geophysics surveys (Figure 7.3).

The D4 deformation event is defined as a late tilting event which tilted the Windfall Lake deposit to its present-day position. The volcanic-volcanic contacts, all QFP intrusions, the tectonic fabric and the gold mineralized veins all plunge roughly 35° towards the east-northeast. All these features are interpreted to have been subvertical during the emplacement of gold mineralization and were later tilted 55° by a late and currently unidentified structure.

7.5.3 Orientation and control of gold mineralization

The orientation and control of gold mineralization is evaluated from observations made in drill core and from underground geological mapping. These interpretations are also supported by measured downhole, oriented structural measurements (n = 117,000).

The gold mineralization is hosted in two fabrics, these being the D2 fabric associated with the development of the east-northeast deformation corridors and locally the earlier D1 fabric associated with layer-parallel fabric developed during early folding (Figure 7.14) (Choquette et al., in prep). The result is two dominant orientations of mineralization which are: 1) striking east-northeast dipping 80 to 60° southeast and locally are overturned and 2) striking north dipping 60 to 30° east.

The dominant control of gold mineralization are high strain zones and faults that are located in east northeast deformation corridors (D2). These zones are locally spatially associated with subvertical syn-deformation QFP intrusions (i.e. I1P, I2P). The deformation is concentrated in these areas as result of rheological anisotropies where competent QFP intrusions cross-cut

at high angles deformed synvolcanic rock types. Locally the controls can vary slightly depending on location within the deposit and distance with respect to the post-mineral Bank deformation zone. This is further discussed in more detail in the description of the mineral zones below.

The structural patterns noted above that are observed throughout the Windfall Lake deposit are interpreted to be similar to that of a Riedel shear-fracture system (Cloos 1928; Riedel 1929; Katz et al., 2004). The structural patterns observed are summarized in Figure 7.15.

Riedel-type structures are described as an array of shear bands that develop in zones of simple shear in the early stages of shear zone development. Riedel-type structures generally consist of conjugate shear bands that occur in en-échelon array that form networks of deformation bands that become denser and narrower as strain accumulates. These fractures develop where the rotation of the schistosity attains a frictional threshold beyond which brecciation occurs.

At the onset of frictional lock, dislocation occurs in the central domain, providing an efficient plumbing system to focus the metal-rich hydrothermal fluids. Here it is suggested that east-northeast sinistral faults and shears zones (D2) represented by the letter R cut across the early D1 fabric that is north-striking. Progressive deformation creates denser deformation zones and causes R' deformation bands to form and appear to nucleate on the pre-existing D1 fabric. Locally this causes intrafolial folding of the foliation forming sigmoidal-like shapes, often creating extensional corridors. The QFP dikes appear to be emplaced in these deformation corridors created by faulting and shearing and ultimately control the location of the major gold mineralization lenses.

7.5.4 Mineralization Styles and Relative Timing

Two main styles of gold mineralization are observed in the Windfall Lake deposit and include 1) vein-type mineralization and 2) replacement-type mineralization (Choquette et al., in prep).

Vein-type mineralization consists of grey to translucent colored quartz veins that contain subordinate amounts of ankerite, tourmaline, pyrite and commonly visible gold (Figure 7.16a). The veins have sharp contact margins that are straight or folded. Texturally these veins are massive, but locally can form laminated textures characteristic of fault-fill veins (Robert and Poulsen, 2001). The veins vary in thickness from 0.1 to 1 m and are generally associated with the highest gold grades ranging on average from 20 to > 100 g/t. In the veins, sulphide content ranges from 1 to 80 % and is dominated by pyrite with minor concentrations (<1% total sulphide) of chalcopyrite, sphalerite, arsenopyrite, galena, pyrrhotite, tennantite and other Bi-Te minerals, as identified by internal petrographic and microanalytical analyses. This mineralization style is commonly observed to occur in felsic volcanic dominated domains of the deposit (i.e. Lynx).

Figure 7.15
Interpretation of the Riedel-Type Structural Model Applied to the Windfall Lake Deposit

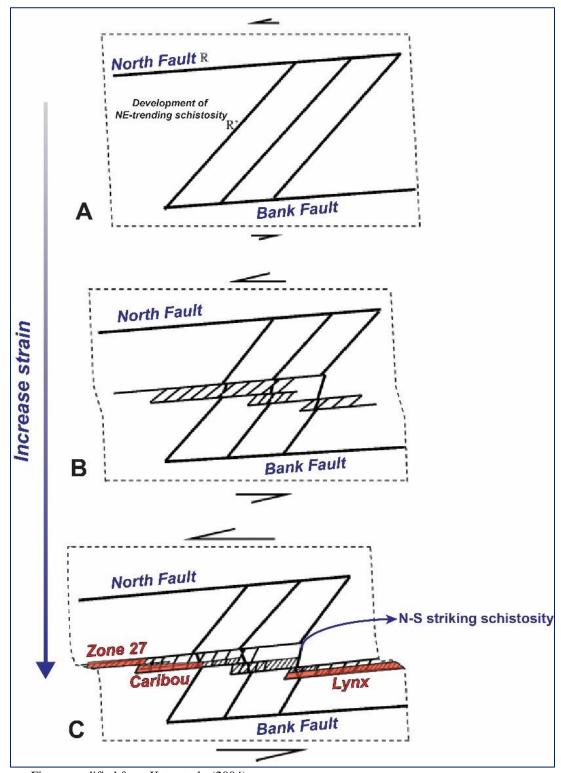


Figure modified from Katz et al., (2004).

Vein-type mineralization Sil Replacement-type mineralization Sil

Figure 7.16
Main Types of Mineralization Observed at the Windfall Deposit

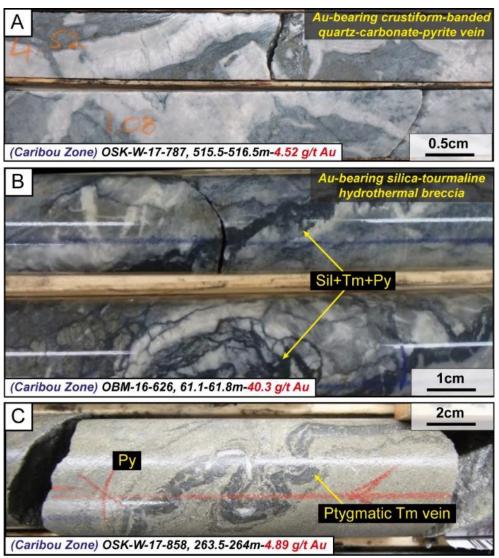
A) Examples of Vein-Type Mineralization; B) Examples of Replacement-Type Mineralization. Reference photos are from Osisko's drill core.

Replacement-type mineralization occurs at the margins of vein-type mineralization or in high strain zones that lack the development of quartz veins. This mineralization style consists of pyrite replacement zones and stockworks that are associated with a strong pervasive silica-sericite-ankerite \pm tourmaline alteration of the host rock (Figure 7.16b). The gangue and valuable minerals are identical to those mentioned above in the vein-type mineralization. The gold is associated with disseminated pyrite which varies from 1 to 80 % over mineralized

intervals. This mineralization style is commonly observed to occur in the mafic volcanic dominated domains of the deposit (i.e. Main zone).

Spectacular visible gold mineralization is commonly observed in the Windfall Lake deposit (Figure 7.17). In drill core, the gold ranges from millimetre-sized nuggets to locally centimetre-sized patches which are commonly associated with post-vein formation fractures that contain cloudy white quartz-carbonate. The late overprint of visible gold suggests late-stage remobilization of metals.

Figure 7.17
Representative Images of Spectacular Visible Gold Observed in Vein-Type Mineralization at the Windfall Lake Deposit


Figure from Choquette et al., in prep.

Other than the vein-type and replacement-type mineralization noted above, less significant vein-types include: 1) early carbonate-quartz veins, 2) laminated-quartz-carbonate-tourmaline veins, 3) ptygmatic tourmaline veins and 4) late quartz veins (Figure 7.18).

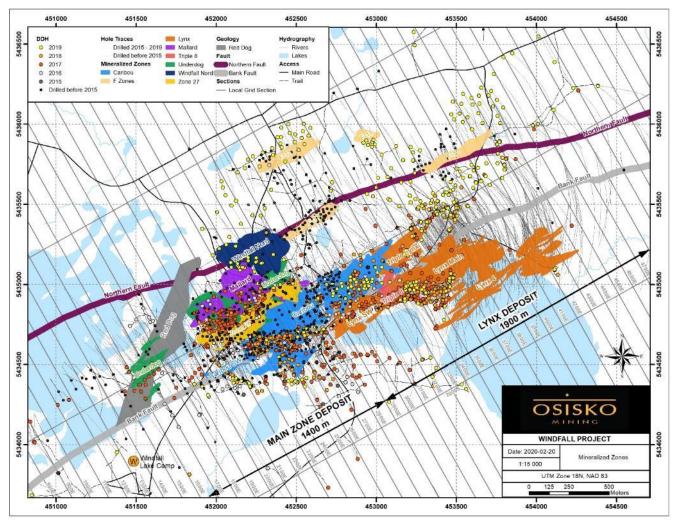
The carbonate quartz veins (Figure 7.18a) are the earliest hydrothermal event observed and consists of gold-barren carbonate-quartz veins with locally well-developed colloform-crustiform textures. These veins range in thickness from 0.1 up to 5 m in width, are strongly folded and occur in the axes of the open D1 folds in the gabbro sills. These veins pre-date the main-stage of gold mineralization and only are mineralized where overprinted by later vein-type or replacement-type mineralization.

Figure 7.18
Other Mineralization Types and Associated Alteration Styles Present at the Windfall Lake Deposit

A) Low-angle gold-bearing crustiform quartz-carbonate-pyrite veins. B) Low-angle gold-bearing silicatourmaline hydrothermal breccia. C) A ptygmatic tourmaline and Fe-carbonate vein in disseminated to semi-massive pyrite. All gold grades (g/t Au) are cut to 100 g/t unless indicated. Source: Osisko 2020.

The laminated quartz-carbonate-tourmaline veins and the ptygmatic tourmaline veins are synchronous with the D2 deformation but are post the vein-type and replacement-type mineralisation as defined by cross-cutting relationship. The vein-types are generally thin (< 30 cm), contain <10 % disseminated pyrite and locally contain erratic gold mineralization when pyrite is present. These veins are likely to be sub-economic due to their thin nature and occur at the terminal stages of the gold-bearing hydrothermal system.

Late quartz veins are observed to cross-cut the post-mineral Red Dog intrusion, indicating a late timing with respect to the main stage of gold mineralization. The veins are generally flat lying relative to the present surface and are composed of massive white quartz with minor carbonate and massive clusters of pyrite. These veins are generally thin (< 20 cm) and are mostly gold barren. Very rarely these veins contain erratic and discontinuous millimetre-sized nuggets of gold. Due to their discontinuous and thin nature, these veins are not considered likely to be economic.


The relative timing of gold mineralization is well constrained between the syn-deformation and post-mineral QFP intrusions and is interpreted to be relatively synchronous with D2 deformation. Locally, some foliated, altered and weakly mineralized fragments are observed in the early I2P and I1Frag intrusions. These observations suggest that gold mineralization partly preceded the intrusion of dikes and was terminated at the time of the Red Dog emplacement.

7.6 MINERALIZED ZONES

At the Windfall Lake deposit, the high-grade gold mineralization is contained within narrow deformation zones that cross-cut the synvolcanic rocks and syn-deformation QFP intrusions and are locally spatially associated with the contacts of the latter. Mineralization consists of vein-type quartz-carbonate-pyrite-tourmaline-gold veins, or replacement-type pyrite-rich corridors that are zoned from an inner high-grade gold-quartz > sericite-carbonate-tourmaline mineral assemblage to an outward low-grade gold-sericite > silica-carbonate-tourmaline assemblage, which in turn transitions to a background of gold-barren chlorite-carbonate > sericite.

The mineralization is currently known for a lateral extent of 2,800 m and to a confident vertical extent of approximately 1,400 m. It is separated into three sectors: the Lynx zone (Lynx Main, Lynx HW, Lynx SW, Triple Lynx and Lynx 4), the Main zone (Zone 27, Caribou, Mallard, Windfall North, F-Zones) and the Underdog zone. All zones generally trend east-northeast and plunge roughly 35 to 40° (Figure 7.19). A brief description of the mineral zones and their location in the deposit is presented here and further detailed descriptions of each zone are presented in the sections below.

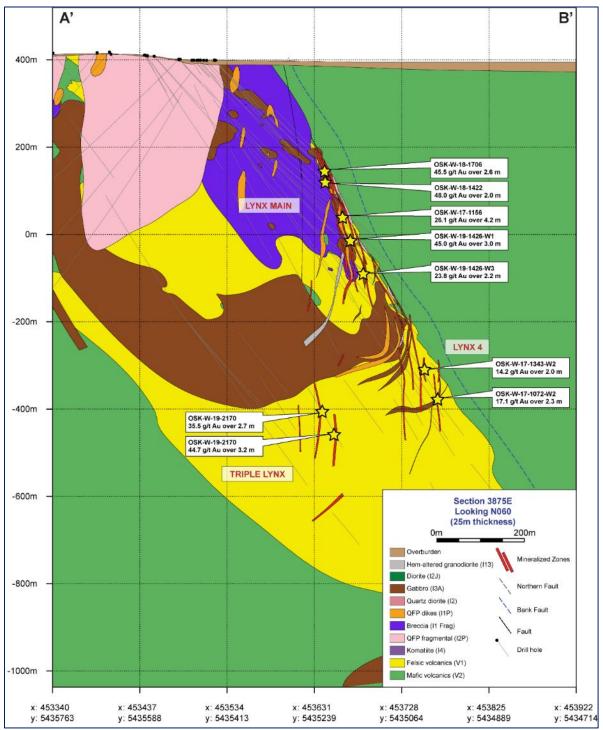
Figure 7.19
Topographic Map With Surface Projection of the Mineralized Zones at the Windfall Lake Deposit (Lynx Zone, Main Zone and Underdog Zone) and the Location of Drill Holes (Osisko) Grouped by Year

The surface projection of the post-mineral Red Dog QFP intrusion is illustrated by the dark grey polygon. Source: Osisko, 2020

The Lynx zone consists of five gold mineralized zones that are located in the east-northeast portion of the deposit (Figure 7.19). The gold mineralization is hosted in a felsic volcanic dominant domain (i.e. rhyolite) with minor felsic QFP and mafic intrusions (i.e. I2P, I1P, gabbro sills). The Lynx Main, Lynx HW, Lynx SW and Lynx 4 zones are closest to the Bank fault and are locally influenced by the latter, whereas the Triple Lynx zone is located roughly 200 to 300 m lateral distance from this structure and occurs beneath a thick gabbroic sill (e.g. Figure 7.20).

The Main zone consists of four gold mineralized zones that are located in the central portion of the deposit (Figure 7.19). The gold mineralization is hosted in a mafic dominant domain (i.e. basalt and andesite) with lesser syn-deformation QFP intrusions and mafic intrusions (Figure 7.21). The stratigraphically deeper portions of the Main zone are cross-cut by the thick post-mineral Red Dog QFP intrusion.

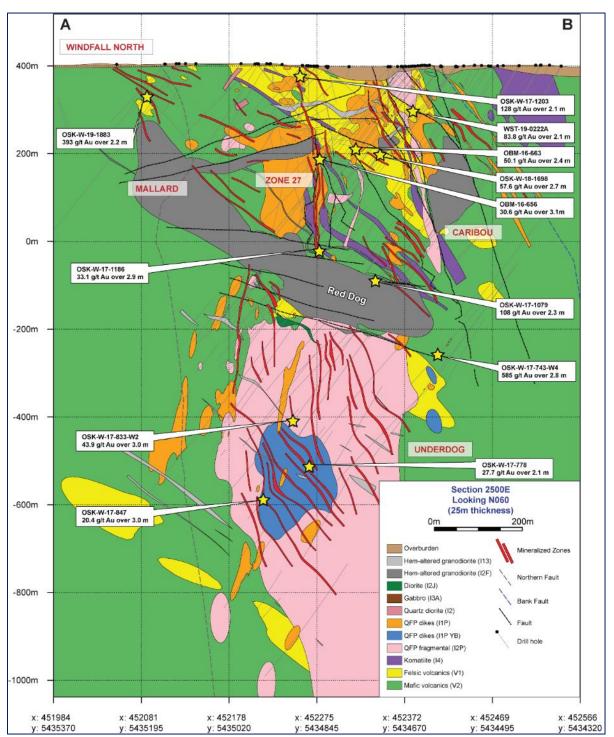
The Underdog zone consists of one gold mineralized zone that is located in the south western portion of the deposit (Figure 7.19 and Figure 7.21). The gold mineralization is hosted in a syn-deformation QFP dominant domain (i.e. I2P, I1P QFP dikes) with minor mafic and felsic volcanic rocks (Figure 7.21). The Underdog zone is separated from the Main zone by the post-mineral Red Dog QFP intrusion and occurs beneath the latter.


The F-zones are located in the northern portion of the deposit. Gold mineralization in the F-17, F-11 and F-51 zones differs from that of the Main and Lynx zones. The F-zones trend to the northeast, subparallel to the Main zone, but dip steeply to the north. F-17 and F-51 are aligned along the same trend but separated by approximately 800 m. The zones are interpreted to be associated with the Northern Fault and the mineralization is typical of shear-hosted replacement-type mineralization. Continuity between the two zones cannot be established from the current drilling data. F-11 lies in a similar structural context but is located around 500 m to the northwest.

7.6.1 New Discoveries (2018 to 2019)

New mineralized zones were discovered since the last resource update in 2018. The new discoveries include: 1) the Triple 8 zone, 2) the Triple Lynx zone and 3) the Windfall North zone (Figure 7.22). The Triple 8 zone is not included in this resource estimate, whereas the Triple Lynx and Windfall North zones are.

Figure 7.20 Simplified Northwest-Southeast Vertical Cross-Section of the Geology of the Lynx Zone of the Windfall Lake Deposit



Along grid line 3875E (A'-B' in Figure 7.14.), showing the spatial setting and geometry of mineralized zones shown in red (Lynx Main, Lynx 4 and Triple Lynx).

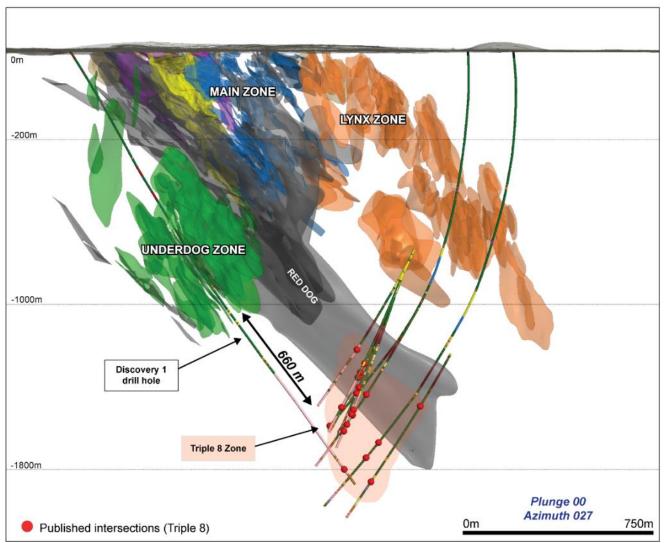
Source: Osisko, 2020

Figure 7.21
Simplified Northwest-Southeast Vertical Cross-Section of the Geology of the Main Zone of the Windfall Lake Deposit

Along grid line 2500E. (A-B in Figure 7.14), showing the spatial setting and geometry of mineralized zones shown in red (Zone 27, Caribou, Underdog, Mallard and Windfall North). Source: Osisko, 2020.

7.6.1.1 Triple 8 Zone

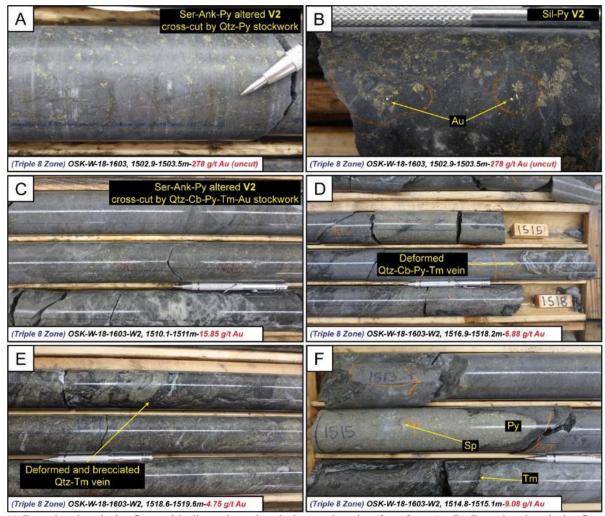
In May of 2018, Osisko commenced two deep exploration drill holes to investigate the potential for the extension of the Underdog mineralized zone at depth. The first drill hole was successful and the Triple 8 zone was discovered at a depth of 1,500 m downhole. The Triple 8 zone is located 660 m east from the closest mineralized intercept in the Underdog Zone (Figure 7.22). The second drill hole, Deep Discovery 1 the longest diamond drill hole in Canada with a final depth of 3,467 m, also intercepted the Triple 8 corridor and several other zones of anomalous gold mineralization up to 116 m in strike length, similar to the wide anomalous gold zones observed in the proximity of Triple 8, Triple Lynx and Lynx zones. The Triple 8 zone is not considered in the resource estimate at this stage as additional work is required to interpret the mineralized corridor.


The mineralization in the Triple 8 zone is a sulphide replacement style that consists of up to 30% disseminated pyrite and pyrite stringers with local grains of visible gold that are spread throughout approximately 30 m of drill core. In general, pyrite mineralization is most intense where the host rock is brecciated and strongly silicified (Figure 7.23a-b-c). Free gold grains are located at the margins of pyrite grains in silicified zones. Interestingly, the mineralization is not associated with any intrusive contacts but appears to be controlled by the flow contacts of the andesite host rock or by the occurrence of brittle structural features that allowed gold-bearing hydrothermal fluids to permeate the host rock and deposit the gold. Brecciated and deformed quartz-tourmaline veins are also common in the mineralized zone (Figure 7.23d-e). The zone also contains minor chalcopyrite, pyrrhotite, sphalerite (Figure 7.23f).

7.6.1.2 Triple Lynx Zone

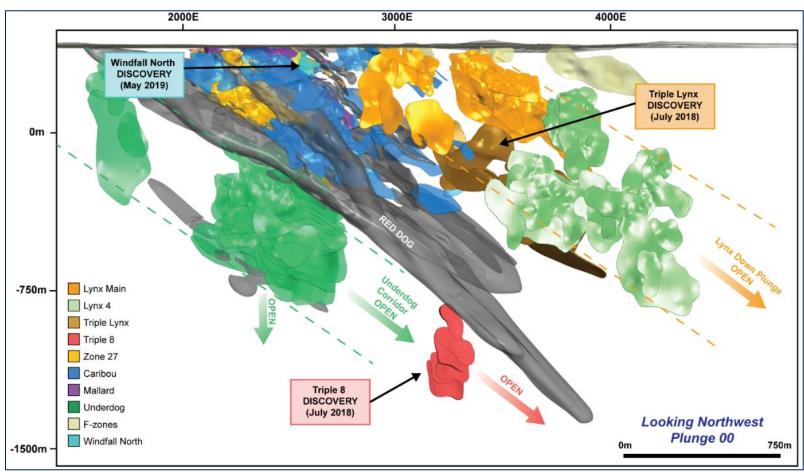
The Triple Lynx mineral zone was discovered in early 2019. The Triple Lynx mineral zone includes four new high-grade gold zones that are in the Lynx area of the deposit and are located at vertical depths of 650 and 980 m. The mineral zone occurs beneath a 300 m thick gabbro sill and is subparallel to the axial plane of an open fold (e.g., Figure 7.20). A geological description of this mineral zone is provided below in section 7.6.2.

7.6.1.3 Windfall North Zone


The Windfall North zone was discovered in early 2019 and is located 350 m north of the Main zone and is interpreted to be the western extension of the F-zones. A geological description of this mineral zone is provided below in section 7.6.7.

Located approximately 660 m east from the closest mineralized intercept in the Underdog Zone. Source: Osisko, 2020.

Figure 7.23
Typical Mineralization and Associated Alteration Styles in the Triple 8 Zone of the Windfall Lake Deposit


A) Brecciated andesite flow with disseminated and clustered pyrite (2 to 3 mm). B) Brecciated andesite flow with free gold at the fringes of the pyrite clusters. C) Sericite-silica-ankerite altered brecciated andesite with 10% pyrite mineralization. D) Deformed quartz-carbonate-tourmaline-pyrite vein in sericite altered andesite. E) Deformed and brecciated quartz-tourmaline veins in a strongly mineralized and sericite altered andesite. F) Redbrown sphalerite cluster in a semi-massive pyrite interval in sericite altered andesite. Reference photos are from Osisko's drill core.

7.6.2 Lynx Zone

Since its discovery in 2016, the Lynx zone has proven to be the most important component of the gold budget of the Windfall Lake deposit. The Lynx zone hosts an average grade of >10 g/t Au and the majority of the indicated and inferred mineral resource estimate. Mineralized corridors in the Lynx zone are interpreted to be continuous along strike for over 1 km according to infill drilling results. Significant high-grade zones (Lynx 4 and Triple Lynx) remain open down plunge. Triple Lynx is also open up plunge as well. (See Figure 7.24)

Figure 7.24
Leapfrog 3D Modelling Illustrating Idealized Vertical Cross-Sections (Looking Northwest) of the Geometry of the Mineralized Zones
Plunging 35° to the Northeast

INTERNATIONAL LIMITED consultants

Exploration is open at depths for all zones.

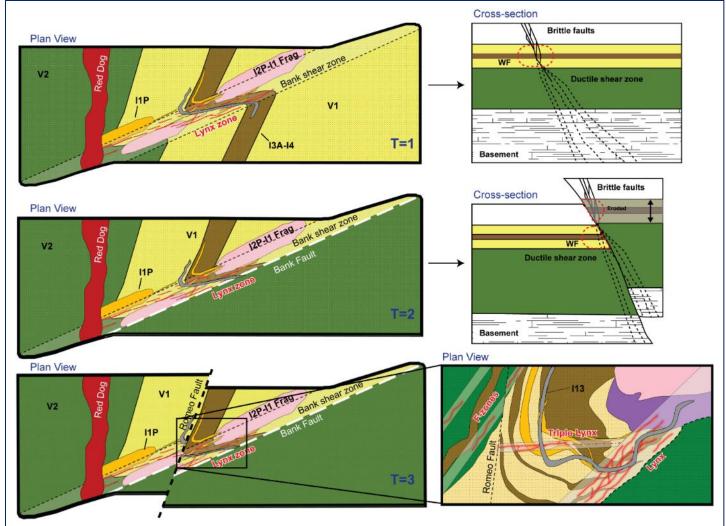
Source: Osisko, 2020.

7.6.2.1 Rock Types and Geometries

Seven rock types are found in the Lynx zone and include: basalt to andesite volcanic rocks (V3-V2), rhyolite (V1), mafic and ultramafic sills (I3A-I4), syn-deformation fragmental QFP (I1 Frag), syn-deformation small quartz eye QFP (I2P), syn-deformation large quartz eye QFP (I1P) and lastly post-mineral fine-grained hematite altered QFP (I13).

The Lynx zone is dominantly hosted in felsic volcanic rocks (V1) that are intruded by thick gabbro sills (I3A). The geometry of these volcanic units forms a synform (demonstrated by the lithogeochemistry of whole-rock data, section 7.4.2) whose southern limb is dismembered and dragged upwards by the reverse sinistral Bank deformation zone. Both fragmental intrusive units (I1 Frag and I2P) are large intrusive stocks reaching up to 500 m in width. These two intrusions are located in the axial plane of the synform. The syn-deformation I1P intrusions are generally thin averaging a thickness of 10 m and are generally subvertical.

7.6.2.2 Alteration and Veins


Gold in the Lynx zone is hosted in vein-type mineralization which consists of quartz-carbonate-pyrite-tourmaline with local visible gold, as discussed above. Locally these veins are associated with haloes of pervasive sericite-pyrite ± silica alteration and pyrite stockworks in the host rocks forming envelopes that reach several tens of metres thick. Fuchsite alteration is common in the Lynx zone and is spatially constrained to nearby gabbro sills.

7.6.2.3 Structure

The deformation zones are characterized by a well-developed foliation defined by the alignment of chlorite and muscovite grains in addition to the flattening of fragments. The strong fabric is observed occurring in two dominant orientations: 1) sub-vertical east-northeast trending and locally overturned and 2) north-northwest trending and dipping moderately towards the east. The north-northwest trending fabric dominates in the fold hinge area of the synform and is interpreted to be overprinted and rotated as it approaches the Bank deformation zone boundary where the fabric trends strongly in an east-northeast direction (T=1; Figure 7.25; Figure 7.14).

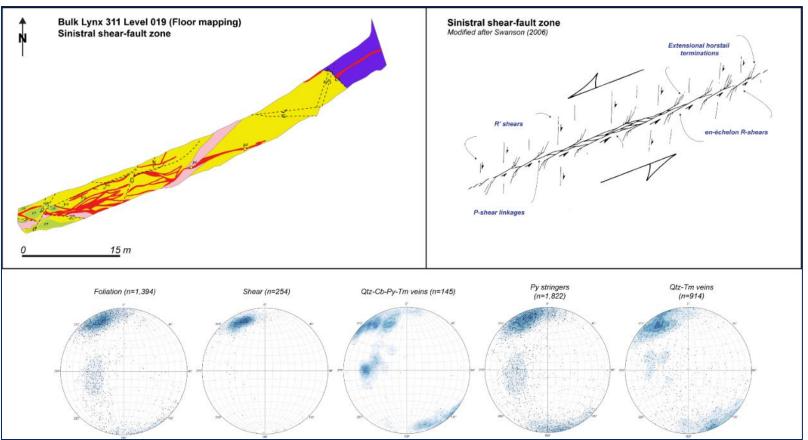
The QFP dikes follow these fabrics and form sigmoidal shapes in the east-northeast deformation zone. Importantly, the main mineralization lenses are controlled and hosted in the brittle-ductile deformation corridor and are parallel to the plunging lineation between the southern portion of the synform and the reverse thrusting Bank fault (T=2; Figure 7.25). The mineralization terminates at the contact of the reverse Bank Fault suggesting that the Bank Fault is a late syn-post mineralization event (T=2; Figure 7.25).

Figure 7.25
Simplified Geological Model of the Lynx Zone According to the Relative Timing of Events (T=1 to T=3)

From current drilling information, the Triple Lynx zone forms conjugate veins relative to the main Lynx corridor. Source: Osisko, 2020

In general, the mineralized veins are oriented east-northeast and are steeply dipping (80°) to the southeast. A second set of veins are oriented north and moderately dipping (50°) to the east. The main veins are dominantly hosted parallel to the main shear fabric (east-northeast), but locally, the veins are observed at an oblique angle forming R shear-fractures. The structural data and underground mapping of veins in the Lynx bulk sample confirm this interpretation of two dominant vein orientations that form a complex vein array (Figure 7.26).

The Triple Lynx mineral zone is similar in terms of rock types and mineralization styles but differs in terms of controlling structures and their orientation. The Triple Lynx mineral zone is hosted in felsic volcanics and QFP dikes (I1P) under a thick gabbro sill 200 to 300 m to the west of the main Lynx zone. The dominant fabric proximal to the mineralized lens is measured at 010° to 310° dipping 50° towards the east-northeast. The mineralized veins proximal to the mineralized lenses are measured at two dominant orientations that are parallel and oblique to the foliation: 010°/50° east and 270° to 310°/80 to 60° northeast (Plan view T=3; Figure 7.25). The continuity of the mineralized lenses is interpreted to form oblique to the dominant fabric as defined by drill intercepts suggesting an east-west mineralization trend.


7.6.2.4 Controls on Gold Mineralization

Mineralization in the Lynx zone occurs as a series of sub-vertical, steeply dipping envelopes, with true widths averaging 2 to 6 m and striking on average east-northeast. Mineralization is associated with vein-type and replacement-type mineralization that are spatially associated at or near geological contacts between I1P QFP intrusions and the host rhyolite or gabbro synvolcanic rocks (e.g., Figure 7.27a) and locally can be hosted along the gabbro-rhyolite contact.

Gold grades can vary from a few parts per million to very high grade (greater than 100 g/t). Locally very high gold grades (bonanza zones) are reported generally in the tens of g/t over several metres in thickness and locally can reach >1 kg/t over intervals less than 1 m, in locally gold-rich quartz-carbonate-pyrite-tourmaline veins (Figure 7.26 and Figure 7.27b). Locally, gold can also be associated with colloform-crustiform quartz-carbonate veins with traces of tourmaline and fuchsite (Figure 7.27d)

The Lynx mineralization is continuous and continues to be intercepted down-plunge of the main Lynx lens (e.g., Lynx 4 and Lynx Extension). In addition to the mineralized extensions of the Lynx zone, a new mineralized zone was discovered in early 2019, referred to as the Triple Lynx zone, and consists of a corridor that includes new high-grade gold zones below the axial plane of the synform under a thick gabbro sill at vertical depths of 650 and 980 m. The mineralization is hosted in the rhyolite unit and high-grade zones are spatially associated with thin gabbro sills beneath the main, thick gabbro sill.

Figure 7.26 Lynx Bulk Sample (Zone 311) Floor Geological Mapping in Comparison to Model En-Échelon Sinistral Shear Fractures

Modified after Swanson (2006). Downhole structural data (stereonets) shows that the gold mineralization-related features are hosted in east-northeast trending, steeply dipping and north-trending moderately dipping shears and foliation. The orientations of the structures are consistent with vein arrays formed in sinistral shear-fault zones. The stereonets were constructed using data from oriented drill core for structural measurements taken in proximity to composites of >3 g/t Au over 2 m in the Lynx 4 mineral zone. Qtz = quartz, Cb = carbonate; Py = pyrite; Tm = tourmaline. Source: Osisko, 2020

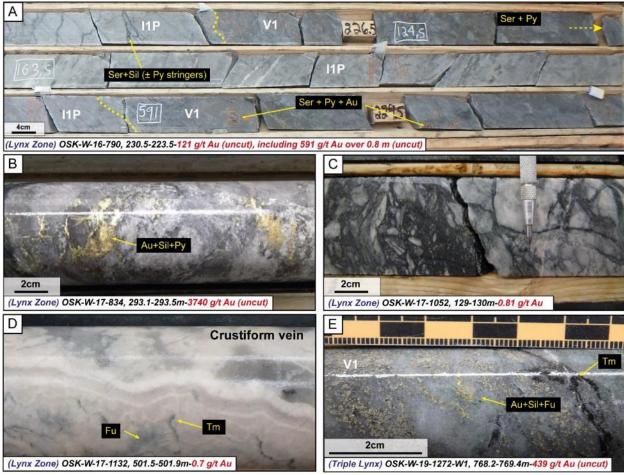


Figure 7.27
Typical Mineralization and Associated Alteration Styles in the Lynx Zone of the Windfall Lake Deposit

A) Strongly silicified and sericitized rhyolite containing abundant pyrite stringers and local specks of gold in contact with porphyry dikes (I1P). B) Bonanza-grade zone associated with quartz-carbonate-pyrite vein-type mineralization. C) Mineralized tourmaline-pyrite hydrothermal breccia. D) Colloform-crustiform carbonate-quartz vein with traces of tourmaline and fuchsite. E) Visible gold mineralization in a silicified and pyritized rhyolite unit associated with fuchsite alteration. Gold grades are cut to 100 g/t unless indicated. Ser = sericite; Sil = silica; Chl = chlorite; Fu = fuchsite; Tm = tourmaline; Au = visible gold; Py = pyrite. Source: Osisko, 2020.

The Triple Lynx mineralization zone is hosted within a broader lower-grade envelope mostly within the rhyolite unit where it is interpreted that the ascending hydrothermal fluids were transiently impeded at the rheological boundary between the more competent rhyolite unit and the more incompetent gabbro sill, producing localized brittle zones and ultimately the deposition of low-grade gold mineralization, a process referred to as transient fluid damming by Hronsky (2019). High-grade gold mineralization is generally associated with strong sericite-pyrite alteration and locally fuchsite when proximal to the gabbros (Figure 7.27e). The gold is hosted in quartz-carbonate-pyrite-tourmaline veins.

The mineralization in the Lynx area is controlled by structural traps and locally by chemical traps. The structural traps are located in deformation zones located along competent I1P intrusions within the deformed host volcanic rocks. The rheological anisotropies are the main channel for deformation and latter gold-rich hydrothermal fluids.

Another effective control on gold mineralization is chemical and this occurs at the contact between felsic volcanic rocks and mafic-ultramafic sills. The geochemical contrast between the Si-rich (rhyolite) and the Fe-Mg-rich (mafic-ultramafic sills) host rock favors destabilisation of gold-rich hydrothermal fluids leading to the formation of high-grade gold zones. A secondary chemical trap is the early carbonate-quartz colloform veins. Locally, gold mineralization is observed to be overprinting these early veins. The veins are commonly found in the gabbro sill and range in width from 0.1 to 2 m and have mapped strike lengths of 150 m. These mineralized early carbonate-quartz veins represent overprinted early structures. Their strong chemical contrast with their mafic host rocks favors the destabilisation of the gold-rich hydrothermal fluid leading to bonanza-style grades.

7.6.3 Zone 27

7.6.3.1 Rock Types and Geometries

Six major lithologies are found in Zone 27: mafic and ultramafic sills (I3A-I4), basalt to andesitic (V2), rhyolite (V1), syn-deformation fragmental and small quartz eye QFP (I2P) and the syn-deformation large quartz eye QFP dikes (I1P). The lower part of the Zone 27 is mainly hosted in the basalt-andesite volcanic rocks (V3-V2) and the upper part is hosted in the rhyolite (V1). Both are in close spatial association with sub-vertical and dismembered QFP dikes of the I1P family. Zone 27 is recognized as a sub-vertical envelope that is oriented east-northeast (060 to 075°N) and plunges 40° towards the southeast. Zone 27 is situated above the Red Dog intrusion.

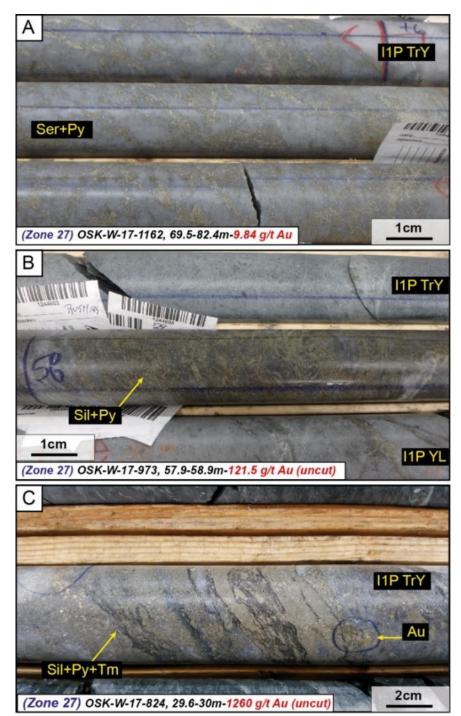
7.6.3.2 Structure

The mineralization model of Zone 27 is associated with the development of the S1 schistosity, followed by a second deformation phase generating intrafolio folding whose axial planes represents D2. When the plastic deformation limit is reached, the short flank of the S fold gives rise to a rupture (D2) which focuses the hydrothermal fluids along sub-vertical structures and whose archetype is Zone 27. Sub-vertical and dismembered syn-deformation QFP dikes

are found within this east-northeast gold mineralization-hosting structure and form sigmoidal shapes. Importantly, the main lenses are controlled and hosted in the brittle-ductile deformation corridor.

7.6.3.3 Alteration

Proximal to the mineralized intervals, the rocks have a phyllic alteration assemblage consisting of sericite > pyrite > silica > chlorite (Figure 7.28a). Less common is fuchsite alteration that typically occurs as a pervasive or spotted alteration and occurs in both mafic and felsic volcanic rocks that are proximal to ultramafic units. The felsic volcanic rocks at the contacts with the QFP dikes also have strong pervasive and/or banded sericite and pervasive or patchy silica alteration. Where alteration is most prevalent there is a strong correlation with potentially economic gold mineralization.


7.6.3.4 Controls on Gold Mineralization

Strong gold mineralization in Zone 27 is recognized as sub-vertical to steeply dipping envelopes that follow a fault zone oriented east-northeast (060 to 075°N), with true widths averaging 2 to 12 m. The main setting for gold mineralization is auriferous pyrite stockwork veinlets that can expand into the dike (Figure 7.28a) or several metres into the host volcanic rocks. Semi-massive pyrite mineralization at the contact between two phases of QFP dikes is also common in Zone 27 (Figure 7.28b). Other observed mineralization styles that contain potentially economic gold grades in Zone 27 include quartz-carbonate-tourmaline ± pyrite laminated veins that are locally brecciated and are dominantly oriented east-northeast and overprinted quartz-carbonate colloform veins that have variable thickness, typically several centimetres (~1% of total gold mineralization). Locally visible gold is observed in areas that are dominated by intense silicification with abundant pyrite and tourmaline mineralization (Figure 7.28c). Gold grades can vary from a few parts per million to very high grade (greater than 100 g/t). Very high gold grades are reported generally in the tens of g/t over a few metres in thickness and locally can reach over 1 kg/t over intervals less than 1 m, in locally intense silicified zones.

The gold mineralization in Zone 27 is controlled by structural traps. The structural traps are in a sub-vertical deformation zone located within deformed host volcanic rocks along competent sub-vertical QFP dikes. The combination of QFP dikes and the more ductile mafic to ultramafic volcanic sequences creates strong rheological and chemical anisotropies that channel gold-rich hydrothermal fluids. However, when the steeply-dipping hosting structure of Zone 27 reaches the relatively flat-lying contact of the rhyolite unit at higher crustal levels, the mineralized lenses becomes less continuous. This suggests that the change in lithology influences the style of the deformation. Consequently, the sub-vertical structure refracts at the volcanic boundary due to competency contrasts giving rise to faults of limited extension and of varying orientations that are circumscribed in the rhyolite. Although the syn-deformation QFP dikes are geometrically and spatially associated with Zone 27, these act mostly as contrasting rheological features that help trap the hydrothermal fluids.

Figure 7.28
Typical Mineralization and Associated Alteration Styles in Zone 27 of the Windfall Lake Deposit

A) Pyrite stringers associated with strong phyllic alteration within a QFP dike (I1P TrY). B) Strong silica alteration associated with gold-bearing pyrite mineralization at the contact between two phases of QFP dikes. C) Visible gold associated with abundant pyrite and tourmaline mineralization in a strongly silica-sericite altered quartz-feldspar porphyry dike. All gold grades (g/t Au) are cut to 100 g/t unless indicated. Sil = silica; Tm = tourmaline; Py = pyrite. Source: Osisko, 2020.

7.6.4 Caribou Zone

7.6.4.1 Rock types and geometries

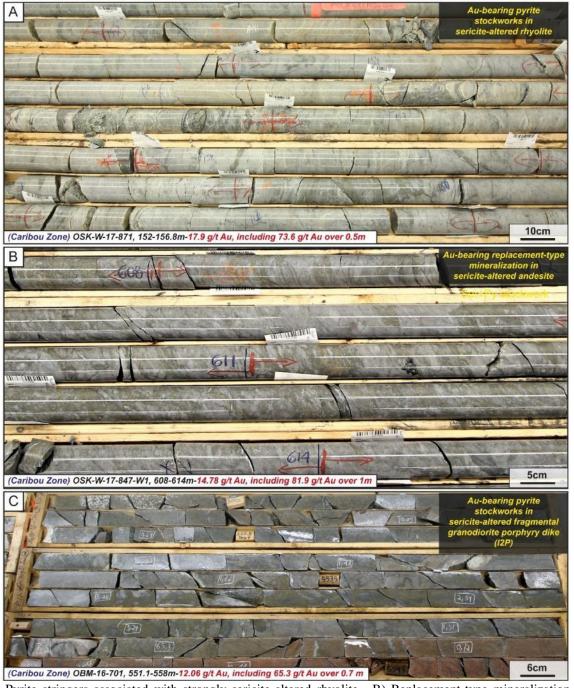
The Caribou zone is situated southeast of Zone 27 and is bounded to the south by the Bank Fault. The majority of the Caribou zone is hosted in the felsic volcanic package (V1) near the surface but also extends within the ultramafic (I4) and mafic-intermediate volcanic units (V3-V2) at depth, in the hangingwall of the Red Dog intrusion. Both the mafic and felsic volcanic packages have been intruded by several QFP dikes of the I1P and I2P families. The Caribou zone is recognized as numerous oblique envelopes that are oriented east-northeast (060 to 075°N) and dipping 60° to the southeast. Similar to Zone 27, the zones in Caribou also plunge at 40°.

7.6.4.2 Structure

The Caribou lenses are at an angle to the D2 axial plane observed in Zone 27. In general, the mineralized lenses in Caribou follow oblique faults that are parallel to the regional foliation and the volcanic contacts. These east-northeast moderately dipping oblique to sub-horizontal faults are dominant in the mafic volcanic packages near the upper contact with the Red Dog unit. The faults were interpreted based on displacement features observed in the competent Red Dog unit and within individual QFP dikes. However, in the upper portion of the Caribou zone, the faults in the rhyolite unit are generally sub-parallel to the orientation of the Bank fault, creating sub-vertical mineralized zones. Several other minor sub-horizontal faults in the rhyolite unit affect the orientation of the mineralized lenses in this area. Locally, the mineralization follows the dike contacts, which are locally vertical or parallel to the foliation.

7.6.4.3 Alteration

Proximal to the mineralized intervals, the rocks have a phyllic alteration assemblage consisting of sericite > pyrite > silica > chlorite. The volcanic rocks and QFP dikes that are spatially close to the mineralized zone contain strong pervasive and/or banded sericite and pervasive or patchy silica alteration (Figure 7.29a-b). There is a strong correlation with potentially economic gold mineralization where silica alteration is most prevalent.


7.6.4.4 Controls on Gold Mineralization

Mineralization in the Caribou zone is recognized as east-northeast striking moderately dipping (50 to 60° southeast) lenses, with true widths averaging 2 to 8 m. Mineralization is found in almost all rock types, however, most of the mineralization is observed in auriferous pyrite stockworks in the rhyolite unit near interpreted faults and near the contacts with QFP dikes (Figure 7.29a). Mineralization is also common in the mafic-intermediate volcanic sequences and is generally observed as semi-massive pyrite zones (replacement-type) associated with strongly sericite altered intervals (Figure 7.29b). Gold-bearing pyrite stockworks are also observed in QFP dikes and can expand into the dikes or several metres into the hanging wall

and footwall rocks (Figure 7.29c). Strong gold mineralization occurs where a sericite-pyrite \pm silica assemblage is visually observed.

Figure 7.29
Typical Mineralization and Alteration Style in the Caribou Zone of the Windfall Lake Deposit

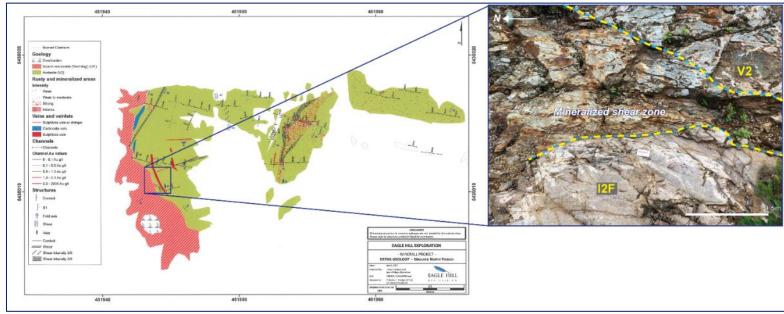
A) Pyrite stringers associated with strongly sericite-altered rhyolite. B) Replacement-type mineralization in sericite-altered andesite. C) Strong sericite alteration associated with gold-bearing pyrite stockwork mineralization at the contact between a fragmental granodiorite porphyry dike (I2P) and a red quartz-monzonite (Red Dog). All gold grades (g/t Au) are cut to 100 g/t, unless indicated. Source: Osisko, 2020.

Very high gold grades are reported from 10 g/t to >100 g/t over thicknesses from 0.3 m to several metres with local visible gold, in locally intense silicified zones. Pyrite dominantly occurs as disseminations and fracture filling veinlets that locally contain significant amounts of tourmaline along with traces of other sulphide species, chiefly chalcopyrite. Gold mineralization associated with pyrite mineralization and intense phyllic alteration makes up greater than 90% of recorded mineralized intervals in the Caribou zone. Similar to Zone 27, the gold mineralization in the Caribou corridor is mainly controlled by faults that refract across rheological boundaries combined with rheologically contrasting rock units within the hosting structures (e.g., volcanic rocks and QFP dikes).

7.6.5 Mallard Zone

7.6.5.1 Rock Types and Geometries

The Mallard mineralized zone is located approximately 250 m northwest of Zone 27 and directly above the Red Dog intrusion. The Mallard zone is hosted within mafic volcanics (V2) spatially associated with a large QFP dike (I1P). The mineralization envelopes strike northnortheast and dip 30° to 40° to the east-southeast (Figure 7.21).


7.6.5.2 Alteration

Proximal to the mineralized intervals, the rocks have a phyllic alteration assemblage consisting of sericite > pyrite > silica > chlorite. Sericite alteration is mainly observed as bleaching in the mineralized mafic host rock, adjacent to the QFP dikes. Distal alteration assemblages consist of a chlorite > sericite assemblage with most of the dikes containing abundant chlorite spots.

7.6.5.3 Controls on Gold Mineralization

Gold mineralization is controlled by east-northeast, moderately dipping (30 to 40°) shear zones that generally mimic the orientation of the Red Dog intrusion. Mineralization is commonly found in bleached mafic volcanics as pyrite stringers and disseminations, marginal to the QFP dike and the Red Dog unit. These shear zones locally transect the voluminous syn-deformation QFP dike, creating dilation zones capable of hosting high-grade gold mineralization, a consequence of the strong rheological contrasts between the volcanic units and the QFP dike. The syn-deformation fragmental QFP (I2P) dike in the Mallard zone is locally mineralized, though the grades are lower than elsewhere on the Windfall Lake property. Most of the mineralization associated with the I2P is found at or near the contacts with the mafic volcanics.

Observations made on drill core are also clearly represented on outcrop. Figure 7.30 illustrates that gold mineralization in the Mallard zone is hosted in shear zones that are oriented parallel to the contact between the Red Dog intrusion and the mafic volcanic unit.

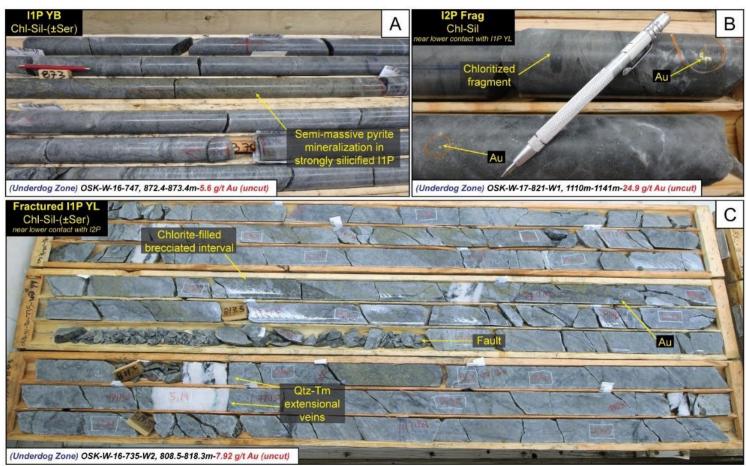
The figure illustrates the setting and orientation of the mineralization in the Mallard zone in comparison to the orientation of the Red Dog unit. The mineralization in the Mallard zone generally trends parallel to the Red Dog unit (north-northeast, moderately dipping towards the east. Source: Osisko, 2020.

7.6.6 Underdog Zone

7.6.6.1 Rock types and geometries

The Underdog mineralized zone is hosted by a large composite felsic porphyritic stock which cross-cuts a moderately dipping felsic (V1) and mafic volcanic (V2) sequence (Figure 7.21). Individual bodies are east-northeast oriented (060 to 075°N). The intrusive stock forms a large ellipsoid with its main axis plunging ~40° toward the east-northeast. The porphyritic stock is composed of three intrusive phases that show good continuity up and down plunge. The outer shell phase forms the large fragmental intrusive body (I2P) with biotitic alteration. The stock is later intruded by two smaller volumetric phases, including the syn-deformation QFP dike with biotitic and sericitic alteration (I1P YB) and smaller syn-deformation QFP dikes with silica-sericite (tourmaline) alteration (I1P YL). The latter dikes are generally restricted within the core of the I1P YB intrusive body and appear to be the latest felsic intrusive phase associated with gold mineralization.

7.6.6.2 Alteration


Two main alteration mineral assemblages affect the rocks of the Underdog mineral zone that locally completely or partially obliterated the original texture of the intrusive rocks. The first is an early and barren potassic alteration represented by fine grained pervasive biotite (phlogopite) and a later phyllic (sericite-silica-pyrite-tourmaline \pm chlorite) alteration assemblage associated with gold mineralization. The potassic alteration affects the majority of the fragmental felsic porphyry (I2P) stock and is locally observed in the large quartz-eye porphyry dikes (I1P YB). The latter phyllic alteration is observed in all the rocks including the syn-deformation QFP (I1P YL) dikes and altered the rocks that were previously altered to biotite.

The presence of sericite and strong silica alteration is typical of the high-grade gold zones intersected in the Underdog mineralized zone. Beyond the sericite dominated halo, the early biotitic alteration retrogrades to a chlorite > sericite + pyrite and is normally barren or weakly and erratically mineralized.

7.6.6.3 Controls on Gold Mineralization

Mineralization in the Underdog zone is recognized as east-northeast oriented, sub-vertical to moderately dipping (60° SE) envelopes, with true widths averaging 2 to 8 m. The contacts of the QFP dikes likely acted as conduits for gold-rich hydrothermal fluids and rheological traps for gold mineralization, an interpretation that is reinforced by the presence of strong sericite (+/-) silica alteration coupled with gold mineralization found proximal to the dike contacts (Figure 7.31a-b). Semi-massive to massive pyrite intervals are also common and are generally associated with high-grade gold mineralization (e.g., Figure 7.31a-b). Sulphide minerals include pyrite \pm sphalerite-chalcopyrite-molybdenite and can occur as disseminations and as stringers typically millimetric in size.

Figure 7.31
Chlorite-Sericite Altered QFP Dikes (I1P YL, I1P YB and I2P Frag) With Localized Zones of Strong Silica Alteration Coupled with Pyrite-Gold Mineralization in the Underdog Mineralized Zone

Most of the mineralization is found near intrusive contacts and also near faults. A) Semi-massive pyrite mineralization associated with strong silica alteration within I1P YB. B) Visible gold in a fragmental intrusion (I2P Frag) near the contact with an I1P YL. C) Zones of semi-massive pyrite mineralization in fractured I1P YL. Faults (broken core), brecciated zones and extensional quartz-tourmaline veins are visible in this gold-rich interval. Chl = chlorite; Sil = silica; Ser = sericite; Py = pyrite; Au = visible gold; Qtz = quartz; Tm = tourmaline. Source: Osisko, 2020.

Although gold mineralization generally follows the main intrusive contacts, some gold-mineralization is not bound by intrusive contacts (e.g. gold mineralization within the I2P stock). Gold mineralization in this case is likely attributed to structural features in the Underdog mineralized zone, which are represented by broken core, brecciated features and abundant extensional quartz-carbonate veins. These features occur near mineralized intervals and suggest a strong correlation between structural features and gold mineralization (Figure 7.31c). Another likely controlling factor for gold mineralization is rheological or structurally-influenced inflexion points in the inner core QFP (I1P YB) stock leading to locally anomalous dilation zones that may have focused the gold-rich hydrothermal fluids in the fragmental granodiorite porphyry stock (I2P).

7.6.7 Zones F-17, F-51, F-11 and Windfall North

The mineralized F-zones are of second order in terms of scale compared to the Lynx and Main zones (e.g., Figure 7.19). The F-zones contain gold mineralization typical of shear zone replacement-type gold mineralization. The F-17 and F-51 zones, located approximately 450 m north-northeast from the Main zone, trend subparallel to the Main zone along a shear zone and dip steeply to the north. Both zones are aligned along the same trend but separated by approximately 800 m. Zones F-17 and F-51 are characterized by multiple syn-deformation QFP dikes that cross-cut the host mafic volcanic rocks within the shear zone. Gold mineralization is spatially restricted to the shear zones. Continuity between the two zones cannot be established from the current drilling data.

Zone F-11 is located 900 m north-northeast of the main deposit near the portal of the underground ramp and forms a narrow corridor of alteration. The mineralization is oriented east-northeast. Significant drilling was undertaken in the F-11 zone in 2019, expanding the width of the mineralized zone. Zone F-11 is characterized by multiple QFP (I1P) dikes crosscutting host mafic volcanic rocks. Gold mineralization is spatially associated with the contacts of the QFP dikes (I1P) and host mafic volcanics in high strain zones. Gold mineralization was observed to occur in two-styles: 1) shear-hosted replacement type and 2) quartz \pm ankerite veinlets. The latter mineralization style being less abundant.

A new mineralized zone (Windfall North) was discovered in a previously unexplored area 350 m north of the Main zone in early 2019 and consists of gold-bearing quartz veins hosted in a silica-carbonate-sericite alteration envelope locally up to 6 m wide (Figure 7.19). The Windfall North zone occurs between 50 and 275 m vertical depth from surface and remains open at depth and along strike, as two sub-parallel zones following the same general trend of the main deposit (zones plunging at 35 to 40° northeast).

7.6.7.1 Alteration

The alteration in the F-zones and in Windfall North appears to be solely constrained within the shear zones. Pervasive sericite-carbonate-fuchsite (\pm) silica alteration is observed in all zones and is restricted to the volcanic sequences and QFP dikes within the shear zones. The few QFP dikes found outside of the shears lack alteration.

7.6.7.2 Controls on Gold Mineralization

In all zones, the gold distribution is constrained to the shear zone suggesting a genetic link between the host structure and the mineralization. In zones characterized by strongly developed foliation, alteration is dominated by sericite-fuchsite-tourmaline-pyrite that can contain up to 15% of white quartz-albite-carbonate veins with 1% to 10% pyrite and traces of sphalerite and chalcopyrite. Visible gold is also frequently present in the veins (typically less than 1 cm-thick). The highest gold grades are associated with brecciated zones where fuchsite and tourmaline are abundant.

8.0 DEPOSIT TYPES

8.1 WINDFALL LAKE PROPERTY

From the early stages of exploration in the Windfall area (1990 to 2015), the recognition of a spatial relationship between gold and porphyries, in respect to the available information, led to the proposal that the Windfall deposit was an intrusion-related gold system. Recent advances highlight an important structural component that challenges this early interpretation. In the following sections, both types will be defined (Intrusion-related and Orogenic gold) in order to contrast their characteristics before closing the section with the description of the Windfall Lake deposit.

Lithogeochemistry, structural data and underground geological mapping, especially within the bulk sample zones, have led to the conclusion that gold mineralization in the Windfall Lake deposit is controlled by, and synchronous with, brittle-ductile deformation zones that are concentrated in areas of rheological anisotropies rather than being genetically derived from the porphyry intrusions (i.e., intrusion-related systems). This new model significantly improved the targeting potential of new mineralized zones at the deposit scale and contributed to the expansion of known mineralized zones.

Many authors have debated the genetic classification of gold deposits due to the complexity of metamorphic terranes (Groves et al., 1998; Hagemann and Cassidy, 2000; Sillitoe et al., 1991, Sillitoe and Thompson, 1998). In the context of the Archean Abitibi greenstone belt, the realm of gold deposits is dominated by two endmembers: the so-called Intrusion-related and the Orogenic gold deposit. The former present three broad variations: 1) intrusion-related gold systems (IRGS; Sillitoe, 1991; Sillitoe and Thompson 1998; Thompson and Newberry 2000; Lang et al., 2000) where gold mineralization is hosted primarily within magnetite-series I-type intrusions; 2) Reduced intrusion-related gold system (RIRGS; Hart, 2007) where gold mineralization is hosted primarily within reduced S-type intrusions and 3) the Syenite-associated (Robert, 2001) where gold is intimately associated with Temiskaming-age monzonitic to syenitic porphyries. For the latter, the term orogenic gold is generally accepted in the literature as the main classification scheme of gold-rich deposits in metamorphic belts.

8.1.1 Intrusion-Related Gold System

In recent years, some workers have suggested that gold deposits that are spatially and temporally associated with granitoid intrusions should be termed intrusion-related gold deposits (IRGD) (Sillitoe, 1991; Sillitoe and Thompson, 1998; Thompson and Newberry, 2000; Lang et al., 2000). IRGD are defined as magmatic-hydrothermal systems where gold mineralization is hosted primarily within magnetite-series I-type intrusions characterized by an Au-Bi-Te \pm W, Mo, As mineral assemblage or in the immediate wall rocks. IRGS deposits are characterized by a range of mineralization styles reflecting proximal to distal environments to the mineralizing pluton that are associated with distinctive mineral assemblages. The mineralogical and spatial evolution of the intrusion-related gold system reflect temperature and hydrothermal fluid variations from the host pluton with an early, high-temperature mineral

assemblage, gradually followed by a late stage low temperature mineral assemblage more distal to the pluton (Thompson et al., 1999; Hart et al., 2000, 2002; Lang and Baker, 2001). Intrusion-hosted mineralization consists predominantly of sheeted veins (Au-Bi-Te \pm W, Mo, As). Mineralization styles in proximal environments occur as breccias, disseminated and fracture-controlled (Au-As \pm Sb) and base metal-rich fissure veins are characteristic of distal environments (Au-As-Sb \pm Ag-Pb-Zn).

IRGDs share many similarities with orogenic gold deposits in terms of mineralogical associations, mineralizing fluids and wall-rock alteration assemblages. However, some genetic ambiguities still prevail for this classification type and are described in detail in Groves et al., (2003). One of the main issues with IRGD is the unequivocal evidence that links the gold mineralization to the source intrusions.

8.1.2 Orogenic Gold Deposits

The term orogenic gold deposits has been used to include all gold-rich deposits, of Precambrian to Phanerozoic age, that have formed from mid- to lower-crustal metamorphic fluids during the late stages of an orogenic cycle (Kerrich and Cassidy, 1994; Groves et al., 1998; Goldfarb et al., 2001, 2005).

These deposits form along convergent margins during the late stages of terrane accretion and mainly develop between major lithological boundaries or strained zones. Greenstone-hosted orogenic gold deposits typically form along first-order crustal-scale fault zones (e.g., Larder Lake-Cadillac Fault Zone). The fault zones act as hydrothermal conduits for channeling deepseated Au-transporting metamorphic fluids to higher crustal-level depths. Although these first-order fault zones are interpreted as being the main loci for hydrothermal fluid channeling, most gold deposits are hosted in second- and third-order faults through seismic pumping and variations in temperature, pH and other physico-chemical processes. This is known as the continuum model and allows for gold deposits to form up to a depth of 15 km (e.g., Colvine, 1989; Groves, 1993; Gebre-Mariam et al., 1995; Groves et al., 1998).

Orogenic deposits are formed over a large time period spanning from the Precambrian to the present (Groves et al., 2005). Most Archean deposits are hosted in deformed volcanic rock-dominated sequences, commonly known as greenstones, that also include subvolcanic intrusions, upper-crustal scale felsic porphyry intrusions, lamprophyre dikes, and with lesser clastic sedimentary rock sequences. Archean Gold deposits also occur in lower-amphibolite facies rocks (e.g. deposits in the Yilgarn craton of Western Australia) and in banded Iron Formation ("BIF")-hosted deposits (e.g. Musselwhite, Ontario). In contrast, orogenic gold deposits in the Phanerozoic are commonly hosted in clastic sedimentary sequences, although some are also hosted in volcanic sequences (Goldfarb and Groves, 2015).

One of the main features of orogenic gold deposits is that the ores develop syn-kinematically with the main deformation event and are usually controlled by faults, shear zones, or folds. The ore forms during peak greenschist facies or syn-peak amphibolite facies metamorphism. Orogenic gold deposits also have a distinct mineral assemblage consisting of $Au-Ag \pm As \pm B$

 \pm Bi \pm Sb \pm Te \pm W and low base metal concentrations. Metal zoning in these deposits is subtle to absent; however, the alteration assemblages are strong and laterally distinct. Wall-rock alteration mainly involves the addition of K, S, CO₂, H₂O, Si, As, Sb, Bi, Te and Au, with variable additions of Na and Ca (Ridley et al., 2000).

The nature and source of the mineralizing fluids are still disputed today as these deposits generally form at depths of up to 15 km and the long fluid flow paths alter the isotopic and fluid inclusion compositions. According to Goldfarb and Groves (2015), a metamorphic fluid appears to explain most orogenic gold deposits and the generation of the low-salinity H-C-O-S-N hydrothermal fluids and gold is a product of the devolatilization associated with the transition between greenschist to amphibolite metamorphism (Powell et al., 1991; Tomkins, 2010). Some argue that the melting of gold-rich protoliths such as the host metavolcanics rocks and/or the metasedimentary rocks may be the source of the gold-rich metamorphic fluids (Phillips and Powell 2010; Large et al., 2011).

8.1.3 Windfall Lake Deposit

The Windfall Lake gold deposit is located in the Urban-Barry greenstone belt and occurs in bimodal volcanic rocks of the Macho Formation. The sequence includes felsic and intermediate volcanics but is dominated by mafic volcanics of tholeitic affinity. Equally occurring in the area are several syn-volcanic gabbroic sills and some rocks of ultramafic affinity (MgO >18%). The volcanic edifice is intruded by a series of younger calc-alkalic quartz-feldspar porphyry (QFP) dikes.

8.1.3.1 Mineralization Style

Two main styles of gold mineralization are observed in the Windfall Lake deposit and include 1) vein-type mineralization and 2) replacement-type mineralization.

Vein-type mineralization commonly occurs in felsic volcanic dominated domains of the deposit and is mostly, but not exclusively, representative of the Lynx zone. Vein-type mineralization consists of grey to translucent colored quartz veins that contain subordinate amounts of ankerite, tourmaline, pyrite and commonly visible gold. The veins have sharp contact margins that are straight or folded. Texturally these veins are massive, but locally can form laminated textures characteristic of fault-fill veins (Robert and Poulsen, 2001). In the veins, sulphide content ranges from 1 to 80 % and is dominated by pyrite with minor concentrations (<1% total sulphide) of chalcopyrite, sphalerite, arsenopyrite, galena, pyrrhotite, tennantite and other Bi-Te minerals as identified by internal petrographic and microanalytical analyses.

Replacement-type mineralization is observed in the Main zone given that this style occurs commonly in the mafic volcanic dominated domains of the deposit. Replacement-type mineralization occurs at the margins of vein-type mineralization or in high strain zones that lack the development of quartz veins. This mineralization style consists of pyrite replacement

zones and stockworks that are associated with a strong pervasive silica-sericite-ankerite \pm tourmaline alteration of the host rock.

The gangue and ore minerals are identical to those mentioned above in the vein-type mineralization. The gold is associated with disseminated pyrite which varies from 1 to 80 % over mineralized intervals. The precipitation of gold in this case is likely the consequence of hydrothermal fluids reacting with high Fe-Mg rich mafic rocks, causing the desulphidization of reduced aqueous sulphur complexes and the subsequent precipitation of gold (Philips and Groves 1983). Gold mineralization hosted in the felsic volcanic rocks is less likely the result of fluid/rock chemical reactions, but is likely controlled by fractures caused by the high competency contrasts between lithological boundaries.

In the Underdog zone, semi-massive to massive pyrite intervals are the most common type of mineralization and are generally associated with high-grade gold mineralization. Mineralization in the Underdog zone generally follows the main intrusive contacts and structural features. Sulphide minerals include dominantly pyrite with minor sphalerite, chalcopyrite and locally very rare molybdenite and can occur as disseminations and as stringers typically millimetric in size. This secondary mineral assemblage (e.g., molybdenite, chalcopyrite, sphalerite, tennantite, galena and sulphosalts) observed at the Windfall Lake deposit is atypical of orogenic style mineralization but could suggest a pre-gold magmatic-hydrothermal input from a currently unknown deep-seated magmatic source.

Hydrothermal brecciated zones, composed predominantly of quartz and tourmaline, are also common and observed in all zones of the Windfall Lake deposit. Both the veins and the quartz-tourmaline breccia are interpreted to be associated with syn-kinematic brittle deformation caused by the competency contrasts between the QFP dikes and the surrounding, less rigid, wall rocks.

8.1.3.2 Alteration

Gold-proximal alteration haloes consist of sericite and silica (± iron-carbonate) associated with strong sulphidation (mainly pyrite) of the immediate vein selvages. Sericite alteration is mainly developed in the Main zone, whereas pervasive silica (± sericite) alteration is mostly observed in the Lynx area. In contrast, hydrothermal alteration more distal to gold mineralization consists mainly of chlorite and locally biotite which is commonly observed at greater vertical depths. These alteration haloes are observed in all rock types of the deposit; however, the felsic volcanic rocks throughout are consistently almost entirely altered to sericite. Additionally, in mineralized zones proximal to ultramafic rocks (e.g., Lynx and Zone 27), fuchsite is also commonly present and is generally associated with high-grade silica-rich veins. Iron-carbonate alteration is dominantly observed in the Lynx area but is present throughout all zones of the deposit and is typical of most orogenic-type deposits.

8.1.3.3 Litho-structural Setting

At the Windfall Lake deposit, four deformation events are observed and are simply denoted as D1 to D4 (Choquette et al., in prep.). These include: 1) early folding and local development of a layer-parallel fabric within the volcanic package (D1), 2) east-northeast trending faults, shear zones and tectonic fabric (D2), 3) late north-trending brittle faulting (D3) and 4) a late tilting event (D4).

The D2 deformation is defined by subvertical faults, shear zones and a weak to strong penetrative fabric that strikes on average east-northeast dipping roughly 80 to 60° southeast and are locally overturned. These structures are observed to cross-cut the axis and limbs of earlier D1 folds (within the volcanic edifice). The shear zones are identified by intense corridors of deformation that are expressed by an intense flattening fabric, and locally, boudinaged and folded veins.

This deformation event is observed to pre-date and post-date gold mineralization as identified from field relationships. In the Lynx area, the D2 brittle-ductile deformation zone that controls the location of the mineralization is compressed between the southern limb of the volcanic synform (D1) to the north and the high-angle reverse-sinistral Bank fault to the south. The Lynx mineralized zones (e.g., Lynx Main and Lynx 4) follow the plunging lineation (35 to 40°) created by the intersection between the volcanic synform and the Bank fault oriented east-northeast ultimately providing a direct spatial correlation between gold mineralization and deposit-scale structural features. In contrast, the Triple Lynx area extends vertically and plunges along the axial plane beneath the volcanic synform. Importantly, the syn-deformation QFP dikes and gold mineralization are dominantly aligned within these structures.

The general morphology of the mineralized bodies in the Windfall Lake deposit is tabular and discordant to the host volcanic units. The zones are moderately plunging 35 to 40° east-northeast. The gold mineralization in the Windfall Lake deposit is hosted in two fabrics, these being the D2 fabric associated with the development of the east-northeast deformation corridors and locally the earlier D1 fabric associated with layer-parallel fabric developed during early folding. The result is two dominant orientations of mineralization which are: 1) striking east-northeast dipping 80 to 60° southeast and locally are overturned and 2) striking north dipping 60 to 30° east. The mineralization is concentrated in these areas as result of rheological anisotropies where competent QFP intrusions cross-cut at high angles the deformed synvolcanic rock types. Locally the controls can vary slightly depending on the location within the deposit and the distance with respect to the Bank deformation zone.

8.1.3.4 Mineralized Zones

Lynx Zone

Orogenic style mineralization is most apparent in the Lynx zone of the Windfall Lake deposit. The Lynx zone is controlled and hosted in the east-northeast oriented brittle-ductile Bank deformation corridor (D2) and individual zones are parallel to the plunging lineation between

the southern portion of the volcanic synform and the Bank deformation zone. The mineralization in the Lynx zone consists of two dominant vein orientations that form a complex anastamosing vein array that is dominantly hosted parallel to the main shear fabric (east-northeast). Gold mineralization in the Triple Lynx zone is located below the volcanic synform and vertically plunges along the axial plane of the synform at the contact between the rhyolite unit and the gabbro sill (komatiitic basalt). Gold mineralization in this area is controlled by ascending hydrothermal fluids focused in deformation zones that are localized in the axial plane of the synform, that were transiently impeded at the rheological boundary between a competent unit (e.g., rhyolite) and a less competent unit (e.g., gabbro sill). Gold mineralization in the Lynx area is synchronous with D2 deformation. Orogenic-style mineralization in the Main zone is controlled by the same structural patterns observed in the Lynx zone, however, QFP dikes in the Main zone are more abundant in the host structural corridors.

Main Zone

In Zone 27, the mineralization is controlled by structural traps in a large sub-vertical deformation zone oriented east-northeast and located within deformed host volcanic rocks along competent sub-vertical QFP dikes. The orientation of the mineralized corridors is also influenced by rheological anisotropies between the host mafic volcanic rocks and the flat-lying rhyolite unit at higher crustal levels. The sub-vertical structure hosting most of the gold mineralization in Zone 27 refracts at the volcanic boundary due to competency contrasts giving rise to faults of limited extension and of varying orientations within the rhyolite unit.

Although the syn-deformation QFP dikes are geometrically and spatially associated with Zone 27, these act mostly as contrasting rheological features that help trap the hydrothermal fluids. Similar to Zone 27, the gold mineralization in the Caribou corridor is mainly controlled by faults that refract across rheological boundaries combined with rheologically contrasting rock units within the gold-hosting structures (e.g., volcanic rocks and QFP dikes).

Gold mineralization in the distal F-17, F-11 and F-51 zones exhibits clear evidence of mesothermal or shear-controlled deposits, although gold still seems to be spatially associated with QFP dikes confined to the shear zone. This style of gold deposit typically exhibits strong relationships with regional arrays of major shear zones. Such deposits are formed by circulation of gold-bearing hydrothermal fluids in structurally-enhanced permeable zones developed in supra-crustal rocks during regional deformation and metamorphism. Gold mineralization in the F-zones is hosted in pyrite veinlets, quartz-ankerite-pyrite veins and silica-tourmaline-pyrite breccias.

Underdog Zone

The Underdog mineralized zone is hosted in a large, composite, felsic porphyritic stock which cross-cuts moderately dipping felsic and mafic volcanic sequences. Mineralization in the Underdog zone generally follows the main intrusive contacts and is recognized as east-northeast oriented, sub-vertical to moderately dipping (60° southeast) mineralized envelopes. The contacts of the QFP dikes likely acted as conduits for gold-rich hydrothermal fluids and

rheological traps for gold mineralization, an interpretation that is reinforced by the presence of strong sericite (+/-) silica alteration coupled with gold mineralization found proximal to the dike contacts.

Although gold mineralization generally follows main intrusive contacts, some gold-mineralization is not bound by intrusive contacts. Gold mineralization in this case is likely attributed to structural features in the Underdog mineralized zone, which are represented by broken core, brecciated features and abundant extensional quartz-carbonate veins. These features occur near mineralized intervals and suggest a strong correlation between structural features and gold mineralization. Another likely controlling factor for gold mineralization is rheological or structurally-influenced inflexion points between intrusions leading to locally anomalous dilation zones that may have focused the gold-rich hydrothermal fluids.

Triple 8

Although the Triple 8 mineralized zone is not considered in this current mineral resource estimate, the controls on the location of gold mineralization further supports the orogenic model for the Windfall Lake deposit. The Triple 8 zone is situated approximately 650 m east in the down-plunge extension of the Underdog mineralized zone. The mineralization in the Triple 8 zone is a sulphide replacement style that consists of up to 30% disseminated pyrite and pyrite stringers with local grains of visible gold that are spread throughout approximately 30 m of drill core. Interestingly, the mineralization is not associated with any intrusive contacts but appears to be controlled by the flow contacts of the andesite host rock or by the occurrence of brittle structural features that allowed gold-bearing hydrothermal fluids to permeate the host rock and deposit the gold.

8.1.3.5 Conclusions

The Windfall Lake deposit is characterized as an orogenic type gold deposit. Gold mineralization is hosted in 1) D2 east-northeast deformation zones that are concentrated in areas of contrasting competencies defined by lithological variations, 2) along geometrical boundaries between flat-lying lithological boundaries and steep gold-bearing structures and 3) along strong chemical boundaries between ultramafic and felsic rock types. The structural style is variable (i.e. brittle or ductile) and is largely dependent on host rock composition (rhyolite-andesite-gabbro-QFP).

Mineralization consists of a network of quartz-carbonate-pyrite-tourmaline veins and an associated silica-sericite-pyrite alteration assemblage. The mineralization and alteration have strike lengths of >2 km that show, as yet, no recognized vertical zoning. Gold mineralization is only locally spatially associated with calc-alkaline QFP dikes but shows no genetic association with them. The QFP intrusions were emplaced mainly as a product of tectonism and deformation and act only as competent host rocks that concentrate deformation and gold-bearing hydrothermal fluids. The strong structural control on gold mineralization supports an orogenic deposit model.

9.0 EXPLORATION

9.1 WINDFALL LAKE AND URBAN-BARRY PROPERTIES

This chapter briefly summarizes the exploration work completed on the Windfall Lake and Urban-Barry properties from April 28, 2015 (the day following the effective date of the Preliminary Economic Assessment report from Tetra Tech in 2015) to January 3, 2020. Drilling campaigns during that period are covered under Chapter 10.

From 2015 to present, Osisko (formerly Oban Mining Corp) was in charge of exploration on the property. A summary of exploration work is described in Table 9 1.

Table 9.1
Summary of Exploration Work Performed at the Windfall Lake Deposit and the Urban-Barry Property

Year	Туре	Survey	Area	Company	Amount	Reference
2015	Geochemistry	Till survey	Urban-Barry belt and Windfall Lake deposit	Osisko Exploration James Bay (Osisko Gold Royalties Ltd.)	777 samples	Gaumond and Trépanier (2015)
2016	Geophysics	Airborne electromagnetic and magnetic survey	Urban-Barry belt	SkyTEM Canada Inc.	9,277 km (200 m spacing)	SkyTEM Canada Inc. (2016)
	Geophysics	Airborne magnetic survey	Urban-Barry belt	Geotech Ltd.	34,575 km (50-100 m spacing)	Geotech Ltd. (2016)
	Geochemistry	Till survey	Windfall Lake deposit	Osisko Exploration James Bay (Osisko)	28 samples	Gaumond et al. (2016)
	Exploration	Prospecting	Windfall Lake area/Urban- Barry belt	Osisko	6 weeks	Sproule and Tuscherer (2016)
	Geophysics	Ground IP survey OreVision®	Project Urban-Barry Canton Buteaux	Abitibi Géophysique Inc.	35.9 km (200 m spacing)	Abitibi Géophysique Inc. (2017b)
2017	Geophysics	Airborne magnetic survey	Urban-Barry belt	Geo Data Solutions GDS Inc.	5,307 km (100 m spacing)	Geo Data Solutions GDS. Inc. (2017)
	Geophysics	Airborne electromagnetic survey (VTEMTM)	Urban-Barry belt	Geotech Ltd.	1,496 km (200 m spacing)	Geotech Ltd. (2017)
	Geophysics	Ground IP survey	Fox deposit area	Abitibi Géophysique Inc.	53.9 km (100 m spacing)	Abitibi Géophysique Inc. (2017c)
	Geochemistry	Whole-rock analysis	Urban-Barry belt	Osisko	447 samples	Girard and Roussel-

Year	Туре	Survey	Area	Company	Amount	Reference
						L'Allier (2018)
	Geochemistry	Till survey	Urban-Barry belt	Osisko	228 samples	Girard and Roussel- L'Allier (2018)
	Geophysics	IP survey	Black Dog deposit	Abitibi Geophysics Inc.	57.6 km	Abitibi Géophysique Inc. (2017a)
	Geophysics	IP survey	Windfall Lake deposit area	ClearView Geophysics Inc.	121 km (50 and 100 m spacing)	ClearView Geophysiques Inc. (2017)
2018	Geochemistry	Till survey	Urban-Barry belt	Osisko	274 samples	Girard and Aumond (2018)
	Geochemistry	Prospection	Urban-Barry belt	Osisko	302 Multi- element analyses and 82 whole-rock analyses	Girard and Aumond (2018)
	Geophysics	IP survey	Urban-Barry Belt (Lacroix Township)	Abitibi Geophysics Inc.	32.125 km (200 m spacing)	Abitibi Geophysics Inc. (2018)
	Geophysics	Hole-to-Hole 3D IP	Windfall Lake deposit area	Abitibi Geophysics	3 DDH	Abitibi Géophysique Inc. (2018b)
2019	Geophysics	(Cont.) Hole- to-Hole 3D IP	Windfall Lake deposit area	Abitibi Geophysics	3 DDH	Abitibi Géophysique Inc. (2018b)
	Geophysics	Optical Televiewer	Windfall Lake deposit area	DGI Geoscience Inc.	3 DDH	N/A
	Geophysics	Vp and SG on core samples (stage 1)	Windfall Lake deposit area	HiSeis Ltd.	838 samples in 5 DDH	Villahermosa (2019)
	Underground	Bulk Samples	Zone 27 Lynx	Osisko	5,500 t (Zone 27) 5,716 t (Lynx 311)	N/A

DDH = diamond drill hole.

9.1.1 2015 Exploration

During the fall of 2015, a total of 1,040 till samples for fine fraction analysis (1 kg) and 907 till samples for gold grain counts and dense fraction analysis (15 kg) were collected throughout the Urban-Barry property. The samples were collected by the staff of Osisko Exploration James Bay who was acting as sub-contractor. Most of the till sample locations are spaced by a 500 m grid. Analysis of the fine and dense fractions was contracted to Actlabs in Ancaster, Ontario. Analysis of the gold grain counts was contracted to Overburden Drilling Management

("ODM") in Ottawa, Ontario. Till samples that returned pristine + modified gold grain counts were interpreted as being samples located closer to their original outcrop (source) and therefore classified as primary targets for follow-up. Several new auriferous targets were later tested by drilling in subsequent drilling campaigns.

9.1.2 2016 Exploration

From January 13th to March 6th, 2016, SkyTEM Canada Inc. carried out a SkyTEM electromagnetic and magnetic survey over the Urban-Barry greenstone belt and the Windfall Lake deposit. A total of 9,277 line-km (722.85 line-km over the Windfall Lake deposit) were surveyed, with traverse line spacing of 200 m and tie line spacing of 2,000 m. Multiple electromagnetic anomalies were delineated and interpreted from this survey throughout the Urban-Barry property. Continuous conductors were also used for interpreting the location of the graphitic units, such as shales and mudstones. Some of these isolated anomalies, when combined with low magnetic anomaly, were tested by drilling in subsequent drilling campaigns (Item 10.2).

From February 8th to April 12th, 2016, Geotech Ltd. carried out a helicopter-borne magnetic survey over the Urban-Barry greenstone belt and included the Windfall Lake deposit. A total of 34,240 line-km, (2,761.97 line-km over the Windfall Lake deposit) of geophysical data were acquired during the survey, with traverse line spacing of 50 m and 100 m and tie line spacing of 500 m.

During the summer of 2016, a second regional till survey was carried out specifically for the Windfall Lake area. A total of 28 till samples for fine fraction analysis (1 kg) and 19 till samples for gold grain counts and heavy mineral concentrate analysis (15 kg) were collected. The samples were taken by Osisko Exploration James Bay's staff at a mean grid spacing of 500 m. Detailed till surveys of 1 kg till samples, spaced on a 100 m grid, were locally performed to define anomalous results obtained during the 2015 till sampling program. Analysis of the fine fraction and the heavy mineral concentrate were contracted to Actlabs in Ancaster, Ontario. Analysis of the gold grain counts were contracted to ODM in Ottawa, Ontario. Results of the 2016 till campaign helped define potential gold anomalous areas on the property following the same interpretation approach as in 2015.

Potential targets recognized from the compilation of till surveys and geophysical surveys carried out at the beginning of that year led to ten days of data compilation and six weeks of prospecting in the Urban-Barry belt during the months of June and July, with the aim of developing new auriferous targets.

9.1.3 2017 Exploration

From December 11th, 2016, to January 2nd, 2017, Geo Data Solutions GDS Inc. ("GDS") performed a digitally-recorded high sensitivity helicopter-borne magnetic survey consisting of 5,307 line-km over six properties in the Urban-Barry area, with traverse line spacing of 100 m and tie line spacing of 1,000 m.

Simultaneously, from the 7th to the 21st of December, 2016 and from the 6th to the 19th of January, 2017, Abitibi Géophysique Inc. conducted an OreVision® induced polarization ("IP") survey covering an area of 35.9 km² in Buteaux Township. The survey covered 18 lines spaced every 200 m with an azimuth of 0° .

From December 17th, 2016 to January 29th, 2017, Geotech Ltd. carried out a helicopter-borne electromagnetic survey (VTEMTMplus) over selected areas in the Urban-Barry belt, with traverse line spacing of 200 m and tie line spacing of 2,000 m.

From the 17th to the 27th of April and from May 23rd to June 5th, 2017, Abitibi Géophysique Inc. performed a ground-based IP survey in the Fox deposit area, northeast of the Windfall Lake deposit, covering 53.9 line-km. The survey consisted of 25 lines with maximum line lengths of 2.4 km and a spacing of 100 m. The IP survey delineated the presence of strong chargeability anomalies that were interpreted as being oriented northeast, possibly related to an important fault/shear zone and supported the mineralization trend intercepted in drilling.

The summer fieldwork program was conducted from June 5th to July 24th, 2017 and consisted of prospecting and till sampling over different sectors of interest in the Urban-Barry property. Prospecting focused on targets mainly determined by high definition airborne magnetic surveys and compilation work including geological, geophysical and geochemical layers. Five sporadic anomalous Au values (0.12 to 0.94 g/t Au) were obtained during the prospecting campaign over several areas. The best gold result obtained in a rock sample was 0.94 g/t Au in a silicified felsic intrusive boulder in the northern part of the Buteux Township.

The till survey (fine fraction analysis, gold grain count and heavy mineral concentrate analysis) was mainly planned on newly acquired claims or to define anomalous till clusters obtained during the 2015 and 2016 till campaigns. The till survey (fine fraction analysis, gold grain count and heavy mineral concentrate analysis) was mainly planned on newly acquired claims or to define anomalous till clusters obtained during the 2015 and 2016 till campaign. A total of 344 outcrops and 49 boulders were examined and from these 447 samples were collected for gold and multi-element analysis and four samples were collected for whole rock analysis. A total of 288 till samples were collected for fine fraction analysis, gold grain count analysis and heavy mineral concentrate analysis (1+15 kg) and 16 till samples were collected only for fine fraction analysis (1 kg). Twenty-one samples, with pristine + modified gold grain counts > 6 (maximum of 27 pristine + modified grain counts), were obtained from the 2017 till campaign. The till anomalies are dispersed over several areas of the Urban-Barry property and were target areas for subsequent drilling campaigns.

From March 30th to April 16th, 2017, Abitibi Géophysique Inc. performed an IP survey on the Black Dog deposit consisting of 57.6 line-km. The line spacing was 100 m with maximum line lengths of 2.4 km. The survey delineated two strong chargeability horizons, both oriented northeast. Both horizons represent the geophysical signatures of the Souart and Rouleau faults. A total of nine geophysical anomalies were interpreted from this survey and subsequent drilling campaigns were planned accordingly (Item 10.2).

From July to October, 2017, ClearView Geophysics Inc. carried out spectral IP/Resistivity surveys at the Windfall Lake Project, covering an area of 121 km² at 50 m to 100 m spacing. Multiple exploration targets within the Windfall Lake deposit were defined according to the anomalies identified during this survey.

9.1.4 2018 Exploration

From February 2nd, 2018 to March 8th, 2018, Abitibi Géophysique Inc. performed a ground IP survey (OreVision®) in the Chanceux area, northeast of the Windfall Lake deposit, covering 32.125 line-km. The survey covered 15 lines with maximum line lengths of 2.7 km and with a spacing of 200 m. Fifteen geophysical anomalies were interpreted from this survey which led to a prospecting and till campaign over the summer.

The summer fieldwork program was conducted from May 31st to August 23rd, 2018 and first consisted of prospecting and till sampling over different sectors of interest in the Urban-Barry property. Prospecting focused on targets determined in early 2018 by a compilation and interpretation of all the data that highlights the geology and structural framework of the property.

A total of 431 outcrops and 40 boulders were described during the 2018 fieldwork campaign on the Urban-Barry property. From these, 302 samples were collected for gold and multielement analysis, 37 samples were collected for noble metals analysis and 82 samples were collected for whole rock analysis, for a grand total of 421 samples. Two anomalous gold values (up to 0.26 g/t Au) were obtained from samples in the Chanceux sector. Additionally, two other anomalous gold values were obtained in sulphide-rich boulders in the eastern part of the Urban-Barry property. Ag, Cu, Pd and Pt anomalies were also found in northern portion of the Urban-Barry claim boundary. The till survey (fine fraction analysis, gold grain count and heavy mineral concentrate analysis) was mainly planned on claims and areas of the property that were not covered by previous till surveys. A total of 274 till samples were collected for fine fraction analysis, gold grain count analysis and heavy mineral concentrate analysis (1+15) kg). Three sectors were highlighted based on pristine + modified gold grain counts above the 95th percentile in the Urban-Barry property (Lacroix, Northeast Great Bear, and Chanceux areas). These areas were targeted by drilling in subsequent drilling campaigns. Secondly, 17 trenches were completed in the Chanceux area, accompanied by mapping and 368.2 m of channel sampling. Strong sericite and ankerite alteration in addition to disseminated pyrite and sparse chalcopyrite veinlets were observed in the trenches. The best interval obtained was 0.54 g/t Au, 6.7 g/t Ag and 6370 ppm Cu over 0.4 m in a chloritized basalt containing quartzcalcite veinlets and 1% chalcopyrite.

From October 4, 2018 to October 14, 2018 and again from January 17th to February 14th 2019, Abitibi Géophysique Inc. conducted a hole-to-hole 3D-IP survey using the three Triple 8 discovery holes (OSK-W-18-1603-W2, OSK-W-18-616-W2 and OSK-W-18-1783). The purpose of the survey was to attempt to outline the chargeability signature of the Triple 8 zone at depth and its lateral extension. The hole-to-hole IP survey is a new geophysical method and

the Windfall Lake deposit provided a good environment to test the integrity and capacity of this method. Multiple drilling targets are being developed to test the results of this survey.

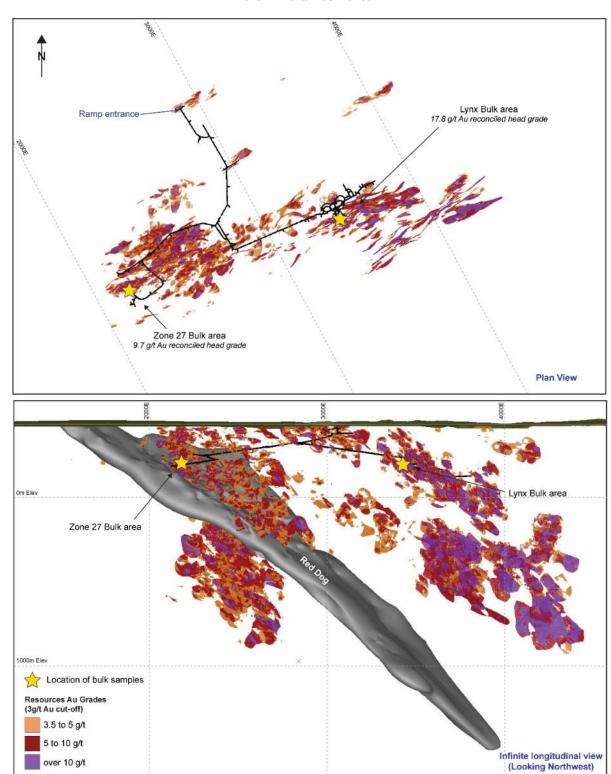
Shortly after the completion of the hole-to-hole 3D-IP survey, Optical Televiewer surveys were performed on the three drill holes used for the hole-to-hole 3D-IP survey (OSK-W-18-1603-W2, OSK-W-18-616-W2 and OSK-W-18-1783) by DGI Geoscience Inc. The downhole Optical Televiewer surveys were performed to verify the structural features of the rock units.

9.1.5 2019 Exploration

In April 2019, HiSeis carried out the first stage of a three-stage approach to determine the suitability of the Windfall Lake Project to modern seismic reflection methods. The first stage involved collecting rock property measurements (velocity Vp and density SG) from a selection of diamond drill holes. Vp and SG were measured on a total of 838 samples across five diamond drill holes covering 4,159.4 m of core representative of the Windfall mineralized geology. The specific gravity results from this preliminary study were added to the total Windfall Lake database since HiSeis used the same method for measuring specific gravity as Osisko.

Finally, Osisko completed two bulk samples from Zone 27 (Main zone) and Lynx zone, two distinct zones that sit 1,300 m apart (Figure 9.1). The Zone 27 bulk sample was carried out between October, 2018 and January, 2019 and was excavated from sill development along 56 m of strike length and benching operations totalling 5,500 t.

A total of 5,716 tonnes was excavated in the Lynx zone bulk sample from June to October, 2019 which included 233 m of drifting along the Lynx 311 zone over three levels at 20 m vertical spacing. A single stope was mined on level 23 using the long hole mining method.


These programs included approximately 4,180 m of ramp development and 106 m of raises which was added to the historical 1,420 m of development from the Noront Ramp built in 2007 to 2008. An extensive sampling and grade control program was completed which included rock saw channel sampling of the development faces, muck samples and test holes. Custom toll processing of both bulk samples was completed at Northern Sun's Redstone Mill, in South Porcupine, Ontario.

Results from the processing of 5,500 tonnes excavated from Zone 27 returned an average grade of 8.53 g/t Au, 26% higher than predicted by infilling drill of the resource block model (see Osisko's press release of June 11, 2019)

Source: Osisko, 2020

Figure 9.1
Location of Bulk Samples (Lynx and Zone 27) and Underground Ramp in Relation to the Mineralized Zones

Results from the processing of 5,716 tonnes excavated from the Lynx bulk sample returned an average grade of 17.8 g/t Au. The bulk sample average grade was 89% higher than the 9.40 g/t Au predicted by infill drilling on the Lynx Zone 311 resource block model wireframe (see Osisko's press release of December 11, 2019).

9.2 OBSERVATIONS

The surface prospecting and geophysics described above were used to target early drill campaigns. They were not used in the estimation of mineral resources presented herein.

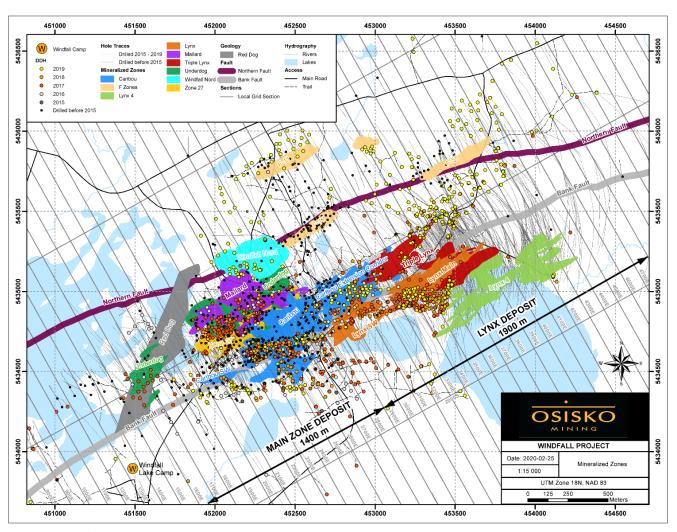
10.0 DRILLING

Information reported in this chapter was obtained from Osisko's exploration team during the site visit and through data exchanges. Osisko produced employee's reference documents for logging and sampling procedures.

10.1 WINDFALL LAKE PROJECT

This section summarizes Osisko's drilling program from October 19, 2015 to January 3, 2020 on the Windfall Lake deposit. Osisko's drilling constitutes a significant majority of the drilling completed at the project. Earlier drilling by previous operators can be found in Section 6, History.

Drilling was carried out by Rouillier Drilling, Orbit Garant-Myuka Drilling and Major Drilling. The number of rigs employed has varied from 1 to 24. Most diamond drilling recovered NQ-sized (47.6 mm) core, with down hole orientation surveys performed by the drilling companies using Reflex tools (Reflex EZ-SHOTTM and Reflex EZ-GYROTM) that simultaneously measures azimuth, inclination and total magnetic field and magnetic dip (only in EZ-SHOT). Oban/Osisko used the ''CorientR'' tool or ''Reflex Act III RD'' system to orient the core and to measure structural features.


10.1.1 Overview

Since 2015, a total of 978,768 of surface exploration drilling has been completed by Osisko (formerly Oban Mining Corp.) (Figure 10.1). In this figure, historical drill holes are also illustrated in black.

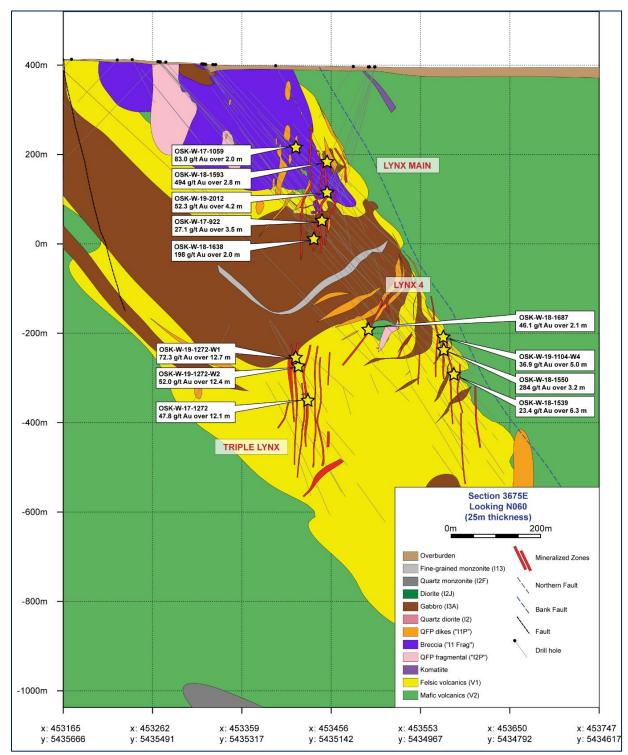
Details of the various drilling programs are summarized in Table 10.1. Drilling also included 4,536.5 m for metallurgical studies. The distribution and orientation of drill holes in representative cross-sections in the Lynx zone and the Main zone are illustrated in Figure 10.2 and Figure 10.3, respectively.

Drilling performed by Osisko since 2015 significantly expanded known mineralized corridors in the Underdog zone and also in the Main area in zones such as Caribou, Zone 27, Mallard, and certain zones in the F-Zones (e.g., F-51). Moreover, significant new mineralized zones were discovered from the continuous drilling on the deposit. These include the Lynx Main, Triple Lynx, Lynx Extension, Lynx, HW, Lynx SW, Triple 8 and Windfall North zones. These newly discovered zones, excluding the Triple 8 zone, substantially contributed to the increase of the gold content of the Windfall Lake deposit described in this current mineral resource estimate. The drilling undertaken since 2015 now brings the mineralization footprint of the deposit to a vertical depth of 1,800 m, to more than 1,700 m laterally, and up to 3,000 m in strike length.

Figure 10.1 Windfall Lake Property Map Showing Drill Holes Completed From 2015 to January 3, 2020 by Oban Mineral Corporation and Osisko. Historical Drill Holes are also Illustrated in Black

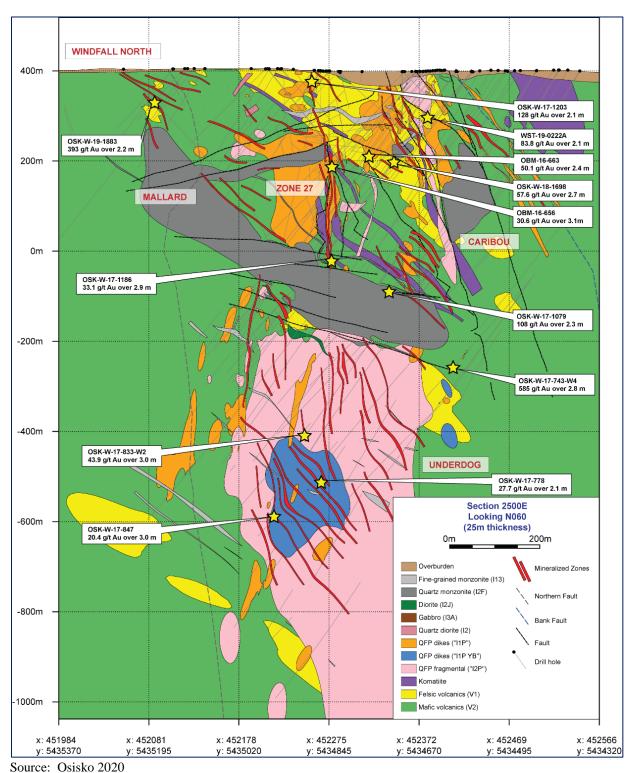
Source: Osisko 2020

Table 10.1 Drill Hole Summary and Number of Assay and Whole-Rock Geochemistry Samples Delivered from 2015 to January 3, 2020 (Osisko)


Year	Туре	Count	Length (m)	Assay Sample Count (2)
	DDH	17	9,473	
2015	Wedge	0	0	
2015	Extension	0 (1)	189	
	Total	17	9,662	4,785
	DDH	203	91,495	
2016	Wedge	19	12,819	
2010	Extension	5 (1)	1,744	
	Total	227	106,058	84,086
	DDH	674	323,941	
2017	Wedge	93	49,859	
2017	Extension	31 (1)	11,297	
	Total	798	385,096	263,615
	DDH	404	138,869	
	Wst (3)	43	5,181	
2018	Wedge	66	27,993	
	Extension	8 (1)	7,714	
	Total	521	179,756	199,202
	DDH	417	163,342	
	Wst (3)	259	32,098	
2019	Wedge	176	86,093	
	Extension	0 (1)	16,663	
	Total	852	298,196	176,927
Total (2015 to 2019)		2,415	978,768	728,615

Notes:

- (1) Count of only newly created entries in the Windfall database.
- (2) Count by analysis date.
- (3) Underground drilling.


Figure 10.2
Representative Geological Cross-Section Showing the Distribution of Drill Hole Spacing and Orientation as well as Significant Assay Results in the Lynx Zone (Section 3675E).

Source: Osisko 2020

Figure 10.3
Representative Geological Cross-Section Showing the Distribution of Drill Hole Spacing and Orientation, as well as Significant Assay Results in the Main Zone (Section 2500E).

10.1.2 Drilling Methods

Most drilling completed at Windfall consists of wireline diamond drilling recovering NQ size (47.6 mm) drill core. Metallurgical drilling used HQ (96 mm) and PQ sized (122.6 mm) core. Directional core drilling (Devico©) used AQ sized core (36.4 mm).

Directional core drilling has been used on the Windfall Lake Project since June, 2016 using Devico©'s tool DeviDrillTM. The DeviDrillTM allows controlled deviation of the drill hole path by making multiple branches from a mother-hole, reaching targets within a one percent error. Field technicians from a qualified license user, Tech Directional Services Inc., are on site on a full-time basis to control the directional core drilling.

Drill hole deviation surveying at the Windfall Lake Project from 2015 to 2017 included singleshots and multishots and is achieved by using the electronic down hole instrument Reflex EZ-SHOTTM. Singleshot measurements are taken every 30 m during drilling. Multishots are taken once the drill hole is completed and measurements are taken every 3 m up hole. From March to December, 2017 the North Seeking Champ GyroTM system provided by TMC Géophysique was used for deviation surveying in instances where the host rock was magnetic. Since January, 2018 the Reflex EZ-GYROTM was used on all drill rigs. Measurements are taken every 9 m down hole.

The Reflex TN14 GyrocompassTM has been used to align the drill rigs to the correct azimuth and dip since May, 2016. Prior to this date, the Azimuth Pointing System ("APS") was used to align the drill rigs. Drill hole coordinates are entered directly into the wireless handheld unit on site showing the live orientation of the drill rig.

Most drill hole casings remain anchored in bedrock to allow for future surveying, drill hole lengthening or cementation. A red metallic cap flag with the drill hole name was put on the remaining casing.

All drill core is stored in the yard of the core shack area at the Windfall Lake camp. Each core box is identified with an aluminum tag indicating the drill hole name, box number and from-and to metres of the core interval located inside the box.

10.1.3 Field Procedures

The drill core is placed into wooden core boxes at the drill site. Blocks are used to separate the core in the box at the beginning and end of each drill run. The core boxes are labelled and closed with transparent tape by the drillers. The drill core is brought back to the core shacks at the end of every shift from each drill site by drill contractor personnel. Core boxes are placed on individually labelled trestles in front of every core shack. Geo-technicians have the responsibility to place the core boxes in order and transport them into the core shacks and onto the core logging tables.

When working with the "CorientR" tool or the "Reflex Act III RD" system, which provide an oriented drill core reference, the drill core received from the drill at the core logging facility is aligned according to the driller's marks drawn at the end of each 3 m interval drilled, to indicate the lower portion of the drill hole. A blue line joining the marks is then traced by a core handling technician, indicating the bottom of the core. The core is then put back into the box oriented with the blue line in the upright (top) position.

10.1.4 Geological Logging

Once geotechnical measurements are completed and the core is oriented, the drill core is logged by a geologist or an engineer recording a detailed description of the lithologies, structures, mineralization, alteration and veining directly into the Datamine software (DH Logger). Qualified professionals under the employ of Osisko are members in good standing of the Ordre des Géologues du Québec (OGQ) or Ordre des Ingénieurs du Québec (OIQ).

Structures are recorded using the Reflex IQ-LoggerTM electronic instrument. Rock units are also occasionally identified using a hand-held X-Ray fluorescent ("XRF") device (see Section 7.4). Handheld Vanta X-ray fluorescence energy dispersive spectrometer, generally known as a XRF analyzer, is routinely used at Windfall Lake to discriminate between different lithologies, including porphyry dikes, felsic volcanics and intermediate-mafic rocks. A semi-quantitative analysis of a rock sample of 15 to 20 seconds is generally sufficient to determine the geochemical signature of a rock and its respective rock unit. However, for an even more reliable result, a 40 second analysis is recommended. The values (e.g., TiO₂, Zr, Y and Nb) can be written on the core and are documented within the drill log.

After completion of the core description, the geologist or engineer is responsible for marking the samples for assay on the core using a red water-proof marker. Photos of the core for the entire drill hole length are then taken with the sample tags (four boxes photographed per picture).

Once the core samples have been cut, the boxes containing the remaining core halves are placed in an outside permanent core rack.

10.1.5 Core Recovery

Core recovery and rock quality designation ("RQD") are measured and calculated for each core box and recorded in the drill log. Rock units intersected by drilling are generally solid, yielding an effective core recovery of 99.92%.

10.1.6 Collar Surveys

From 2015 to spring 2018, surface drill hole collars were spotted in the field using an APS instrument. Since the spring of 2018, surface drill hole collars are spotted using a high-precision Leica GPS (precision of ± 0.05 m). Down hole surveying has been performed routinely on every drill hole. The coordinate system used is UTM NAD 83 Zone 18.

After the completion of the drill hole, the collars are surveyed by Corriveau J. L. & Assoc. Inc. (from Val d'Or) using a high-precision Leica GPS (precision of ± 0.05 m). An in-house high-precision GPS system is also occasionally used by Osisko's geotechnicians for surveying completed drill holes. The final surveyed coordinates are imported into the database.

Underground drill hole collars are surveyed using a Leica TS16 total station. The coordinates are measured from a network of reference points that cover all of the underground development. The reference network begins at the portal entrance with three permanent stations that where installed by Corriveau J. L. & Assoc. Inc. (JLC-2017-1, JLC-2017-2 and JLC-2017-3) using the UTM NAD 83, Zone 18 system. The accuracy of measurements decreases by ± 0.001 m every 100 m underground.

10.1.7 Drill Hole Validation

DH Logger, from the Fusion suite of software supplied by DATAMINE, is used to plan, log, view and manage down hole-related data. In association with DH Logger, Fusion is a central database and a management system for geological, geochemical, geotechnical, geophysical, assay, QA/QC and any field data.

The logging method at the Windfall Lake Project utilizes a compilation of best logging practices employed in exploration. The method preserves the integrity of raw results and meets all the current requirements for data capture and management according to mining industry best practices.

10.1.8 Final Validation Rules

Once the logging of a drill hole is complete a supervisor validates the data using a drilling closure form. Once cleared, the data is considered finalized and signed off by the supervisor.

10.1.9 Specific Gravity

Specific gravity ("SG") is measured on a selection of samples mostly within the mineralized zones. For the resource estimate, the database contains 154,479 samples with SG values for 919,770 assay samples. Four different protocols have been used:

10.1.9.1 SG_Unity_GRA08 - ALS (490 analyses)

This is the method used by ALS for intact core samples. The core section is weighed dry then weighed while it is suspended in water. The specific gravity is calculated from the following equation:

SG = [sample weight (g) / (dry weight (g) - wet weight (g))]

10.1.9.2 SG_Unity_GRA08b - ALS (152,295 analyses)

This method is used by ALS for measuring pulverized material. A prepared sample (3.0 g) is weighed into an empty pycnometer. The pycnometer is filled with a solvent (methanol) and then weighed. From the weight of the sample and the weight of the solvent displaced by the sample, the specific gravity is calculated according to the equation below.

SG = [sample weight (g) / weight of solvent displaced (g)] x specific gravity of solvent

10.1.9.3 Density_sg_SPG04 - Bureau Veritas (58 analyses)

This method is used by Bureau Veritas on pulps or rock chips using a gas pycnometer.

10.1.9.4 SG_Unity_ELEDEN - Osisko (3,124 analyses)

This is an in-house protocol using an electronic densimeter MD-300S. The process is similar to SG_Unity_GRA08 from ALS. The full detailed protocol is available (Protocole_densité_windfall_28-01-2018.docx). Of these 3,124 analyses, 1,146 analyses can be compared with pycnometer data (SG_Unity_GRA08b) from the laboratory for validation. Like the SG_Unity_GRA08, the electronic densimeter used the following standard calculation equation:

SG = [sample weight (g) / (dry weight (g) - wet weight (g))]

10.1.10 Drill Spacing

10.1.10.1 Surface Drilling

Drilling has been conducted over the Windfall deposit on an area 3,500 m in length by 1,800 m in width. The drilling pattern was designed to sample the deposit orthogonal to the interpreted strike and dip of the gold mineralization. The majority of the drill holes were drilled with a dip varying between -45° to -70° .

All core holes were drilled on sections spaced approximately 25 m apart in most parts of the deposit. Drill hole spacing of 25 to 30 m by 25 to 30 m occurs over the bulk of the orebody to a depth of approximately 800 m below surface. Before 2017, the spacing on Zone 27 and Caribou was 30 m by 30 m. In 2017 the spacing was then reduced to 25 m by 25 m on Lynx and in further drilling on Caribou and Zone 27.

Below 800 m, down to approximately 1,200 m, and in the down plunge-extension of zones, drill hole spacing of 50 m by 50 m is usually observed. The Underdog, Lynx 4, Triple Lynx, Triple 8, F-zones and Mallard zones are mostly drilled with 50 m by 50 m spacing. For definition drilling, drill hole spacing is generally 15 m by 15 m inside the existing 30 m drill spacing mostly conducted on Zone 27. An area of approximately 200 m by 200 m has been infilled with 15 m spacing. Presently, the drill spacing in the Lynx zone is 12.5 m by 12.5 m.

10.1.10.2 Underground Drilling

Underground drilling has been conducted in Zone 27, Caribou and Lynx zones with 1 to 2 rigs since the fall of 2018. The majority of the drill holes were drilled with a dip varying between -50° and +50° and lengths varying between 15 m and 390 m. The spacing used for underground core holes is 25 m by 25 m and 12.5 m by 12.5 m. Spacing of 6 m by 6 m was used for core holes aimed at defining the precise areas of the bulk samples (Zone 27 and Lynx). Drill stations spaced approximately every 100 m to 150 m were used for collars. Systematic cementing of core holes was conducted at the end of work at each drill station.

Underground drilling was mostly used for definition drilling and for targeting sectors unattainable from surface due to terrain constraints (lakes, swamps, etc.).

10.2 EXPLORATION DRILLING, URBAN-BARRY PROPERTY

Drilling performed by Osisko since 2016, over regional targets, led to the discovery of new mineralized zones in the Urban-Barry area, including the Black Dog (discovery hole OSK-BD-16-002 intersected 3.42 g/t Au over 32.1 m including 6.14 g/t Au over 14.4 m), the Fox (discovery hole OSX-W-16-717 intersected 3.22 g/t Au over 11.6 m) and the Fox SW (discovery hole OSK-UB-19-132 returned 16.7 g/t Au over 2.8 m) showings. These represent the most significant discoveries outside of the Windfall deposit realized by Osisko since 2016.

The Black Dog showing occurs in the southern block of the Urban-Barry property and is defined for approximately 1,200 m along a northeast-trending linear magnetic feature. The mineralization in the Fox zone is followed over approximately 200 m in an east-northeast orientated corridor where gold mineralization is spatially associated with porphyry dike contacts with volcanic rocks. The mineralization occurs in both the hangingwall and the footwall of the dikes. The Fox SW showing is hosted in an east-north-east corridor over 6 km that consists of altered porphyry dikes hosted in mafic volcanics. Gold mineralization in the Fox SW showing is associated with hematite altered felsic intrusions and occurs in both the hangingwall and footwall of the intrusions. The mineralization style in this new zone occurs along intrusive porphyry contacts with volcanic rocks, similar to the mineralization style in the initial 2016 Fox discovery. Regional exploration was successful in demonstrating that gold mineralization occurs outside of the footprint of the Windfall deposit. In the case of the Fox and Fox SW showings, the gold mineralizing event is possibly related to the same gold event that formed the Windfall deposit.

The 2016 to 2017 Urban-Barry property drilling program was conducted from November, 2016 to June, 2017 over different sectors of interest in the area. In 2016, drilling was carried out by Rouillier Drilling and in 2017, drilling was carried out by both Rouillier Drilling and Orbit Garant.

A total of 94 drill holes were drilled for a total of 38,244.6 m. The first part of the program started in the eastern and southern part of the Urban-Barry property on the E1, E2, E7 and

Black Dog areas, which were highlighted during the summer of 2016 prospecting campaign. The second part of the program focused on properties in the vicinity, but outside, of the Windfall Lake deposit footprint and included Fox, Bobtar and NE Windfall Lake areas. The location of drill holes for the entire Urban-Barry drilling program is illustrated in Figure 10.4.

The 2018 Urban-Barry drilling program was conducted from January to May. A total of 24 drill holes, representing 7,302.4 m of drill core, were completed in three sectors, Great Bear (formerly known as Mongodon), Black Dog and Hébert Centre areas (Figure 10.4). In 2018, an agreement was signed between Osisko and Osisko Metals Inc. to create a joint venture for base metal and volcanogenic massive sulphide exploration in the Urban-Barry property (Urban-Barry Base Metals). Work conducted between May, 2018 and June, 2018 by Osisko included eight exploration drill holes, generally in the eastern portion of the claim boundaries (Figure 10.4). A total of 1,742.8 m were drilled.

The 2019 Urban-Barry drilling program was conducted from January to August over various sectors of interest in the Urban-Barry area. Drilling was carried out by Orbit Garant. A total of 69 drill holes were drilled for a total of 16,234 m. Six main areas were visited in the first part of the program, namely Thubière, Chanceux, Rouleau, Fox and Macho (Figure 10.4). The second part of the program focused on the newly named Fox West area located in the Macho block.

No drilling from the Urban-Barry property was used in the resource estimate presented in this report. There are no current mineral resources on the property.

10.3 CONCLUSIONS

The QP has examined the drilling and logging procedures used and described above. In the opinion of the QP, Osisko personnel have used industry standard best practices in the collection, handling and management of drill core and assay samples.

The QP is not aware of any drilling, sampling, or recovery factors that could materially impact the accuracy and reliability of the results presented in this report.

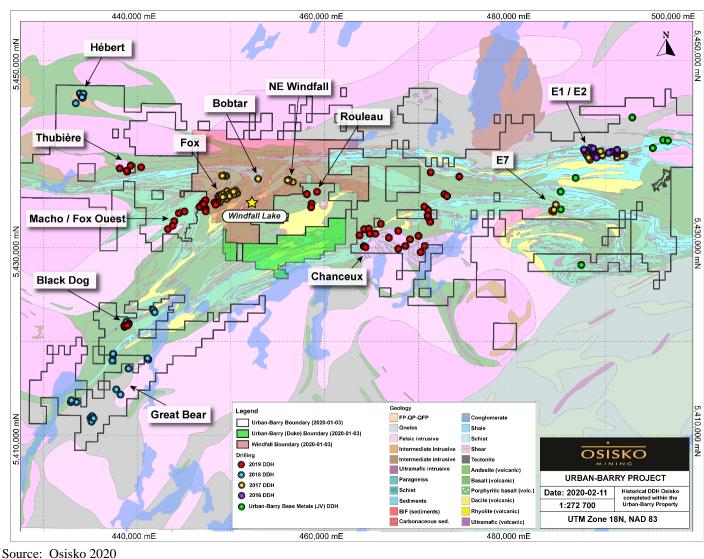


Figure 10.4 Exploration Drilling (2016-2019) and the Location of the Informal Sectors in the Urban-Barry Property

11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

11.1 WINDFALL LAKE AND URBAN-BARRY PROPERTIES

The following sections describe Osisko's sample preparation, analysis and security procedures for the diamond drilling programs at the Windfall Lake Project. Micon did not conduct any independent drilling or sampling on the Windfall Lake property. Data pertaining to sampling, analytical, security and quality assurance-quality control ("QA/QC") protocols were supplied by Osisko.

The information included in this chapter relates to samples taken from drilling campaigns for which the assay certificates were received after the 2014 mineral resource estimate database close-out date of July 28, 2014 and before the Osisko database close-out date of January 3, 2020.

11.1.1 Laboratories Accreditation and Certification

Osisko used ALS Minerals ("ALS") in Val-d'Or and in Lebel-sur-Quévillon, Québec, Canada as their primary sample preparation laboratories. ALS in Lebel-sur-Quévillon is only used for sample preparation and ALS in Val d'Or is the primary analytical (assay) laboratory. Depending on capacity, at the discretion of ALS Val-d'Or, samples would be sent to ALS Vancouver for analysis. ALS is independent of Osisko. Both ALS laboratories are currently accredited by the Standards Council of Canada (accredited laboratory number 689) to ISO 17025 for the analysis of gold by lead collection fire assay with atomic absorption spectrometry finish as well as the determination of gold by lead collection fire assay with gravimetric finish. The management system of the ALS Minerals Group laboratories is accredited to the International Organization for Standardization (ISO) 9001:2008 by QMI Management Systems.

As a secondary laboratory, Osisko sends shipments to the Bureau Veritas Commodities Canada Ltd. ("BV") in Timmins, Ontario, Canada where samples are processed and analyzed. BV is independent of Osisko. The laboratory is registered under the corporate ISO 9001 registration. The Timmins laboratory is in process of seeking ISO 17025 accreditation for fire assay procedures but is listed on the Vancouver laboratory's ISO 17025 scope of accreditation (accredited laboratory number 720) as a qualified sample preparation facility. Off-site sample preparation and analytical procedures at Timmins follow those of Vancouver and are monitored regularly for QA/QC practices. The management systems of all BV sites are registered with the ISO 9001 Model for Quality Assurance and compliant with ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laboratories.

11.1.2 Historical Sampling

The drill hole sampling preparation, analyses and security procedures utilized by Kerr Addison, DeMontigny, Alto and Inmet between 1986 and 1999 are unknown. Micon assumes

that the exploration activities conducted by these companies were in accordance with prevailing industry standards at the time.

The drill hole sampling preparation, analyses and security procedures from 2003 to 2014 are presented in the Tetra Tech mineral resource estimate 2015 (McLaughlin et al., 2015). The vast majority of the assays used in the mineral resource estimate were from core drilled by Osisko (Section 10.1.1 and 14.2)

11.1.3 Osisko Core Handling, Sampling and Security

Routine sampling of the diamond drill core for gold analysis was accomplished by adhering to previously established sampling guidelines. This procedure ensures the quality and accurate representation of the material sampled. The remaining split core is archived for future reference.

Preparation of designated drill core intervals to be sampled was completed using the following method:

- Drill core received from the drill at the core logging facility (core shack) was pieced back into continuous intervals to minimize any spaces between individual pieces of core and to check for incorrect placement of the core by the drillers.
- When working with the CorientR tool or the Reflex Act III RD system, which provided an oriented drill core reference, the drill core received from the drill at the logging facility was aligned according to the driller's marks drawn at the end of each 3 m interval drilled, to indicate lower portion of the borehole. A blue line joining the marks was then traced by a core handling technician, indicating the bottom of the core. The core was put back into the box oriented with the blue line in the upright (top) position.
- After alignment, rotation and records made of the geotechnical measurements, (recovery and RQD), the core was marked (with a china pencil) with 1 m hole-depth intervals. This annotation allowed for better depth precision between the drill-run meterage block markers inserted every 3 m run by the drillers.
- Intervals of core slated for sampling were marked with a red china pencil perpendicular to the core axis showing arrows to indicate the "from" and "to" range of each sample. The mark-ups were designed to assist the core cutters to saw each core sample between the "from-to" arrows and solid red lines marking the end/beginning of each sample.
- Individual core samples are typically taken at 1 m intervals with minimum and maximum sample intervals from 0.3 m to 1.5 m. Collecting samples less than 1 m in length is discouraged unless it is done to respect lithological and/or mineralization contacts. Samples do not cross a lithological contact (except for minor veins and dikes less than 0.3 m). To minimize sample errors and simplify the entire sampling process, intervals are generally started and ended on a whole metre. Where sampled intervals

fall between metre marks, subsequent samples are lengthened or shortened to bring the sequence in line with whole-number metre depths. Exceptions to the 1 m material occur to better represent the geology and or gold grade of the sample interval.

- Books containing numerical sequences of 50 pre-labeled, triplicate, water-durable sample tags are used; one to tag the core sample; a second to indicate the position of the sample in the core box; and the third remained with the book as an archival record of the samples particulars such as sample ID, drill hole ID, sample interval from-to hole-depths, rock type and a brief sample description. From each sample sheet consisting of three perforated identical tags, the last two from the right (the third remaining in the sample book) were separated (torn) from the page and tucked along the side/under the core at the beginning of each sample in such a way that the tag numbers could be read by the core cutter.
- Digital photographs of the marked and tagged core boxes are taken for archival purposes.
- Blanks and standards are inserted as the sampling progresses to avoid mix-ups.
- Drill core, marked and tagged for sampling, is moved to the sawing room to be cut using electric motorized, diamond impregnated bladed rock saws. The core saw operator(s) cuts and samples the core, one sample at a time, starting with the first sample tagged and follows through to the next sample tagged in sequence until the end of the batch.
- Unbiased sampling is managed by consistent selection of the same side from each halved piece of cut core. The sampled core pieces pertaining to a given sample are placed in a heavy-duty transparent plastic bag and the remaining pieces are placed back into their original position in the core box. When working with the CorientR tool or the Reflex Act III RD system, the half containing the reference blue line is selected to be archived for future reference, the other half is put into the sample bag. Broken core (fault-gouge, fault-breccia) is sampled by scooping the right half into a sample bag and by leaving the remaining half in the core box. The paired sample tags are then torn with one tag stapled to the core box at the start of its sample interval and the other tag placed into the sample bag with the core sample.
- Sample bags are also labeled with the sample number written with black permanent marker and the open tops sealed with plastic zip tie (one direction).
- For blank samples, the core cutter(s) is/are required to scoop approximately 1 to 2 kg of gold-barren limestone gravel (assays <0.005 ppm gold) into a plastic sample bag as per the procedure outlined in the previous step.
- Certified gold reference materials are assigned by the core-logging geologist and the identification code verified by the core-cutter(s). One or two pouches of standard

material is placed into plastic sample bag. The name of the standard written on the pouch is erased by the core-cutter(s) before putting it into the bag in order to prevent identification by the assay laboratory. This is to prevent the assay laboratory from identifying the particular standard and knowing the correct result.

- Numerical sequences of five samples, starting with the first sample, are packed into large rice bags and the open tops sealed with plastic zip ties (one direction). The sample number range and incremental bag number are written on the rice bag and this information is recorded on a rice-bag sample sheet. This operation is completed by the core cutting staff.
- All samples from a given drill hole are packaged in batches of 20 samples. Batches are generated for each drill hole and submitted to the ALS laboratory in Lebel-sur-Quévillon (primary) and/or Val d'Or (secondary).
- A copy of the Sample Submittal Form and associated rice bag sample sheet are sent by email to the laboratory. When a total of 100 samples (20 rice bags) are ready, they are packed and sent to the laboratory. The samples are then transported by an Osisko exclusive transporter and delivered directly to the ALS laboratory facility in Val-d'Or and/or Lebel-sur-Quévillon. Visual low-grade samples are delivered directly to BV shipment receiving in Timmins. Transportation occurs daily.

11.1.4 Lithogeochemical Samples Procedure

In addition to routine samples selected for gold analysis, an ancillary batch of representative samples were tested to better characterize the lithologies based on whole-rock geochemistry.

Whole-rock samples consisted of roughly 20-cm pieces of quarter core. The sample was selected to be the most representative piece of the rock unit being sampled (no veins, preferably weakly to non-mineralized material). A sample was taken at approximately every 30 m of core and samples were also taken to provide some insight about the composition of unknown unit lithologies.

11.1.5 Analytical Methods (ALS and Bureau Veritas)

Historical analytical quality control measures were set in place by Fury in 2003 and 2004 and Noront in 2007. Details of these measures are outlined in previous technical reports produced for the property (SRK, 2011, 2012, 2013 and McLaughlin et al., 2015). The next sections describe the analytical methods during Osisko's period.

11.1.5.1 Samples for Gold Analysis

At the ALS laboratory, samples underwent conventional sample preparation procedures (ALS code PREP-31). Samples were crushed to a fineness of 70% passing ten mesh, or 2 mm. A 250 g split of the crushed material was further comminuted to a sample pulp by pulverizing to

90% passing below 200 mesh, or $70~\mu m$. The pulveriser assembly (steel barrel, rings and puck) was cleaned with silica sand between samples. Most samples were submitted to the primary laboratory for analysis in batches of 20.

Due to the high volume of sampling, approximately 10% of non-rush samples are sent to BV in batches of 20 samples. At BV, samples underwent conventional sample preparation procedures (BV code PRP90-250). Samples were crushed to 90% passing a 2 mm sieve. A 250 g split of crushed material was pulverized to 85% passing a 75 µm sieve.

Table 11.1 outlines the analysis methods used at both ALS and BV laboratories. Routine samples are analyzed with fire assay. If visible gold was identified by core-logging geologists, samples were sent for metallic screen analysis. Prepared pulp samples were assayed for gold using a fire assay procedure with atomic absorption finish at ALS and BV on 30- or 50-g pulp charges.

Table 11.1 Analytical Methods Used by Osisko

Laboratory	Method	Method code	Sample Weight (g)	Lower Limit (ppm)	Upper Limit (ppm)	Default Over-limit Method
		Au-AA23	30	0.005	10.0	Au-GRA21
	Fire Assay with Atomic	Au-AA24	50	0.005	10.0	Au-GRA22
	Absorption Finish	Au-AA25	30	0.01	100	Au-GRA21
ALS		Au-AA26	50	0.01	100	Au-GRA22
Minerals	Fire Assay with	Au-GRA21	30	0.05	10,000	
	Gravimetric Finish	Au-GRA21	50	0.05	10,000	
	Metallic Screen	Au-SCR21	1,000	0.05	10,000	
	Metanic Screen	Au-SCR24	1,000	0.05	10,000	
	Fire Assay with Atomic	FA430	30	0.005	10.0	Gravimetric
D	Absorption Finish	FA450	50	0.005	10.0	Method
Bureau Veritas	Fire Assay with	FA530	30	0.9		
ventas	Gravimetric Finish	FA550	50	0.9		
	Metallic Screen	FS652	50 - 500	0.005		

At the request of Osisko, all samples exceeding 10 g/t Au using the Au-AA26 method, or any samples containing high grade or visible gold were rerun with the metallic screen method (Au-SCR24 method). A 1,000 g split of the final prepared pulp (PUL-32) is passed through a 75 µm stainless steel screen to separate the oversize fraction. Any +75 µm material remaining on the screen is retained and analyzed in its entirety by fire assay with gravimetric finish (Au-GRA22 method) and reported as the Au(+) fraction result. The 75 µm fraction is homogenized and two 50 g sub-samples are analyzed by fire assay with Atomic Adsorption (AA) finish (Au-AA26 method). The average of the two AA results is taken and reported as the Au(-) fraction result. As of August 7, 2019, the -75 µm fractions have been analyzed using gravimetric finish (Au-GRA22) rather than AA finish as ALS encountered difficulties with the fusing of Osisko high grade samples. All three values are used in calculating the combined gold content of the plus and minus fractions using this equation.

Au Total (ppm) =

 $\frac{((Au(-) \text{ av ppm}) \text{ x Wt. Min(g)}) + (Au(+)ppm \text{ x Wt. Plus (g)})}{(Wt. \text{Min(g)} + \text{Wt. Plus (g)})}$

11.1.5.2 Multi-elements Analysis

For the multi-elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, Zn), the samples were assayed by an atomic emission spectrometry procedure, ME-ICP41 (Aqua regia digestion) or ME-ICP61 (Four acid digestion) at ALS. A prepared sample is digested in a graphite heating block. After cooling, the resulting solution is diluted to 12.5 ml with deionized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. The analytical results are corrected for inter-element spectral interferences.

11.1.5.3 Lithogeochemical Samples

For lithogeochemical samples, the sample preparation method was the same as for routine samples. Whole-rock analysis was performed using a package that included major oxides (Al₂O₃, BaO, CaO, Cr₂O₃, Fe₂O₃, K₂O, MgO, Na₂O, P₂O₅, SiO₂, SrO₂ and TiO₂) loss on ignition ("LOI"), total oxides, plus Zr, Y and Nb. The analytical method was performed using a lithium borate fusion followed with an XRF finish (ALS codes ME-XRF26, ME-XRF06, Zr-XRF05, Y-XRF05 and Nb-XRF05). A calcined or ignited sample (0.9 g) is added to 9.0 g of Lithium Borate Flux (50% - 50% Li₂B₄O₇ - LiBO₂), well mixed and fused in an auto fluxer between 1,050°C and 1,100°C. A flat molten glass disc is prepared from the resulting melt. This disc is then analyzed by XRF.

11.1.6 Quality Assurance and Quality Control (QA/QC) Programs

The exploration work conducted by Osisko was carried out using a QA/QC program following the industry's recognized best practices. Micon was not involved in the collecting and recording of the data, which was performed by Osisko employees. A percentage of the database that was sent to Micon (January 3, 2020) was validated/verified (Section 12).

QA/QC for the 2015 to 2019 drilling program consisted of a drill hole database audit, inserting quality control samples within all sample batches submitted for assaying and inter-laboratory check assays. Re-logging and re-sampling programs of core drilled by previous operators were conducted in 2016, 2017 and 2018 to better understand geological constraints on the Windfall deposit. In 2018, a representative batch of metallic screen samples (n = 2,270) previously analyzed without QC samples were quarter-split and sent for reanalysis with QC samples to validate previous Au results. Quarter-split results showed good correlation with original half core results.

11.1.6.1 Field Assay Standards (Certified Reference Materials and Blanks)

Contamination of samples is monitored by the routine insertion of blank material into the sample stream. The control procedure also included certified reference materials ("CRMs", or gold assay standards) to determine if there were assay problems with specific sample batches and possible long-term biases in the overall dataset. Blanks and CRMs go through the same sample preparation and analytical procedures as the core samples. They were assigned sample IDs at a frequency of at least one of each control type per range of 20 sample tag IDs. Each control type represents approximately 5% of the total batch depending on the total range of samples tags used (Table 11.2).

The results of the quality control samples were assessed by the Batch Authorization module of the Fusion software in DHLogger (Table 11.3).

Table 11.2 Samples Submitted to ALS for Analysis Along with Routine Drill Core Samples (July 28, 2014 to January 3, 2020)

Type of sample	Quantity	%
Primary drill core samples	752,990	89%
Field blanks	47,581	6%
Certified reference material	46,533	5%
Total	847,104	100

Summary of samples submitted includes reanalysis and quarter-split samples.

Table 11.3 Current Sample QA/QC Statuses in DH Logger

ID	Description
	Sample has passed QA/QC review. Controlled by passed QA/QC samples
Passed	and applied automatically by restrictive QA/QC default rules of the
	Batch_Authorization module of DHLogger software.
	QP Accepted status is determined by Osisko's qualified persons. The
	decision to accept a failed QA/QC analysis result is based on a set of
	QA/QC rules following industry QA/QC best practices. Examples of QP
OD Assented	Accepted results include:
QP Accepted	- Suite of samples affected includes no anomalies.
	- Suite of samples affected includes minor and/or isolated sub- low-grade
	anomalies.
	- Au contamination on blank QC sample with no impact on other samples
	Failed status is applied automatically by the Batch_Authorization module
	of DHLogger software when Osisko's restrictive QA/QC rules are not met.
	All Failed statuses are revised and approved by Osisko's qualified persons
Failed	and trigger request for Reassay or Quarter-split samples. Examples of
	Failed results include:
	- Surpassed maximum/minimum defined standard control values (± 3 SD)
	- Possible Au contamination and quarter-split request

ID	Description	
Failed NSA	Failed NSA (Failed Non-Significant Assay) status indicates Failed assay	
Tailed NSA	result with Au value less than 0.5 ppm. No reassays have been requested.	
	No QA/QC status is applied when a sample is not associated with a least 1	
No QA/QC	CRM / 1 Blank per batch of 20 samples in the certificates and/or the	
	QA/QC is not following Osisko's set of QA/QC rules.	
	No Results status is rare and is applied in 2 scenarios:	
	- When the assay result returns empty in the certificate after completing	
	every step in the sampling process (logging, sampling, core-splitting).	
	Most of these No Results statuses occur when the certificate indicates NSS	
No Results	(Non-Sufficient material Sample), or when problems occur after core-	
	splitting or at the laboratory.	
	- During various compilation work conducted by Osisko, sample numbers	
	were found associated with historical drill holes but were unable to locate	
	the associated assay certificate and results.	
	Cancelled status is rare and is applied when the sample number has been	
Cancelled	recorded into the database during core logging but was not cut at the core-	
	splitting step. Various reasons can be involved.	

11.1.6.1.1 Blanks

The blank is a coarse crush blank material (limestone gravel) sourced from a regional hardware store. The blank material has not changed since 2014. The blank is submitted with samples for crushing and pulverizing to determine if there has been contamination or sample cross-contamination during the preparation. Elevated values for blanks may also indicate sources of contamination in the fire assay procedure (contaminated reagents or crucibles) or sample solution carry-over during instrumental finish.

From July 28, 2014 to January 3, 2020, there were a total of 47,584 blanks submitted to ALS and BV with the samples (Table 11.4). Blank materials were considered failed when the returned gold value exceeded 10x the lower detection limit of the analytical method (Table 11.1). A general guideline for success on a contamination quality control program is a success rate of 90% of blanks showing no contamination exceeding the acceptance limits. Table 11.4 and Figure 11.1 to Figure 11.7 summarize the performance of the blanks. Depending on the method used during the analyses, on average 99.41% of the blanks analyzed passed the process (Table 11.4).

All failed samples were investigated and appropriate action was taken to rectify the abnormal results. Samples did not require follow-up where contamination did not affect succeeding samples or where the batch did not include samples with significant results. If carry-over from the previous gold sample at the preparation stage was suspected to affect subsequent samples, a quarter-split of the remaining core was sent for reanalysis with new QC samples. Further actions on blank fails are discussed in section 11.1.6.1.1.1.

Table 11.4: Blanks Submitted For Analysis Along With Routine Drill Core Samples (July 2014 to March 2018)

Method	Lab	Qty Inserted	Expected Au Value	Fail Value	Osisko Mean Grade (ppm)	Osisko Min (ppm)	Osisko Max (ppm)	Failed	% Passing
AU_PPM_AA24	ALS	7,489	0	0.05	0.004	0.0025	9.42	10	99.87%
AU_PPM_AA26	ALS	30,708	0	0.1	0.012	0.005	48.2	137	99.55%
AU_PPM_FA450	BV	6,586	0	0.05	0.005	0.0025	10	9	99.86%
AU_PPM_GRA22	ALS	226	0	0.5	0.218	0.025	5.5	22	90.27%
AUTOTAL_GPT_FS652	ALS	112	0	0.5	0.027	0.025	0.1	0	100.00%
AUTOTAL_PPM_SCR24	ALS	2,460	0	0.5	0.177	0.025	35.2	104	95.77%
TOTAL		47,581						282	99.41%

Figure 11.1
Time Series Plot for Blank Samples Assayed by ALS (AA24 Method)
Failure limits set at 0.05 g/t Au (10x detection limit)

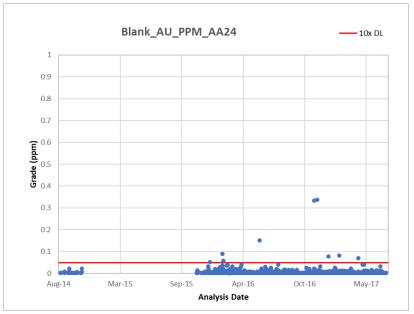


Figure 11.2
Time Series Plot for Blank Samples Assayed by ALS (AA26 Method)
Failure limits set at 0.1 g/t Au (10x detection limit)

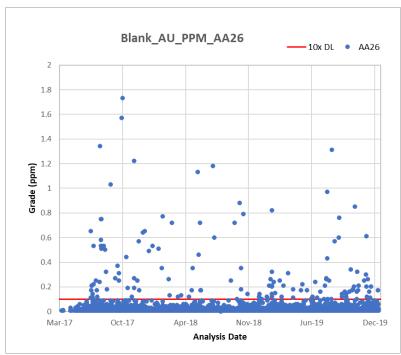


Figure 11.3
Time Series Plot for Blank Samples Assayed by ALS (GRA22 Method)
Failure limits set at 0.5 g/t Au (10x detection limit).

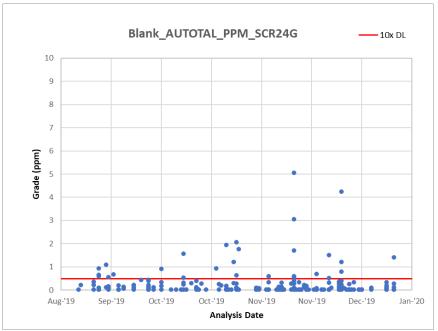


Figure 11.4
Time Series Plot for Blank Samples Assayed by ALS (SCR24 Method)
Failure limits set at 0.5 g/t Au (10x detection limit)

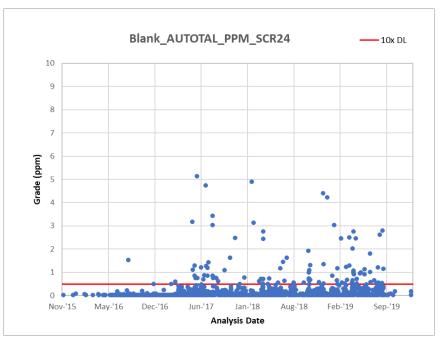


Figure 11.5
Time Series Plot for Blank Samples Assayed by ALS (SCR24g Method)
Failure limits set at 0.5 g/t Au (10x detection limit)

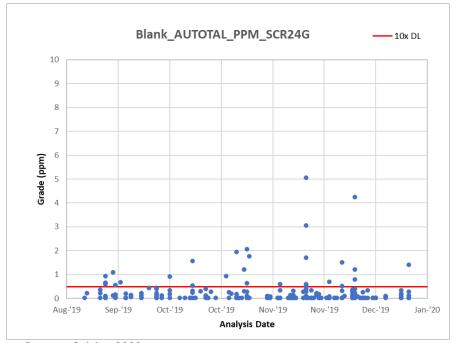


Figure 11.6
Time Series Plot for Blank Samples Assayed by Bureau Veritas (FA450 Method)
Failure limits set at 0.05 g/t Au (10x detection limit)

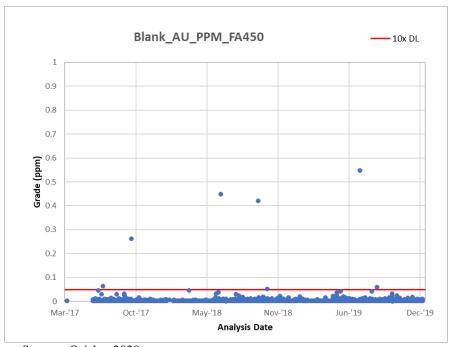
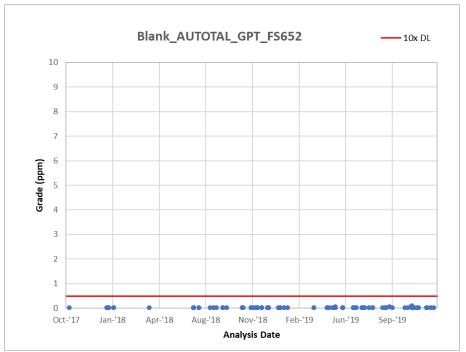



Figure 11.7
Time Series Plot for Blank Samples Assayed by Bureau Veritas (FS652 Method)
Failure limits set at 0.5 g/t Au (10x detection limit)

11.1.6.1.1.1 Comments for Monitoring Contamination

Given the high gold values and the amount of visible gold at Windfall Lake, blanks are systematically inserted after each potential sample to cause contamination. When the potential for contamination is high, Osisko asks the laboratory for additional cleaning processes of the crusher and sprayer before passing the blank. Despite these precautions, there are still cases of contamination.

A higher amount of failures can be seen beginning from March, 2017 onwards. A possible cause for the increase of failures is the sharp rise in the drilling rate during March, 2017 (from 12 to 24 drills) associated with the increase of high-grade results provided by the Lynx discovery. The massive influx of core managed and logged by Osisko's personnel and the samples treated by ALS for this period could explain the quality control performance. In review of failed blanks, the majority did not require follow-up as they were not found to affect subsequent samples or were not associated with samples of significant results.

Osisko is aware of this problem and has taken actions accordingly. In all cases, each rejected blank value is tracked by Osisko to validate and rectify the problem. Most exceedances are due to cross-contamination between two samples. Inversion of a blank by a CRM and an erroneous entry in the database are also possible errors. In cases where a blank fail was caused by a high-grade sample and a clear contamination trail was identified, succeeding affected

samples, along with the failed blank control would be resampled using quarter-split method and analyzed. In the case where the contamination source and/or contamination trail is not identifiable, all affected samples preceding and succeeding the failed blank would be quarter-split and analyzed. The process is applied until an uncontaminated blank or a value below 10x the detection limit is obtained.

11.1.6.1.2 Certified Reference Materials

Accuracy and precision were monitored by the insertion of CRMs at the rate of once every 20 samples. A total of 41 different CRMs were submitted 46,692 times from July 28, 2014 to January 3, 2020 (Table 11.2 and Table 11.5). CRMs cover a range of gold grades from 0.2 g/t to 12.11 g/t. Standards are obtained from Analytical Solutions Ltd. in Toronto, Ontario and prepared by Ore Research & Exploration Pty Ltd. ("ORE").

Most CRMs have enough values to be represented on a control chart. Control charts showing analytical concentration values against warning limits (horizontal lines) have been prepared for each standard. Figure 11.8 to Figure 11.11 are representative charts of AA26 CRM performance at varying grades.

Standard materials were considered as failed when a gold result exceeded three standard deviations ("SD") (± 3 SD) beyond the expected value (Table 11.5). Excluding outliers, a total of 1,245 events were recorded and commented upon when the analytical values of the CRM fell between the warning limits and the ± 3 SD control limits. Failed CRMs are flagged to the laboratory with instructions to reassay pulps preceding and succeeding the failed CRMs to the next passed CRM. If the analytical value fell between ± 2 SD and ± 3 SD, no reassaying was performed. If the analytical value exceeded the ± 3 SD control limits, systematic reassaying was not always requested, particularly if the value was on the threshold of the limits. However, for mineralized zones, resampling was systematically performed. In cases where the analytical value clearly exceeded the ± 3 SD control limit, reassaying was requested.

Table 11.5 Certified Standards Values, 95% Confidence and Tolerance Limits for Gold Reference Material (ppm) with Fire Assay (July 2014 to January 2020)

Constituent	g 11	Certified Au	ap.	95% Confid	ence limits
(CRM)	Supplier	Value (ppm)	SD	Low	High
OREAS 12a	OREAS	11.79	0.24	11.68	11.89
OREAS 15d	OREAS	1.559	0.04	1.54	1.579
OREAS 16a	OREAS	1.81	0.06	1.78	1.84
OREAS 19a	OREAS	5.49	0.1	5.45	5.54
OREAS 200	OREAS	0.34	0.01	0.336	0.345
OREAS 201	OREAS	0.514	0.02	0.507	0.521
OREAS 202	OREAS	0.752	0.03	0.742	0.763
OREAS 203	OREAS	0.871	0.03	0.859	0.884
OREAS 205	OREAS	1.244	0.05	1.221	1.267
OREAS 208	OREAS	9.248	0.44	9.05	9.44
OREAS 209	OREAS	1.58	0.04	1.56	1.59
OREAS 210	OREAS	5.49	0.15	5.42	5.55
OREAS 215	OREAS	3.54	0.1	3.51	3.57
OREAS 216b	OREAS	6.66	0.158	6.61	6.71
OREAS 217	OREAS	0.338	0.01	0.334	0.341
OREAS 218	OREAS	0.531	0.02	0.526	0.536
OREAS 219	OREAS	0.76	0.024	0.753	0.768
OREAS 220	OREAS	0.866	0.02	0.86	0.873
OREAS 221	OREAS	1.06	0.036	1.05	1.07
OREAS 222	OREAS	1.22	0.03	1.21	1.23
OREAS 223	OREAS	1.78	0.05	1.76	1.79
OREAS 224	OREAS	2.15	0.053	2.14	2.17
OREAS 226	OREAS	5.45	0.126	5.41	5.49
OREAS 228	OREAS	8.73	0.28	8.63	8.83
OREAS 228b	OREAS	8.57	0.199	8.51	8.63
OREAS 229	OREAS	12.11	0.21	12.05	12.18
OREAS 229b	OREAS	11.95	0.288	11.86	12.04
OREAS 501b	OREAS	0.248	0.01	0.244	0.251
OREAS 502b	OREAS	0.494	0.02	0.489	0.501
OREAS 504b	OREAS	1.61	0.04	1.59	1.62
OREAS 600	OREAS	0.2	0.006	0.198	0.202
OREAS 601	OREAS	0.78	0.031	0.769	0.791
OREAS 603	OREAS	5.18	0.151	5.12	5.23
OREAS 607	OREAS	0.69	0.024	0.681	0.699
OREAS 60c	OREAS	2.47	0.08	2.439	2.496
OREAS 60d	OREAS	2.47	0.079	2.44	2.5
OREAS 61d	OREAS	4.76	0.14	4.69	4.83
OREAS 61e	OREAS	4.43	0.15	4.38	4.48
OREAS 62c	OREAS	8.79	0.21	8.69	8.88
OREAS 62d	OREAS	10.5	0.33	10.36	10.64
OREAS 62e	OREAS	9.13	0.41	8.97	9.3

Figure 11.8
Results of Standard OREAS 218 Using AA26 Method

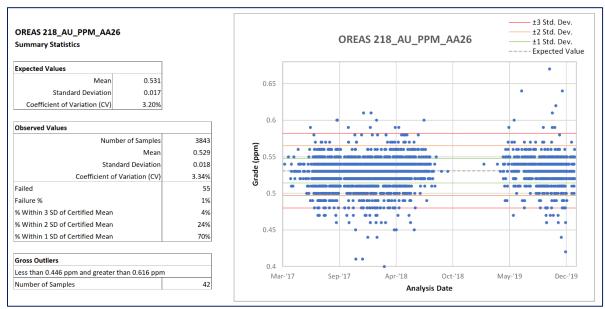


Figure 11.9
Results of Standard OREAS 209 Using AA26 Method

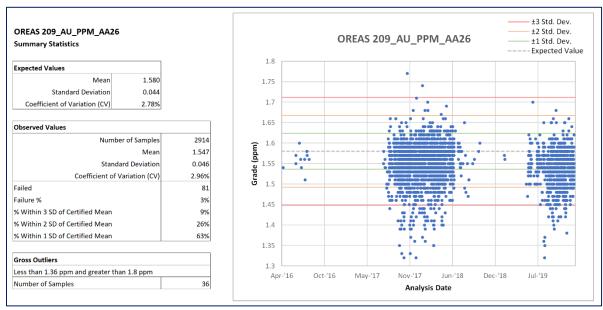


Figure 11.10
Results of Standard OREAS 215 Using AA26 Method

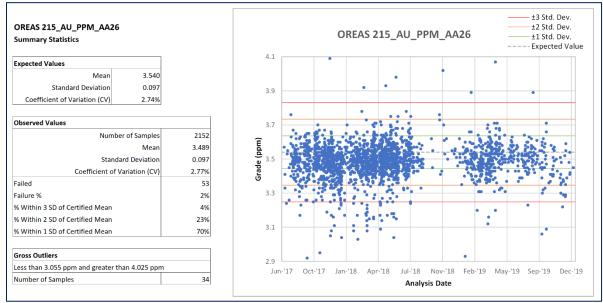
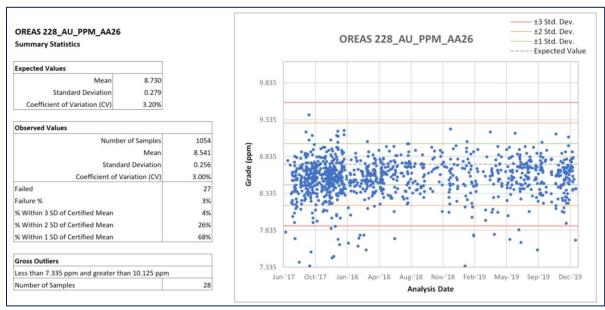



Figure 11.11
Results of Standard OREAS 209 Using AA26 Method

Source: Osisko, 2020

11.1.6.1.2.1 Comments for Monitoring Accuracy and Precision

The accuracy of the result (as a percentage of error) is measured as the difference between the average of the standard's samples and the value assigned for the standard; gross outliers are

excluded from this operation. For a laboratory, good accuracy constitutes the ability to give results as near as possible to the expected value.

The CRMs generally report within $\pm 10\%$ of the expected value and within three standard deviations. The mean accuracy of all inserted reference materials is 0.65%. Most results for the standards range from precise (<3%) to typical, according to standard industry precision criteria (3% to 5%). Accuracy over 5% concerns only seven CRMs with an insignificant numbers of samples.

The precision of the result (as a percentage) is represented by the dispersion of the standard's samples versus their average. Good precision for a laboratory constitutes the ability to repeat results with the smallest standard deviation possible. The mean precision of all inserted CRMs is 3.13%. These results are considered precise according to the standard industry precision criteria (3% to 5%).

The QP did not identify any accuracy or precision issues and concludes that the analytical data reviewed are acceptable to support a mineral resource estimate.

11.1.6.1.3 Umpire Check Assays

A component of the QA/QC program included umpire check assays or the determination of the analytical precision (repeatability) of the original gold assay data from the laboratory. ALS pulps were submitted to BV for inter-laboratory check assays (Figure 11.12). The assays for the pulp duplicates provide an estimate of the reproducibility related to the uncertainties inherent in the analytical method and the homogeneity of the pulps. The precision or relative percent difference calculated for the pulp duplicates indicates whether pulverizing specifications should be changed and/or whether alternative methods, such as screen metallics assays for gold, should be considered.

Prior to statistical analysis and plotting of the duplicates, outliers were removed from the dataset. Outliers are extreme values that can have a disproportionate influence on precision estimates based on duplicate data. In this case, only gross outliers ($\pm 300\%$ difference) were manually removed as they could have been the result of human error. In addition, in order to prevent unwanted bias due to reproducibility issues on samples with very low grades or grades close to the detection limits, only samples above the lower limit value of 0.005 ppm were used.

The original ALS 2,365 pulp duplicates and BV duplicate assays are plotted in Figure 11.12. Duplicate sets are presented as log-scaled plots to provide detail at lower concentrations. The scatter plot of pulps yielded a linear regression slope of 0.97 and a determination coefficient of 87.9%, which indicates that the average grade is close to the average original grade and there is good reproducibility.

Check Assays - ALS vs BV n=2365 AA23 vs FA450 (n=86) 100 AA24 vs FA450 (n=490) 0.9729x - 0.0497 $R^2 = 0.8793$ AA25 vs FA450 (n=14) AA26 vs FA450 (n=1775) 10 1 BV (ppm) 0.1 0.01 0.001 0.1 ALS (ppm) 0.01 10 100

Figure 11.12
Post 2014 Mineral Resource Estimate Laboratory Pulp Duplicates for Gold (g/t)

Values ≤ 0.005 ppm and outliers are removed from trend analysis.

Source: Osisko, 2020

11.1.6.1.3.1 Comments on Check Assays

The pulp duplicate results are good according to standard industry precision practices. A perfect precision would be 100% at five times detection limit.

The QP did not identify any accuracy or precision issues and concludes that the analytical data reviewed are acceptable to support a mineral resource estimate.)

11.1.6.1.4 Specific Gravity

Specific gravity ("SG") was measured by pycnometry by ALS Minerals in Val-d'Or (ALS code OA-GRA08b) and BV in Timmins (BV code SPG04).

In 2013, Eagle Hill conducted an internal test that compared specific gravity measurements using a water displacement method (GRA08 ALS method) and those obtained from pycnometry (pulverized material). The test results showed some variability when comparing the SG values of approximately 15 cm-long sample pieces. However, when the results from a

number of these smaller pieces taken from one sample interval were averaged, the resulting SG data compared favourably to those data obtained from the ALS pycnometry.

In 2018, Osisko began an internal bulk density measurement program by the electronic densimeter method (ELEDEN method described in Section 10.1.9.4 of this report). The program has been completed on the Lynx zone, the Main Zone and other sub-zones. Within the database, excluding outliers, there are 1,146 internal bulk density measurements from Eagle Hill and Osisko along with laboratory SG comparable associated with resource samples. Table 11.6 shows basic statistics between methods, with gross outliers removed. Figure 11.13 shows the correlation between laboratory and internal bulk density measurements.

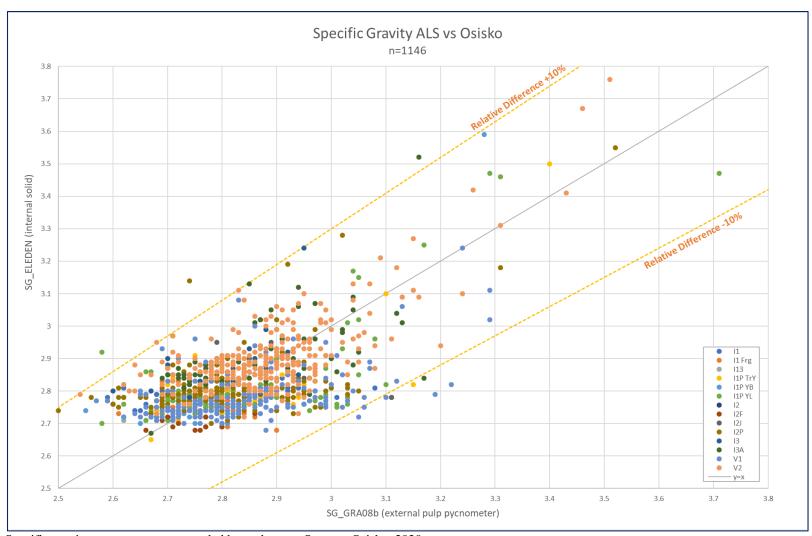
Table 11.6
Summary Statistics between Specific Gravity GRA08b and Electronic Densimeter Methods (n = 1146)

Statistic	GRA08b (Unity)	Densimeter (Unity)
Min	2.47	2.02
Max	4.38	4.28
Mean	2.84	2.84
Median	2.81	2.80
Std Dev	0.14	0.15

11.1.6.1.4.1 Comments on density

The mean density between the two methods is identical at 2.84 (Table 11.6). The trend on the SG diagram indicates that laboratory measurements below 3.0 tend to be lower compared to internal measurements (Figure 11.13).

The slight difference in result between the two methods is not surprising. With the pycnometer method, the material is a homogenized pulp from the entire interval assayed. The electronic densimeter method uses a 10- to 15-cm long core sample and takes into consideration the porosity that is destroyed when grinding with the pycnometer method.


The QP considers the density results to be adequate for the preparation of a mineral resource estimate. The average density values are in line with results expected of this deposit type.

11.1.6.2 Laboratory Quality Assurance and Quality Control

11.1.6.2.1 ALS Minerals

ALS follows an in-house QA/QC program. To ensure quality control at the sample preparation stage, ALS monitors the fineness of crushing and pulverizing according to the method specifications and inserts one sample preparation duplicate per batch of 50, taken from coarse crushed material. At the analytical stage, ALS runs its own blanks, reference materials and pulp duplicates. The frequency of analytical quality control can be seen in Table 11.7. Three months of pulp duplicate data from the most frequently used assay method, Au-AA26, taken from the ALS WebtrieveTM system, is plotted in Figure 11.14.

Figure 11.13
Laboratory (SG_GRA08b) and Internal Bulk Density Measurement Correlation (Eagle Hill and Osisko)

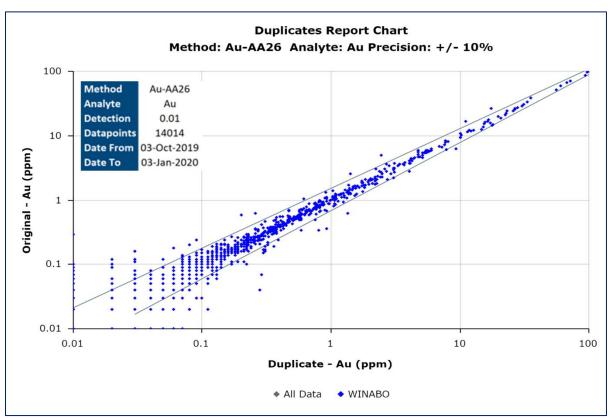

Specific gravity measurements are coded by rock type. Source: Osisko, 2020

Table 11.7
ALS Analytical Quality Control - Reference Materials, Blanks and Duplicates

Rack Size	Methods	Quality Control Sample Allocation
20	Specialty methods including specific gravity, bulk density and acid insolubility	2 standards, 1 duplicate, 1 blank
28	Specialty fire assay, assay-grade, umpire and concentrate methods	1 standard, 1 duplicate, 1 blank
39	XRF methods 2 standards, 1 duplicate, 1 blank	1 standard, 1 duplicate, 1 blank
40	Regular AAS, ICP-AES and ICP-MS methods	2 standards, 1 duplicate, 1 blank
84	Regular fire assay methods	2 standards, 3 duplicates, 1 blank

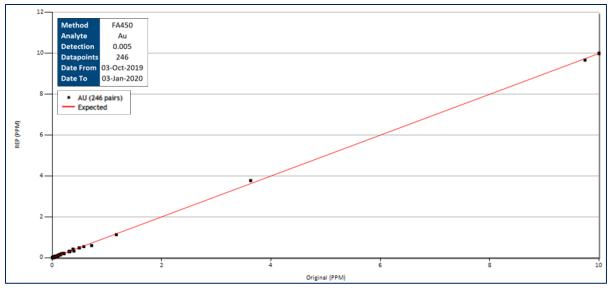
Figure 11.14
ALS Pulp Duplicates for Windfall Samples (AA26)

WINABO: Client Code Client code at ALS for Windfall samples.

Source: Osisko, 2020

11.1.6.2.2 Bureau Veritas

BV conducts its own internal laboratory quality control program. Laboratory analytical batches typically consist of 40 or 84 samples, with 10 to 15% laboratory-inserted control materials. At the sample preparation stage for rock and drill core samples submitted, granite



or quartz sample-prep blanks are carried through all stages of preparation and analysis to confirm the cleaning protocols suffice. Reject duplicates ("DUP") of -10 mesh are created during the preparation stage and analyzed along with samples. Internal analytical controls include pulp replicates ("REP") to monitor analytical precision, reagent blanks ("BLK") to measure background and CRMs ("STD"). Pulp duplicates of FA450 data from the BV WebAccess system is shown in Table 11.8 and Figure 11.15.

Table 11.8
Bureau Veritas Analytical Quality Control - Reference Materials, Blanks and Duplicates

Internal Quality Control	Analytical Lab Batch of 40	Fire Assay Lab Batch of 84
Analytical blank	1	2
Pulp replicate	1	2
Preparation duplicate	1	2
Reference material	2	3

Figure 11.15
Bureau Veritas Pulp Duplicates (Method FA450).

Source: Osisko, 2020

11.1.6.3 Final Gold Value

In cases where multiple methods of analyses were used to analyze gold content, a priority sequence was used to identify the final gold value to be used in resource estimation. The ranking priority is listed in Table 11.9 below. The formula used to select the final gold value for the database will choose the highest priority rank that has passed QA/QC; i.e., should AuTotal_ppm_SCR24 fail QA/QC, but the lower ranked Au_ppm_AA24 passed QA/QC, the final gold value would be sourced from the Au ppm AA24 method.

Table 11.9
Gold Method Priority Ranking

Ranking	Method Code	Laboratory
1	AuTotal_ppm_SCR24	ALS Minerals
2	AuTotal_ppm_SCR24g	ALS Minerals
3	AuTotal_ppm_SCR21	ALS Minerals
4	AuTotal_gpt_FS652	Bureau Veritas
5	Au_ppm_GRA22	ALS Minerals
6	Au_ppm_GRA21	ALS Minerals
7	Au_ppm_AA26	ALS Minerals
8	Au_ppm_AA25	ALS Minerals
9	Au_ppm_AA24	ALS Minerals
10	Au_ppm_AA23	ALS Minerals
11	Au_ppm_PyroSAA	Bourlamaque ¹
12	Au_gpt_FA550	Bureau Veritas
13	Au_ppm_FA450	Bureau Veritas
14	Au_ppm_FAGRAV	Intertek - Chimitec ¹
15	Au_ppm_FAGEO	LabExpert ¹
16	Au_gpt_FAGr	Intertek - Chimitec ¹
17	Au_ppm_FA	Intertek - Chimitec ¹
18	Au_gpt_PYROGRAV	Bourlamaque ¹
19	Au_ppm_FA30	Intertek - Chimitec ¹
20	Au_ppm_FA50	Intertek - Chimitec ¹

Notes:

(1) Laboratory used for historical analyses.

11.2 CONCLUSIONS

The QP is satisfied with the adequacy of the sample preparation, security and analytical procedures employed and concludes that they have resulted in data suitable for use in a mineral resource estimate.

12.0 DATA VERIFICATION

During the 2018 and 2019 site visits the QP travelled to the project site in northern Québec, as required by NI 43-101. While no mineralized outcrops were available to be seen due to the extensive overburden and snow cover, there was extensive evidence of current and previous drilling activity including well-marked drill casings.

The collar co-ordinates of nine drill holes, from various location across the property, were checked against their reported surveyed locations with a hand-held Garmin GPS. Discrepancies noted were typically less than 1 or 2 m, the accuracy of the instrument.

Osisko maintains an office, camp, secure core storage yard and logging facility at the project. Accessing the facility requires checking in at a manned security trailer on the project entrance road. An extensive and well organized core rack system contains the drill core from the Windfall Lake Project.

Osisko staff geologists and technicians selected typical mineralized intersections from several of the zones at the Windfall Lake Project drill core in the yard and presented them to the QP with explanations of the group's interpretations. Obvious signs of mineralization and alteration were noted in the core. Frequent examples of visible gold/electrum were also noted.

While at the core logging facility, the QP reviewed the core logging, sampling, sample shipment, sample security procedures and QA/QC protocols employed by Osisko. The QP also reviewed the equipment and procedures used for core cutting.

The QP made a visit to the exploration ramp and underground workings where the bulk samples were taken. Obvious signs of mineralization were noted including the presence of visible gold.

As a result of the frequent examples of visible gold/electrum in core and the underground workings it was deemed unnecessary to take check samples for independent assay. The assay observations made by Micon are considered by the QP to be reasonable confirmation of the presence of gold in significant quantities.

On the final day of the second site visit, the QA/QC program results, data verification, geological modelling procedures used by Osisko personnel and the resulting geological model were reviewed on-screen at the office. Discussions were also had about the procedures to be used for modelling, grade interpolation and resource classification procedures.

Osisko tracks the results of its QA/QC samples (standards, blanks and pulp and reject duplicates) using standard control charts. During the meeting the QP reviewed the QA/QC results and control chart plots prepared by Osisko. These were found to be acceptable.

After receipt of the project database from Osisko, the entry of assay results was checked against original assay certificates.

Table 12.1
Data Entry Checks

Status	Sample Count	Average of Au g/t	Max of Au g/t
CANCELLED	27		
FAILED	9	5.58	29.10
FAILED_NSA	274	0.18	0.49
NO_QAQC	2,607	2.99	97.80
NO_RESULTS	10		
PASSED	24,642	4.33	4180.00
PENDING	47		

Checks of the modelling, grade interpolation, resource estimation and reporting were made and are discussed in Section 14.18 below.

12.1 CONCLUSIONS

The QP is satisfied that the exploration, sampling, security and QA/QC procedures employed by Osisko and their results, are sufficient to produce data adequate for the purposes used in this technical report.

13.0 MINERAL PROCESSING AND METALLURGICAL TESTING

The following chapter presents metallurgical testwork results for work conducted on the Windfall Lake deposit as part of the current preliminary economic assessment ("PEA") as well as results from the report previously published by BBA in 2018 entitled "NI 43-101 Technical Report Preliminary Economic Assessment of the Windfall Lake Project, Lebel-sur-Quévillon, Québec" (PEA BBA, 2018).

13.1 WINDFALL LAKE

13.1.1 Windfall Lake Historical Testwork

The following sections related to the Windfall Lake PEA Testwork presents a summary of the testwork described from the BBA (2018) PEA report.

The metallurgical test program for the Windfall Lake Project PEA started in June 2017. The testwork program was performed under the supervision of BBA in collaboration with Osisko. The metallurgical test plan aimed to determine an optimal flowsheet and generate engineering data for average mineralized material feed grades. The metallurgical test plan included composite samples from three zones: 27, Caribou and Lynx.

SGS's laboratory in Québec City (Verret, 2018) provided most of the metallurgical services required, including:

- Sample and composite preparation and characterization.
- Comminution testing:
 - o SAG Mill Comminution ("SMC").
 - o Bond rod mill and ball mill work indices ("RWi" and "BWi").
 - Abrasion index ("Ai").
 - o Regrind signature plot.
- Gravity testwork.
- Flotation testwork with and without gravity.
- Leaching testwork (whole rock leach, "WRL") with and without carbon, leaching of reground flotation concentrate with and without gravity, leaching of flotation tails with and without gravity).
- Thickening, rheology and filtration testwork.

Additional thickening, rheology and filtration tests were performed by Pocock Industrial in Utah, USA (Pocock Industrial, 2018).

13.1.2 PEA (2018) Sample Selection and Compositing

13.1.2.1 Comminution Testwork Composites

Composite samples were prepared from HQ drill hole intervals located within the mineral resource envelope for comminution testing. An additional low-grade sample (#9) located within the mineralized zone was also tested in order to be able to represent dilution material that will inevitably report to the plant feed. A total of 37 intervals totalling 119 m of core from 34 different drill holes were selected to prepare four composites. The composites were submitted to SMC, BWi and Ai testing, the results of which are used for preliminary grinding circuit sizing and estimation of media and liner wear rates.

The hole locations are illustrated in Figure 13.1 and Figure 13.2.

#-5435400

+-5435200

+-5435300

+-5435000

+-5435000

+-5435000

+-5435000

+-5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

--5435000

Figure 13.1
Plan View of PEA Comminution Sample Hole Locations.

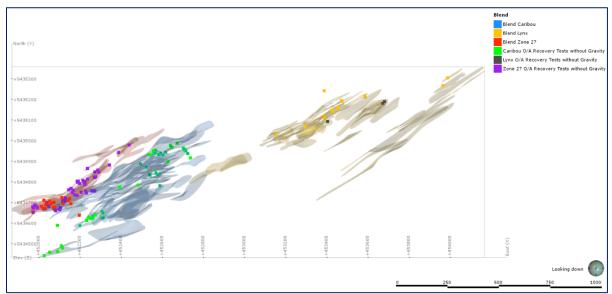
Source: BBA, 2020

Elev (Z)

| Elev (Z) | 000 | 0

Figure 13.2 Looking N050 View of PEA Comminution Sample Hole Locations.

Source: BBA, 2020


Furthermore, 318 intervals deemed relevant for establishing the mineralized material hardness variability were submitted to SMC tests.

13.1.2.2 Recovery Testwork Composites with Gravity

Intervals from recent NQ drill holes located within the mineralized envelope were used to prepare three composite samples, namely Zone 27, Lynx and Caribou, for recovery testwork. Each of the composites was prepared to reflect the life of mine head grade within the resource envelope (PEA, BBA, 2018). A total of 94 m of material was collected from 58 drill holes intersecting the three main zones.

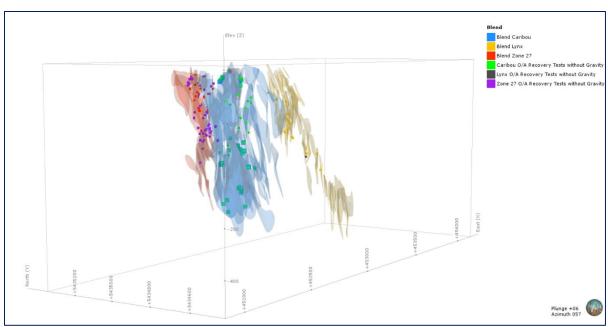


Figure 13.3
Plan View of PEA (2018) Recovery Sample Hole Locations.

Source: BBA, 2020

Figure 13.4 Looking N050 View of PEA Recovery Sample Hole Locations.

Source: BBA, 2020

During the recovery testing program, some material was set aside to generate a composite of the three zones in order to perform thickening tests and to generate a signature plot for fine grinding. The composite was prepared containing equal proportions of material from all three zones (Caribou, Lynx and 27).

The selected drill hole locations are illustrated in Figure 13.3 and Figure 13.4. The aforementioned samples are labelled "Blend".

13.1.3 PEA (2018) Composite Characterization

Composites for the metallurgical testwork program were submitted to head assays in order to evaluate chemical composition and specific gravity. The drill hole locations are presented in Figure 13.3 and Figure 13.4. Gold and silver assays resulted from the analysis of screened metallic products, sulphur content was measured by LECO, copper by XRF, and the concentrations of the remaining elements were measured using ICP. A summary of the analysis results range is presented in Table 13.1.

Table 13.1 Metallurgical Testwork Samples Head Assays Range

	Assays						
	Au	Ag	Cu	Zn	S	Fe	
	(g/t)	(g/t)	(%)	(g/t)	(%)	(g/t)	
Tested Samples	1.2 - 14.8	<5 to 35.3	<0.01 - 0.073	39 - 7,030	2.73 - 17.3	29,800 - 166,000	

13.1.4 PEA (2018) Comminution Testwork

Composites representing Zone 27, Caribou, Lynx and waste material, as well as blends of Zone 27 and Caribou were submitted to comminution testing that included SMC, RWi, BWi and Ai. The results of the comminution testwork are presented in Table 13.2. Figure 13.5 presents the signature plot (Mehrfert, 2018) from a sample (bulk pyrite flotation concentrate) which underwent 11 passes through the mill to reduce the particle size from a feed P80 of 150 μm to a produce P80 of 11.9 μm .

Table 13.2
Summary of Average SMC and Bond Comminution Test Results per Zone

Composite	No.	Specific	SMC			Bwi	Ai
by zone	Samples Tested	gravity	Axb	ta	RWi (kWh/t)	(kWh/t)	(g)
Zone 27	8	2.98	32.8	0.3	-	10.7	-
Caribou	7	2.98	32.3	0.3	-	12.5	-
Lynx	1	2.77	22.4	0.2	-	13.5	
#9 (waste)	1	2.82	19.8	0.3	18.9	15.3	0.068

1000.0 y = 38816x^{-2.309} R² = 0.9934 10.0 100.0 Size (microns)

Figure 13.5 Flotation Concentrate Signature Plot

Source: BBA, 2020

13.1.5 PEA (2018) Gravity Recovery Testwork - Extended Gravity Recoverable Gold ("e-GRG")

The composites for Zone 27, Lynx and Caribou were submitted to e-GRG testing at SGS Lakefield. The e-GRG test results were used by FLS to simulate (Fullam, 2018) potential gold recovery if gravity units were to be installed on either the cyclone feed (ball mill discharge) or on the cyclone underflow ("U/F"). Gold recovery ranged from 7% to 27%.

Although the gravity concentrate grade is favourable, ranging from 988 Au g/t to 6,198 Au g/t, the average gold gravity recovery is below the 25% threshold, and due to the high percentage of the ball mill circuit circulating load that would need to be processed, the economic benefit of implementation of gravity in the Windfall Lake flowsheet is not clear. Further testwork should be considered.

13.1.6 PEA (2018) Recovery Options with Gravity

13.1.6.1 Bulk Gravity Sample Preparation

Prior to the evaluation of the gold recovery in the flotation and leaching circuits, the Zone 27, Caribou and Lynx composites underwent a gravity pre-treatment. Only the gravity tailings were submitted to flotation testing. The bulk gravity results were 19.8%, 9.6% and 22.4% for Zone 27, Caribou and Lynx respectively.

13.1.6.2 Flotation Testwork

Kinetic rougher pyrite flotation tests were conducted on the Zone 27, Caribou and Lynx composites following a gravity pre-treatment. Each test was conducted over 10 min, with intermittent sampling at 1, 2, 4 and 10 minutes. Both the PAX collector and the MIBC frother were dosed at various points during the test.

The results of the flotation tests indicated that weight recovery to the rougher concentrate is very well correlated to the sulphur grade in the flotation feed. For all three zones, gold recovery to the concentrate was 96%, 92% and 91% for the Zone 27, Caribou and Lynx composites respectively. The concentrate ranged between 15% and 29% of the initial flotation feed mass for the three composites.

13.1.6.3 Leaching Testwork

Two series of leaching tests were conducted on the Windfall Lake composites. The first consisted of WRL of the gravity tailings, while the second involved leaching of both the concentrate and tailings products resulting from flotation of the gravity tails, in turn.

A single WRL test was performed using the Lynx material gravity tails. Recovery of 85.2% was achieved for gold.

For pyrite flotation concentrate leaching, a series of bottle roll leaching tests was conducted on the Zone 27, Lynx and Caribou. Prior to leaching, the pyrite concentrates were reground to and P80 of approximately 12 μm in a laboratory scale ball mill. The reground concentrates were then re-pulped to 35% (w/w) solids to be leached for 18 hours with intermittent sample collection. No pre-treatment was applied. For all three zones, gold recovery was 83.5%, 90.6% and 86.7% for the Zone 27, Caribou and Lynx composites, respectively.

Gold recovery from the flotation tailings leach was assessed in a series of bottle roll tests conducted on all three composites, Zone 27, Lynx and Caribou. The tailings did not undergo regrinding or pre-treatment prior to cyanidation. The flotation tailings were re-pulped to 50% (w/w) solids and leached for 24 hours with intermittent sample collection. The average gold recovery was 78.8%, 74.4% and 62.1% for the Zone 27, Caribou and Lynx composites, respectively.

13.1.7 PEA (2018) Recovery Options without Gravity

13.1.7.1 Flotation Testwork (without Gravity)

Kinetic rougher pyrite flotation tests were conducted on the 26 samples from Zone 27, 20 samples from Caribou and two tests on Lynx composites with no gravity pre-treatment. Each test was conducted over 10 min, with intermittent sampling at 1, 2, 4 and 10 min. Both the PAX collector and the MIBC frother were dosed at various points during the test.

For all three zones, the rougher flotation response showed a very strong correlation between sulphur head grade and weight recovery to the concentrate.

Gold and silver recoveries to the flotation concentrate were 92.0% and 83.8% respectively for Zone 27 and 93.4% and 89.1% for Caribou. Gold recovery to the Lynx concentrate was lower at 84.5%, however, the feed was not considered representative of the zone with a head grade of ~21 g/t. Both the flotation concentrates and tailings products had disproportionately high gold grades of ~86 g/t and 4 g/t, respectively.

13.1.7.2 Leaching (without Gravity)

Three types of leaching tests were conducted on samples with no previous gravity pretreatment: WRL with and without carbon, leaching of reground pyrite flotation concentrates and leaching of pyrite flotation tailings. In each series, optimization tests were conducted to determine the ideal conditions for variability testing. Some of the parameters evaluated include the effect of grind size, pulp density, leach time and NaCN dosage as well as leaching with and without carbon. All leaching tests, unless otherwise noted, were conducted as bottle rolls.

The optimized test conditions selected for each type of test are presented in Table 13.3.

Table 13.3 Leaching Test Conditions

	Feed	Pulp			Leaching	Parameters		
Test	K80 (μm)	density (% w/w)	Time (h)	Carbon (g/L)	Pb(NO ₃) ₂ (g/t)	NaCN (g/L)	DO (ppm)	pН
Whole rock leach (CIL)	47	40	72	10	500	1.2	8 - 9	10.5
Whole rock leach (no carbon)	76	40	72	n/a	n/a	1.2 - 1.5	6 - 10	10.5
Flotation concentrate - optimization	11 - 32	35	18 - 72	n/a	n/a	0.7 - 1.5	4-7	10.5
Flotation concentrate - variability	~12	35	18	n/a	n/a	1.5	3.4 - 4.5	10.5
Flotation tails - optimization	92 - 170	45 - 50	24 - 48	n/a	n/a	0.5	8-11.3	10.5
Flotation tails - variability	156	50	24	n/a	n/a	0.5	5-8	10.5

Gold recoveries ranging from 86% to 91% were observed for the 12 WRL tests conducted. A marked improvement of approximately 5% in recovery was observed for the tests conducted with carbon (CIL) when compared to those without carbon. For both the Zone 27 and Caribou materials, the improvement in recovery was accompanied by increases in both NaCN and lime consumption. Lead nitrate was added to the CIL series of tests, and a finer feed size, P80 of 47 micron, was used.

The concentrate of pyrite flotation without gravity pre-treatment were reground and submitted to cyanidation. For all materials tested, gold recoveries ranging from 84% to 98% were observed. Silver recovery values were more variable with a minimum and maximum of 47% and 87%, respectively.

The observed gold recoveries from leaching of the flotation tailings in individual tests from the Zone 27 and Lynx zones ranged from 31.3% to 88.8%, while silver recoveries varied between a minimum value of 7.3% and a maximum value of 74.5%.

The recovery for the Lynx blend flotation tails was 84.2% for gold and 79.8% for silver.

13.1.7.3 PEA (2018) Thickening Testwork

Static settling tests were conducted on blended samples of flotation concentrates, flotation tailings and on the PEA sample leach residue. The tests including flocculant screening showed that each sample flocculated and settled well using the Magnafloc 10 or SNF AF910AH flocculant, reaching an underflow density over 61% (w/w).

13.1.7.4 PEA (2018) Rheology

The slurry rheology (Pocock Industrial, 2018) was assessed using Fann and Haake (for pasterange) viscometers to establish the link between spindle speed (shear rate) and slurry density to apparent viscosity. The relationship between shear stress and shear rate also enables to get the yield value over the range of solids content of interest. The results for the combined reground pyrite concentrate and flotation tailings are illustrated in Figure 13 6.

The rheological testwork is used for estimating torque requirement for thickener rake mechanisms, for determining agitator torque and motor power requirements, as well as for pump sizing.

13.1.7.5 PEA (2018) Filtration Testwork

Testing (Pocock Industrial, 2018) was performed on the thickened blend of flotation concentrate and tailings leach residues. The sample was tested to predict the filtration behaviour of the combined tailings in the event that a dry-stack type of tailings plant was an elected option for the Project.

Based on the filtration results obtained by Pocock, pressure filtration under a variety of conditions yielded cake moistures ranging from 6% to 14%. Several operating conditions were identified under which a dry, stackable cake was produced with good filtrate clarity.

Yield Value (Pa or N/m2) Haake and Fann Viscometer Data 200 74.6 ×Formed Filter Cake 180 HAAKE Data FANN Data 160 74.1 140 120 100 80 67.1 60 40.3 40 30.2 69.0 16.5 20 O

Figure 13.6
Yield Stress vs. Slurry Density for Combined Reground Pyrite Concentrate and Flotation Tailings

Source: BBA, 2020

64

66

13.2 WINDFALL LAKE RECENT TESTWORK

62

13.2.1 Mineralogical Study

60

Gold deportment studies were conducted by SGS (Zhou and Downing, 2017, 2018) on five composites: P1-CA-D and P1-CA-U from Caribou, P1-27-D and P1-27-U from Zone 27, and P3-Lynx (from Lynx). The composites head assays ranged from 5.18 to 8.88 Au g/t. For all samples, except P1-CA-U, gold minerals identified occur mainly as Au/Ag alloys, including native gold (varying from 63% to 90%), electrum (5 % to 25%) and petzite (17.1% for P3-Lynx). For the sample P1-CA-U, the gold minerals were identified mainly as kustelite (46 %), electrum (44%) and minor amount of electrum (9%). The main findings for the visible microscopic gold mineral grains (≥0.5um) are summarized in Table 13.4.

Percent Solids (by weight)

74

76

78

80

Table 13.4 Characteristics of Microscopic Gold per Sample

Sample ID	# of Gold Grains	% Liberated & Exposed	Average Size (µm)	Minerals Associated with Exposed and Locked Au-Minerals
P1-CA-D	555	83.3	0.6 - 55.4	Pyrite 62.7%, quartz 25.3%, dolomite 3.46%, silicate 2.83%, silicate/pyrite 2.90%, pyrite/quartz 1.29%, and other minerals <1%
P1-CA-U	419	77.9	0.6 - 102.2	Pyrite 63.3%, dolomite 10.3%, silicate 9.23%, quartz 6.55%, CuS/pyrite 6.45%, and other minerals <1%
P1-27-D	566	67.6	0.5 – 90.0	Pyrite 59.1%, silicate 17.2%, quartz/pyrite 12.4%, silicate/pyrite 4.42%, calcite 1.59%, quartz 1.35%, arsenopyrite/pyrite 1.11%, and other minerals <1%
P1-27-U	376	79.0	0.6 – 49.0	Pyrite 73.1%, silicate/pyrite 8.75%, silicate 6.29%, arsenopyrite/pyrite 3.96%, quartz/pyrite 3.21%, sphalerite 2.21%, and other minerals <1%
P3-Lynx	2,807	41.6	0.6 – 209.6	Pyrite 45.6%, pyrite/quartz 20%, 2 to 10% quartz, silicates, dolomite, hessite, altaite, altaite/hessite, and <2% pyrite/silicates, hessite/pyrite, silver, galena/pyrite, chalcopyrite, and other minerals

13.2.2 Flow Property Testwork

A flow property testwork program was conducted by Jenike and Johanson Ltd. (Boucher, 2018). The objective of the program was to provide mineralized material flow properties and a conceptual design for an ore storage silo of 2,000 t capacity, including a material reclaim system. The following tests were performed on a total of 150 kg gold mineralized material crushed drill core from Windfall Lake:

- Particle density.
- Compressibility.
- Loose and compacted bulk density.
- Flow function.
- Wall friction.
- Critical chute angle.

The density values are summarized in Table 13.5. The value of 6.4% and 10.2% moisture on the fines are representing respectively the normal and upset conditions.

Table 13.5
Windfall Lake Crushed Mineralized Material Density Values

		Bulk d	lensity (kg/m ²	3)	Particle
Material	Moisture content (%)	Range for effective head (EH) = 0.2-5 m	Loose	Compacted	Density (kg/m³)
Gold Mineralized	As received	_	1,490	1,650	_
Material Coarse	(0.04)		1,470	1,050	
Gold Mineralized Material Fines (-2.36 mm)	6.40	1,240 - 1,530	1	1	2,791
Gold Mineralized Material Fines (-2.36 mm)	10.20	1,420 - 1,617	1		2,791

Table 13.6 presents the summary of minimum hopper outlet size requirements for mass flow regime. The summary was prepared based on the mineralized material physical properties, cohesive strength tests results and assuming an overpressure P-Factor of 1.

Table 13.6 Summary of Minimum Outlet Size Requirements for a Hopper

	Moisture	Storage time	Mass	Flow	Funnel Flow		
Material	content	at rest	Bc	Bp	Bf	Df	
	(%)	(h)	(m)	(m)	(m)	(m)	
Gold Mineralized		0	0.46	0.20	0.26	3.30	
Material Fines	6.40	24	0.59	0.29	0.34	3.54	
(-2.36 mm)		72	2.30	1.10	1.20	5.48	
Gold Mineralized		0	0.34	0.20	0.20	1.84	
Material Fines	10.20	24	0.58	0.29	0.30	2.04	
(-2.36 mm)		72	0.56	0.28	0.29	2.04	

BC = minimum recommended outlet diameter, conical hopper in mass flow.

BP = minimum recommended outlet width, slotted or oval outlet with length 3x width, in mass flow.

BF = minimum recommended width of rectangular outlet, in funnel flow.

DF = critical rathole diameter, shown for 3 m of EH.

P-FACTORs are overpressures, for example due to vibration or impact upon filling.

Wall friction tests were used to determine mass flow hopper angles. Table 13.7 summarizes the maximum calculated mass-flow angles.

Table 13.7
Summary of Maximum Calculated Mass-Flow Wall Angles

Material/Wall Surfaces	Impact Pressure (kPa)	Maximum Measured Chute Angle				
Gold Mineralized Material Fines, 6.4% moisture content						
Hardox 500	0.25 to 10.57	34° to 51°				
Gold Mineralized Material Fines, 10.2% moisture content						
Hardox 500	0.29 to 10.61	34° to 46°				

Note: The angles are degrees from vertical.

The maximum calculated wall angle may vary, depending on outlet size. The angles specified here apply only for the outlet size stated as an example.

Hoppers with elongated outlets are defined as those where the outlet is at least three times as long as it is wide. Conical hoppers require significantly steeper angles than hoppers with elongated outlets (typically 10° to 12° steeper).

13.3 BULK SAMPLE TESTS

13.3.1 Zone 27 Bulk Sample

A 5,500-tonne bulk sample for Zone 27 has been processed to reconcile the resource model grade (Nguyên, 2019). Ore processing was performed in two lots:

- Lot 1: December 3 to 8, 2018.
- Lot 2: May 12 to 16, 2019.

The bulk sample test was performed at the Northern Sun Redstone concentrator at an average throughput of 30 tonnes per hour. Ore processing produced gravity and flotation concentrates. Ore transportation trucks were sampled for moisture and weighed on a calibrated weight scale. The sample material was crushed and milled to a particle size (P80 = 25 microns) favourable to the flotation recovery process. Gravity and flotation concentrates produced were weighed and sent to a local smelter for sale. Daily composite samples of streams for the reconciliation process were prepared and analyzed by an external independent laboratory. Concentrate production tonnage and assays were used to reconcile the bulk sample mass balance process in the concentrator. The data reconciliation was performed by an external independent consultant (Nguyên, 2019) using Bilmat (a reconciliation software) on a dry-tonne basis.

The reconciled head grades were estimated as 8.53 g/t Au and 8.20 g/t Ag. The feed sample contained 1,508 oz Au and 1,450 oz Ag, and a total of 1,413 oz Au and 1,355 oz Ag were recovered during processing. Reconciled recoveries are 93.7% for Au and 93.4% for Ag. The Preliminary Economic Assessment (or PEA, see Osisko news release dated July 17, 2018) metallurgical testwork considered a process flowsheet including comminution, gravity and carbon in leach, giving an average Au recovery of 92.5% for Zone 27. Testing at the Northern Sun Redstone mill availability dictated the use of a mill with a comminution, gravity, and flotation flowsheet. The reconciled results from the processing of the bulk sample material are presented in Table 13.8.

Table 13.8

Zone 27 Bulk Sample Reconciled Results

Ташиа	He Gra	ad ade		ained nces	Grav Concen	•	Flotat Concen		Ove Reco			vered nces
Tonnes Dry	Au (g/t)	Ag (g/t)	Au	Ag	Tonnes (dry)	Au Rec (%)	Tonnes (dry)	Au Rec (%)	Au Recovery (%)	Ag Recovery (%)	Au	Ag
5,500	8.53	8.2	1,508	1,450	11.6	34.5	398.1	59.2	93.7	93.4	1,413	1,355

Mill feed tonnages used in the sample processing reconciliation were provided by Northern Sun. Daily composite samples collected during the processing of the bulk sample were assayed by external independent laboratories (Nguyên, 2019). Bulk sample results were reconciled by Soutex Inc., an external independent consultant using Bilmat (Nguyên, 2019).

The following conclusions were extracted from Osisko news release (dated June 11, 2019):

- Average grade of 8.53 g/t Au for the bulk sample; 26% higher than predicted in the 12.5 m infill drilling block model.
- The sample contained 1,508 ounces Au and 1,450 ounces of Ag.
- Average Au recovery of 93.7% achieved using contract mill.
- A total of 34.5% of the gold was recovered in the gravity concentrate.

13.3.2 Lynx Bulk Sample

A total of 5,716 tonnes from Lynx zone were processed in November 2019 (Nguyên, 2020). The bulk sample test was performed at the Northern Sun Redstone concentrator, the same as for the Zone 27 bulk sample. Ore processing produced gravity and flotation concentrates. Ore transportation trucks were sampled for moisture and weighed on a calibrated weight scale. The sample material was crushed and milled to a particle size (P80 = 25 microns) favourable to the flotation recovery process. Gravity and flotation concentrates produced will be sent to a local smelter for sale. Daily composite samples of streams for the reconciliation process, collected by the day and night shifts, were prepared and analyzed by an external independent laboratory. Concentrate production tonnage and assays were used to reconcile the bulk sample mass balance process in the concentrator. The reconciliation was performed by an external independent consultant (Nguyên, 2020) using Bilmat on a dry-tonne basis.

The reconciled head grade obtained from the processed sample was estimated as 17.8 g/t Au and 11.8 g/t Ag. The feed sample contained 3,271 oz Au and 2,176 oz Ag, with a total of 3,181 oz Au and 2,052 oz Ag recovered during processing. Reconciled recoveries are 97.2% for Au and 94.3% for Ag. The PEA (see Osisko news release dated July 17, 2018) metallurgical testwork considered a process flowsheet including comminution, gravity, and carbon in leach, giving an average recovery of 93.8% for the Lynx Zone. Testing at the at the Northern Sun Redstone mill availability dictated the use of a mill with a comminution, gravity and flotation flowsheet. The reconciled results from the processing of the bulk sample material are presented in Table 13.9.

Table 13.9 Lynx Zone Bulk Sample Reconciled Results

Tonnes	He Gra	ad ade		ained nces	Grav Concer	•	Flotat Concen		Ove Reco			vered nces
Dry	Au (g/t)	Ag (g/t)	Au	Ag	Tonnes (dry)	Au Rec (%)	Tonnes (dry)	Au Rec (%)	Au Recovery (%)	Ag Recovery (%)	Au	Ag
5,716	17.8	11.2	3,271	2,176	9.7	66.7	284.4	91.7	97.2	94.3	3,181	2,052

Mill feed tonnages used in the sample processing reconciliation were provided by Northern Sun. Daily composite samples collected during the processing of the bulk sample by the day and night shifts were assayed by external independent laboratories (Nguyên, 2020). Bulk sample results were reconciled by Soutex Inc., an external independent consultant using Bilmat (Nguyên, 2020).

Additionally, an analysis on flotation concentrate has been performed to determine the presence of deleterious elements. The values were compared with typical penalty threshold. Only fluorine (F) was exceeding the threshold with a value of 0.039%, whereas the typical threshold was fixed at 0.03%. To be noted that only one sample was tested for deleterious element. Further analysis should be performed to have a better understanding of the flotation concentrate deleterious elements representativity.

In conclusion:

- Average grade of 17.8 g/t Au for the bulk sample.
- The sample contained 3,271 ounces Au and 2,176 ounces of Ag.
- Average Au recovery of 97.2% achieved using contract mill.
- A total of 66.7 % of the gold was recovered in the gravity concentrate.

Both bulk samples (Zone 27 and Lynx) presented higher gravity recovery than the values observed during the PEA's e-GRG testwork. This difference in Au gravity recovery should be studied in the next phase of the Project.

13.4 OVERALL RECOVERY - WINDFALL LAKE

The overall Au recoveries for the testwork for a flowsheet including gravity and CIL is presented in Table 13.10 for all three zones.

Table 13.10 Overall Gold Recovery with Gravity and CIL

	Gra	vity	Gravity T	ails Leach	
Composite	Au ILR Au Distribution (%) (%)		Au Distribution (%)	Au Recovery (%)	Overall Au recovery (%)
Zone 27	19.8	99.0	80.2	90.9	92.5
Caribou	9.6	99.0	90.4	90.0	90.9
Lynx	22.4	99.0	77.6	92.3	93.8

The Au distribution between the gravity concentrate and tailings was based on the results obtained at SGS as presented in Table 13 10. The Au leach recoveries for each zone were determined by modelling the existing kinetic CIL testwork data to predict the recovery at the 40-hour retention time used for the process design criteria. Limited Ag assays were available in the Windfall Lake testwork program results.

No testwork was performed on the Underdog Zone; however, the average gold recovery of the Caribou and 27 zones was assigned to Underdog. This assumption was based on mineralogical similarity between the Underdog, Caribou and 27 zones.

Based on the testwork results, for a flowsheet including gravity and CIL and relative proportion of the mineralized material zones, the overall Windfall resource recovery is estimated at 93%.

Regarding bulk tests with composites Zone 27 and Lynx, both samples presented higher gravity recovery than the values observed during the PEA's e-GRG testwork. This difference in Au gravity recovery should be studied in the next phase of the Project.

13.5 LIST OF ABBREVIATIONS

Table 13.11 Table of Abbreviations

Abbreviation	Description
Ai	Abrasion index
BWi	Bond ball mill work index
CaO	Calcium oxide (lime)
CIL	Carbon in leach
CWi	Crushing work index
DO	Dissolved oxygen
e-GRG	Extended gravity recoverable gold
EH	Effective head
F	Fluorine
GRG	Gravity recoverable gold
ICP	Inductively coupled plasma
NaCN	Sodium cyanide
P-factor	Overpressure factor
Pb(NO ₃) ₂	Lead nitrate
PEA	Preliminary economic assessment
RWi	Bond rod mill work index
SMC	Sag mill comminution
U/F	Underflow
WRL	Whole rock leach
w/w	Weight on weight
XRF	X-ray fluorescence

14.0 MINERAL RESOURCE ESTIMATES

The mineral resource estimate presented herein (the 2020 mineral resource estimate) was prepared by Osisko technical staff and reviewed and approved by Micon.

The 2020 mineral resource estimate is compliant with the "CIM Definition Standards - For Mineral Resources and Mineral Reserves" and the November 29, 2019 "CIM Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines". The resource of the Windfall Lake gold deposit includes the Lynx, Underdog, Zone 27, Caribou, Mallard, Windfall North and F-Zones mineralized corridors.

The 2020 resource area measures 3.0 km on strike, 1.7 km in width and is 1.4 km deep.

The mineral resources reported herein are not mineral reserves and the economic viability of the resources has not been demonstrated. The 2020 mineral resource estimate includes indicated and inferred resources and is based on the assumption that the deposit will be potentially developed and mined using underground methods. The effective date of the estimate is January 3, 2020.

14.1 METHODOLOGY

The 2020 mineral resource estimate detailed in this report was prepared using Leapfrog GEO v.5.0.3 ("Leapfrog"), Snowden Supervisor v.8.12 ("Supervisor") and Datamine Studio RM v.1.5.62.0 ("StudioRM") software. Leapfrog was used for modelling purposes, including the construction of 319 mineralization wireframes in Lynx, Underdog, Zone 27, Caribou, Mallard, Windfall North and F Zones areas. StudioRM was used for the grade estimation and block modelling. Statistical studies were done using Supervisor and Microsoft Excel software.

The main steps in the methodology were as follows:

- Database compilation and validation for the diamond drill holes used in the mineral resource estimate.
- Modelling of mineralized zones based on metal content, lithological, alteration, mineralization style and structural features.
- Generation of drill hole intercepts for each mineralized zone.
- Grade compositing.
- Capping studies on composite data.
- Spatial statistics.
- Grade interpolations.
- Validation of grade interpolations.

Five block models were created and include the following mineralized corridors: 1) Lynx Main; 2) Lynx2 (grouping Lynx4, Lynx HW, Lynx SW and Triple Lynx areas); 3) Underdog; 4) Main Zone (grouping Zone 27, Caribou, Mallard and Windfall North areas); and 5) F-Zones. The five block models were established in five StudioRM projects.

14.2 DRILL HOLE DATABASE

The diamond drill hole ("DDH") database of the Windfall Lake Project contains 3,172 surface and underground drill holes, which corresponds to the holes completed at the Windfall Lake Project as of January 3, 2020. The resource database did not retain every hole drilled on the property because many holes are too far from the main mineralized corridors (see Items 6 and 10 for details on exploration and drilling activities). Figure 14.1 shows the 2,941 drill holes that were considered for the resource estimate, including 918,273 m in 2,280 drill holes (in red) drilled by Osisko. A total of 231 drill holes were excluded from the 2020 mineral resource estimate because they were cancelled, not assayed, included pending assays or were not located in the close vicinity of the deposit.

The drill holes cover the strike length of the resource area at a drill spacing ranging from 10 m to 100 m and were drilled at variable orientations. The 2,941 resource drill holes represent 1,101,008 m of drill core.

Regular validation routines are performed on the drilling database. Some additional verifications on the collar, down-hole surveys and assay tables were executed prior to modelling and grade estimation.

14.3 GEOLOGICAL MODEL

The geological model was developed by the Windfall Lake geological team. The main lithological units of the deposit presented in the model include a series of felsic to mafic dikes cross-cutting volcanic rocks. The geological model, dated as of November, 2019, constitutes the basis for the interpretation of the mineralization. The Red Dog (I2F) and the I13 post-mineralization dikes (Figure 14.3) were included in the block models and were treated as barren units overprinting the mineralized zones for the grade interpolation.

14.4 Interpretation of Mineralization Zones

The interpretation of the geology and of the mineralization of the Windfall Lake deposit is supported by surface and underground infill drilling, underground mapping in the exploration ramp development and bulk sample results. The mineralization model is based on described lithologies, mineralization style, alteration and structural features.

A N В OSISKO WINDFALL LAKE PROJECT

Figure 14.1
Diamond Drill Holes in the Windfall Lake Database Used for the Resource Estimate

A) Plan view; and B) Longitudinal view (looking north).

Source: Osisko, 2020

A total of 319 distinct mineralization solids were constructed. The details of the number of zones modelled per area is presented in Table 14.1. Note that the 2020 mineral resource

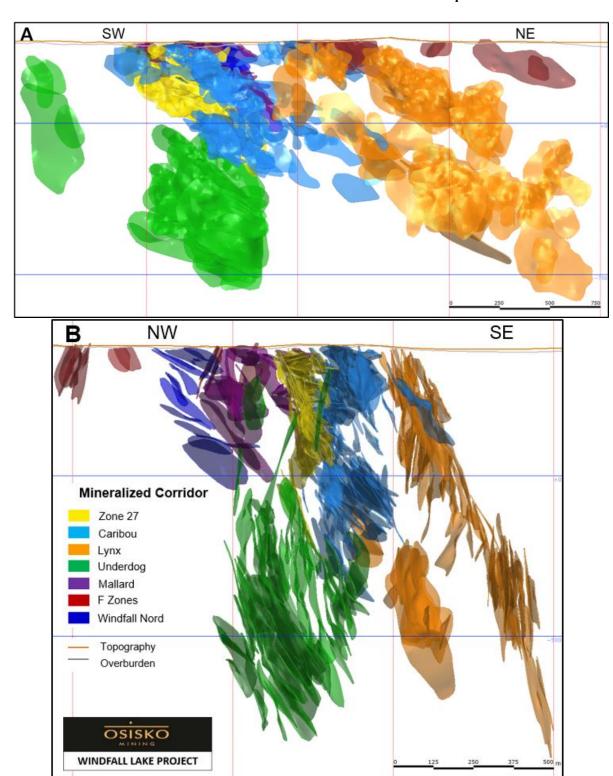
estimate reported herein is constrained by 292 of the gold-bearing individual wireframes. Different block modelling processes have contributed to the filtering of 27 zones out of the reported resource, such as the selection of grade blocks above the cut-off grade, resource classification and creation of mineable volumes.

Table 14.1 Number of Mineralized Envelopes Modelled Per Area

Area	Number of Zones Modelled
Lynx Main	19
Lynx 2	57
Underdog	50
Zone 27	49
Caribou	100
Mallard	23
Windfall North	11
F-Zones	10
Total	319

The 3D wireframing was generated in Leapfrog from hand selected mineralized intervals on combined cross-sections and plan views. The wireframes are snapped to drill hole intercepts and have a minimum true thickness of 2.0 m to reflect underground minimum mining width. Most mineralized envelopes are sub vertical, striking northeast-southwest and plunging approximately 40° towards the northeast. Some other mineralized domains, mainly located in the Underdog and Main zones, are striking northeast-southwest, dipping 45° to the southeast and plunging between 40° and 60° towards the northeast.

On longitudinal views showing the interpreted mineralized corridors, higher-grade zones were delineated based on composite grades greater than 3.0 g/t Au. The lateral extensions of the high-grade domains were limited by the shortest distance between 50 m from the last composite or half the distance to the next drill hole. A zone wireframe must be based on at least four drill holes that demonstrate 3D continuity.


The high-grade mineralized domains were clipped to the overburden surface.

Some isolated gold intercepts exist outside the interpreted mineralized envelopes. Those isolated values are not attributed to any zone given the lack of mineralization continuity.

Figure 14.2 and Figure 14.3, respectively, show the distribution of the 319 mineralized domains within the seven mineralized corridors and their spatial and geometric relationship with the post-mineralization dikes (barren units).

Figure 14.2 Mineralized Domains Modelled at the Windfall Lake Deposit

A) Longitudinal view (looking north); and B) Cross-section view (looking northeast). Source: Osisko, 2020

Mineralized Corridor

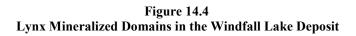
Zone 27

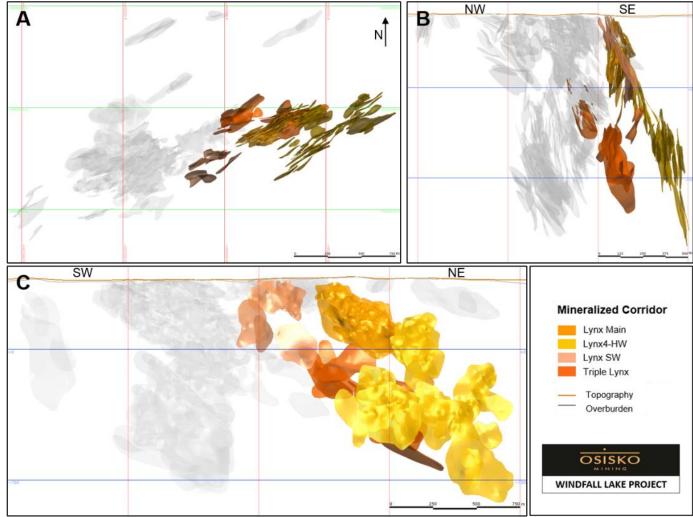
Caribou
Lyrix
Underdog
Misdard
Misdard
F Zones
F Zones
Topography
Overburdon

D 315KO
Windfall Nord

D 315

Figure 14.3
Unmineralized Late Dikes and Modelled Zones in the Windfall Lake Deposit


A) Longitudinal view (looking north); and B) Cross-section view (looking northeast).


Source: Osisko, 2020

The geological interpretation of the Lynx area was subdivided into four zones: Lynx Main, Lynx 4-HW, Lynx SW and Triple Lynx. The Main zone was subdivided into five zones: Zone 27, Caribou 1, Caribou 2, Mallard, Windfall North and F-zones. Figure 14.4 and Figure 14.5 show the location of the zones modelled in these different areas.

14.5 VOIDS MODEL

The 3D wireframe of the exploration ramp and bulk sample stopes, surveyed by Osisko as of January 3, 2020, intersect some of the mineralized zones in the Lynx, Zone 27, Caribou and F-zones areas (Figure 14.6). The mined-out volume from the ramp and stope development (for the excavation of the bulk samples in Lynx and Zone 27) was included in the block models as voids.

A) Plan view; B) Cross-section view (looking northeast); and C) Longitudinal view (looking north).

Source: Osisko, 2020

Main Zone Mineralized Domains (Excluding F-Zones) in the Windfall Lake Deposit

NE

Mineralized Corridor

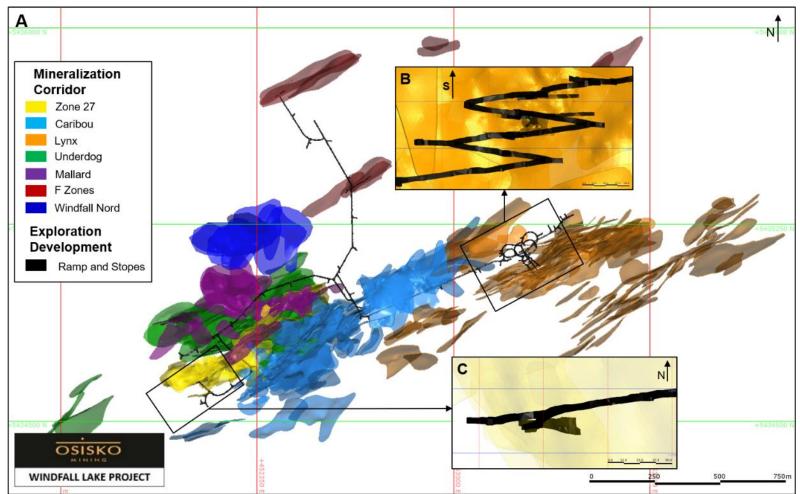
Caribou1
Caribou2
Mallard
Zone 27
Windfall Nord

Topography
Overburden

OSISKO MINING WINDFALL LAKE PROJECT

Figure 14.5
Main Zone Mineralized Domains (Excluding F-Zones) in the Windfall Lake Deposit

A) Plan view; B) Cross-section view (looking northeast); and C) Longitudinal view (looking north).


Source: Osisko, 2020

SW

A

INTERNATIONAL LIMITED consultants

Figure 14.6 Exploration Ramp Intersecting Lynx and Zone 27 Mineralization

A) Plan view; B) Close-up view (looking South) in Lynx; and C) 3D close-up view (looking North) in Zone 27.

Source: Osisko, 2020

14.6 COMPOSITING AND HIGH-GRADE CAPPING

Univariate statistics, probability plots and histograms on zone composite datasets for each mineralized domain were generated and analyzed. A compilation of the results is presented by geological areas in the tables and figures below, notably for Lynx Main, Lynx 4-HW, Triple Lynx, Lynx SW, Underdog, Zone 27, Caribou, Mallard, Windfall North and F-zones.

Every drill hole interval intersecting a mineralized domain was attributed a zone code based on the name of the 3D solids. The coded intercepts were used to generate statistics on sample lengths, gold grades of raw assays and composites. The results are presented in Table 14.2.

14.6.1 Compositing

In order to minimize any bias introduced by varying sample lengths, the gold assays of the drill hole data were composited within each mineralized zone. The thickness of the mineralized domains, the proposed block size, and the average sample length, were taken into consideration for the selected composite length.

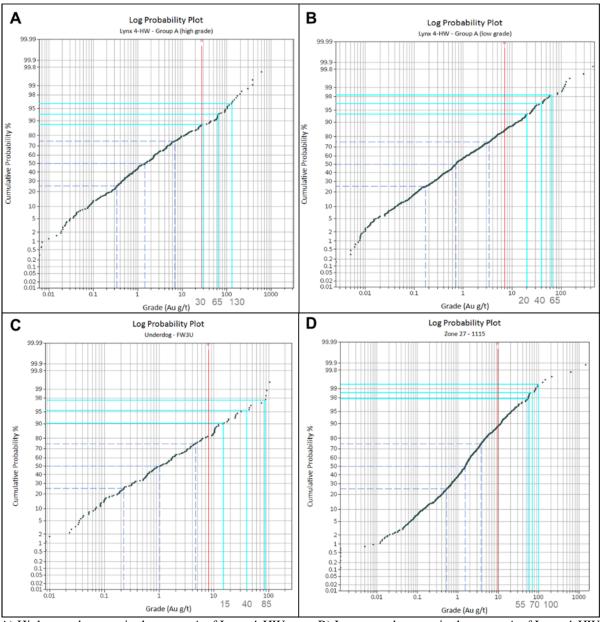
Composites of 2.0 m (downhole) with distributed tails were generated inside the mineralized zones of the Windfall Lake gold deposit. If the last interval was shorter than 1.0 m (tails), composites lengths were adjusted to keep all intervals equal. All intervals located within the mineralized zones that were not assayed were given a value of ½ the detection limit (0.00125 g/t Au) during the compositing. Additionally, composites were discarded when located within a zone interval where pending or QA/QC failed assays were present. The composite length of 2 m was chosen as that was the minimum wireframe width.

A total of 7,794 composites were generated for Lynx, 10,713 composites for Main zone and 2,751 composites for Underdog in the mineralized zones.

14.6.2 High-grade Capping

High-grade capping values for gold were applied on composite data using a three-step capping strategy where capping values decrease as interpolation search distances increase. The multiple capping strategy limits the influence of high-grade composites during interpolation over long ranges by using lower capping values.

High-grade capping values were established on a per zone basis or per group of zones. The mineralized zones were usually grouped by geographic location and/or by grade range to facilitate the statistical studies but were also examined individually. Generally, a set of capping grades was determined for higher grade zones with a good mineralization continuity another set of capping values was defined for the group of lower grade zones.


Table 14.2 Statistics on Raw Assays Presented by Area

Area	Number of	Number of	Minimum	Maximum	Mean	Median	Standard	CV
	Zones	Raw Assays	(g/t Au)	(g/t Au)	(g/t Au)	(g/t Au)	Deviation	
Lynx Main	19	11,157	0.001	4,590.0	9.6	0.2	85.4	8.9
Lynx 4-HW	29	7,068	0.001	8,030.0	15.5	0.4	138.9	8.9
Triple Lynx	18	1,759	0.001	1,595.0	10.2	1.5	53.5	5.3
Lynx SW	10	1,377	0.001	740.0	3.2	0.1	24.6	7.7
Underdog	50	7,393	0.001	2,590.0	6.8	0.5	47.0	7.0
Zone 27	49	10,813	0.001	6,070.0	6.0	0.6	87.7	14.5
Caribou	100	9,366	0.001	4,911.2	5.3	0.5	81.2	15.4
Mallard	23	2,301	0.001	5,550.0	6.1	0.2	119.2	19.5
Windfall North	11	1,048	0.001	1,725.0	4.5	0.2	59.0	13.1
F-Zones	10	1,167	0.001	305.7	3.1	0.3	12.5	4.0

The series of capping values were defined by abnormal breaks or changes of slope on probability plots of grade distribution or by scattered points outside the main distribution curve (see examples illustrated in Figure 14.7).

Figure 14.7
Examples of Three-Step Gold Grade Capping on Composites Using a Grade
Distribution Probability Plot

A) Higher grade zones in the group A of Lynx 4-HW area; B) Lower grade zones in the group A of Lynx 4-HW area; C) FW3U group in Underdog area; D) Zone 1115 in Zone 27 area.

Source: Osisko, 2020

The following criteria were also checked to validate the first capping value or to adjust it if needed:

- No more than 10% of the overall contained metal must be contained within the first 1% of the highest-grade samples.
- The log normal distribution of grades must not show any erratic grade bins or distant values from the main population.
- The coefficient of variation must be approximately 2.00.

Table 14.3 presents the selection of the three capping limits used in the three grade interpolation passes, by group of zones for each area. Table 14.4 presents a summary of the statistical analysis of the composites for each mineralized corridor. Note that the metal loss values appearing in this table represent an estimation based on the ratio of the sum of composites before and after capping. This estimation is not perfectly representative given the uneven drill spacing and inherent over representation of extreme assay values in this type of metal loss estimation.

Table 14.3 Compilation of Capping Limits Applied to Composites, by Interpolation Pass

Area	Group Description		Capping (g/t Au)	
		Pass 1	Pass 2	Pass 3
Lynx Main	Higher grade zones (304-311)	130	70	30
Lynx Main	Lower grade zones (Group A-B-C)	75	40	20
	Group A: lower grade zones	65	40	20
	Group A: higher grade zones	130	65	30
Lynx 4-HW	Group B: lower grade zones	70	40	20
	Group B: higher grade zones	110	40	20
	Group C	85	40	20
	Group A: lower grade zones	60	40	20
Triple Lynx	Group A: higher grade zones	100	40	20
	Group B	20	20	20
Lynx SW	All zones	55	25	15
	FW0 & SW	25	25	15
	FW1 without 4100-4102	65	30	15
Underdog	4100-4102	75	40	15
	FW3U	85	40	15
	FW3-FW4-FW4b-FW3Ub	50	30	15
	1115	100	30	15
Zone 27	Vertical zones	75	30	15
	Horizontal zones	30	15	10
Caribou	Higher grade zones	55	30	15
Caribou	Lower grade zones	30	15	10
Mallard	All zones	50	30	15
Windfall Nord	All zones	50	20	10
F-Zones	All zones	50	25	15

Table 14.4 Summary Statistics Comparing the Uncapped and Capped Composites, by Area

	Number	Uncapped Composite Information						Capped composite Information (based on first capping)				
Area	of Zones	Number of Composites	Minimum (g/t Au)	Maximum (g/t Au)	Mean (g/t Au)	Standard Deviation	CV	Number of Capped Composites	Metal Loss (%)	Mean (g/t Au)	Standard Deviation	CV
Lynx Main	19	4,332	0.001	1,320.6	6.8	39.1	5.8	45	0.2	5.1	14.8	2.9
Lynx 4-HW	29	2,397	0.001	3,175.3	11.1	75.9	6.9	51	0.4	7.1	19.2	2.7
Triple Lynx	18	576	0.009	435.4	8.1	26.1	3.2	11	0.2	6.8	14.5	2.1
Lynx SW	10	489	0.001	462.5	3.0	21.7	7.2	4	0.3	2.1	6.2	2.9
Underdog	50	2,751	0.001	389.0	4.8	17.5	3.6	36	0.2	4.1	9.5	2.3
Zone 27	49	4,773	0.001	1,767.0	4.6	39.0	8.5	29	0.3	3.3	8.8	2.7
Caribou	100	4,201	0.001	3,078.1	4.5	59.1	13.2	38	0.4	2.8	6.0	2.1
Mallard	23	846	0.001	2,221.0	5.8	77.6	13.4	9	0.6	2.5	7.0	2.8
Windfall North	11	371	0.001	417.3	3.3	24.8	7.6	4	0.5	1.7	6.2	3.7
F-Zones	10	522	0.001	87.6	2.9	8.2	2.8	4	0.1	2.7	6.7	2.4

14.7 DENSITY

Densities are used to calculate tonnages for the estimated volumes derived from the resource-grade block model.

For the 2020 mineral resource estimate, a total of 138,631 bulk density measurements were evaluated for the resource database. Most of the specific gravity ("SG") measurements were determined by the pycnometer method on pulps by ALS Minerals in Val-d'Or and Bureau Veritas in Timmins.

Summary statistics of the SG assay data related to the area of the resource estimation were evaluated for late dikes and host rocks. The results are presented in Table 14.5. The statistics for the material included in the mineralized zones were based on 2.0 m specific gravity composites and are presented by area in Table 14.6.

Fixed density values were applied to the following rock type material in the block model: mineralized envelopes, late dikes and host rocks. The densities integrated in the block model are listed in Table 14.7. The selected values correspond to SG median values drawn from a representative group of matching rock types. Areas for which the number of data are low (< 100) were not considered as a representative group for study.

A density of 2.0 g/cm³ was assigned to the overburden and 0.0 g/cm³ to the exploration ramp and stope development.

Table 14.5
Statistics on Specific Gravity by Rock Type

Lithology	Number	Minimum	Maximum	Mean	Median	Standard Deviation	CV
Late dikes	6,007	2.4	3.3	2.7	2.7	0.1	0.03
Host rocks	132,624	1.9	7.7	2.8	2.8	0.1	0.04

Table 14.6
Statistics on Specific Gravity Composites Located Inside Mineralized Zones, by Area

Area	Number	Minimum (g/cm ³)	Maximum (g/cm ³)	Mean (g/cm ³)	Median (g/cm³)	Standard Deviation	CV
Lynx Main	736	2.5	3.2	2.8	2.8	0.1	0.03
Lynx 4-HW	233	2.5	3.1	2.8	2.8	0.1	0.03
Triple Lynx	86	2.6	3.7	2.8	2.8	0.1	0.05
Lynx SW	47	2.7	3.1	2.8	2.8	0.1	0.03
Underdog	982	2.6	3.4	2.8	2.8	0.1	0.04
Zone 27 - Vertical	1,061	2.5	3.9	2.9	2.8	0.1	0.05
Zone 27 - Horizontal	236	2.5	3.3	2.9	2.8	0.1	0.04
Caribou 1	773	2.5	3.7	2.8	2.8	0.1	0.05
Caribou 2	540	2.6	3.6	2.9	2.9	0.1	0.05
Mallard	119	2.6	3.5	2.9	2.9	0.1	0.05
Windfall North	11	2.8	3.2	3.0	3.0	0.1	0.05
F-Zones	67	2.7	3.0	2.9	2.9	0.1	0.02

Table 14.7
Density Compilation for Rock Types Coded in the Block Models

Rock Type	Rock Code	Density (g/cm³)
Ramp	5	0.0
Overburden	10	2.0
Late Dikes	80	2.7
Mineralized zones	> 300	2.8

14.8 BLOCK MODEL

Five block models were created for the purpose of the current resource estimate: 1) Lynx Main, 2) Lynx 2 (including Lynx 4-HW, Triple Lynx, Lynx SW), 3) Underdog, 4) Main Zone (including Zone 27, Caribou, Mallard and Windfall North) and 5) F zones, the mineral resource for which was reported in the Main zone area.

The block models were rotated 25° counter-clockwise (X-axis oriented along N65°). Parent block cells have dimensions of 5 m long (X-axis) by 2 m wide (Y-axis) by 5 m vertical (Z-axis). The block dimensions were chosen to reflect the sizes of the mineralized zones and plausible underground mining methods.

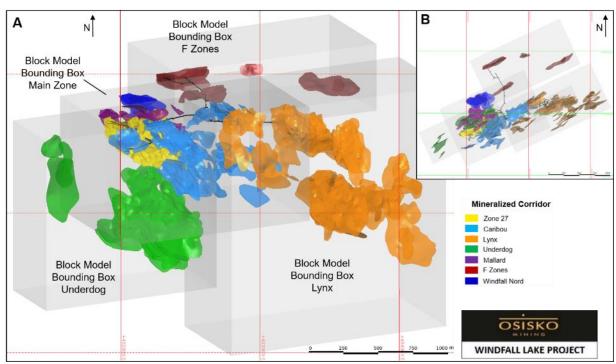
Table 14.8 to Table 14.11 present the properties of the five block models. Figure 14.8 shows the geographical distribution of the five block models in the Windfall Lake Project. Note that the two Lynx block models have identical origin points and properties. The Lynx block model was extended to 1,800 m depth to allow for the future evaluation of potential resources in the Triple 8 zone, which was not included in the resource report.

Table 14.8 Block Model Properties - Lynx

Properties	X (Column)	Y (Row)	Z (Level)
Origin coordinates	452,797.0197	5,434,363.959	-1,300.000
Number of blocks	340	400	360
Block extent (m)	1,700	800	1,800
Parent block size (m)	5	2	5
Rotation	25°		

Table 14.9 `Block Model Properties - Underdog

Properties	X (Column)	Y (Row)	Z (Level)
Origin coordinates	451,465.058	5,434,179.793	-905.000
Number of blocks	270	280	255
Block extent (m)	1,350	561	1,275
Parent block size (m)	5	2	5
Rotation	25°		


Table 14.10
Block Model Properties - Main Zone (excluding F-Zones)

Properties	X (Column)	Y (Row)	Z (Level)
Origin coordinates	451,998.062	5,434,137.046	-410.000
Number of blocks	300	510	170
Block extent (m)	1,500	1,020	850
Parent block size (m)	5	2	5
Rotation	25°		

Table 14.11 Block Model Properties - F-Zones

Properties	X	Y	Z
_	(Column)	(Row)	(Level)
Origin coordinates	452,389.944	5,435,118.629	100.000
Number of blocks	320	400	100
Block extent (m)	1,600	800	500
Parent block size (m)	5	2	5
Rotation	25°		

Figure 14.8
Bounding Box of the Block Models (Lynx, Underdog, Main Zone and F-Zones)

A) 3D view; B) Plan view. Source: Osisko, 2020

14.9 ROCK CODING AND SUB-CELLING

Parent blocks were divided into sub-cells when these intersected wireframes. A resolution of 4 in each axis direction was used in the division of the parent cells. Subsequently, the minimum sub-cell size is of 1.25 m long (X-axis) by 0.5 m wide (Y-axis) by 1.25 m vertical (Z-axis).

The rock coding sequence involved the following wireframes: 1) mineralized envelopes, 2) post-mineralization dikes, 3) overburden and 4) exploration ramp and bulk sample stopes. Overlapping solids were handled by priority ranking where the last stated wireframe overprints the previous wireframes in the list and so on. The list of rock codes integrated in the block models is presented in the Table 14.12.

Table 14.12
Rock Codes Identified in the Block Models

Area	Wireframes	Zone Codes (or series)
	Ramp	5
All	Overburden	10
	Late dikes	80
Lynx	Lynx	300
Underdog	Underdog	4000
	Zone 27	1000
	Caribou	2000
Main Zone	Mallard	5000
	Windfall Nord	7000
	F-Zones	6000

14.10 VARIOGRAPHY AND SEARCH ELLIPSOIDS

14.10.1 Variography

Three dimensional directional variography was performed on the 2.0 m gold grade composites on major mineralized zones (containing more than 300 composites) and/or geographical groups of zones in each area. The studies were carried out with the Snowden Supervisor software. The overall approach to model the variography is described below:

- Examination of the strike and dip of the mineralized zones to help in the determination of the axes of better continuity.
- Estimation of the nugget effect (C_0) based on the down hole variogram.
- Modelling of the major, semi-major and minor axes of continuity using spherical models.

Due to the variability of the grades within the mineralized zones, the moderately high nugget effect and the lack of information in some zones or groups of zones, it was decided to refer to the variography analysis based on the most representative groups of zones in each area. The variogram models' parameters are presented in Table 14.13. Figure 14.9 shows an example of the variography study in the Lynx Main area for zones in group A.

Table 14.13 Variogram Model Parameters Selected for Each Area

			First St	ructure			Second S	Structure	
Area	Nugget	Sill	Range X (m)	Range Y (m)	Range Z (m)	Sill	Range X (m)	Range Y (m)	Range Z (m)
Lynx Main (group A)	0.40	0.30	20	15	5	0.30	40	25	15
Lynx Main (group B)	0.60	0.30	20	10	5	0.10	40	25	15
Lynx 4	0.40	0.50	15	10	5	0.10	40	25	15
Lynx HW	0.40	0.60	40	25	15	-	-	-	-
Triple Lynx	0.50	0.50	40	25	15	-	-	-	-
Lynx SW	0.40	0.30	25	5	5	0.30	30	20	15
Underdog	0.60	0.40	30	20	15	-	-	-	-
Zone 27 Vertical	0.45	0.55	25	20	15	-	-	-	-
Zone 27 Horizontal	0.20	0.80	25	15	15	-	-	-	-
Caribou (group A)	0.30	0.50	5	8	5	0.20	20	15	15
Caribou (group B)	0.50	0.50	30	30	20	-	-	-	-
Caribou (group C)	0.60	0.40	35	30	15	-	-	-	-
Mallard	0.20	0.25	30	10	5	0.55	50	20	15
Windfall North	0.50	0.50	40	35	35	ı	-	-	ı
F-Zones	0.50	0.50	30	20	15	-	-	-	_

The down hole variograms suggest nugget effects varying between 40% and 60% for the major mineralized zones in Lynx, Underdog and Main zone. Lower nugget effects varying from 20% to 30% were observed in minor groups within zones in the Main zone area, especially where very high grades are less frequent such as in lower dipping mineralized envelopes.

Variogram for composite Au Variogram for composite Au Downhole - Lynx Main (group A) Direction 1: -50-->060 - Lynx Main (group A) Samma (133.1) Samma (133.1) 0.6 0.2 Sample Separation (m) Variogram for composite Au Variogram for composite Au Direction 2: 40-->060 - Lynx Main (group A) Direction 3: 00-->150 - Lynx Main (group A) Lag 10 1.2-Lag 10 Gamma (133.1) Sample Separation (m) Sample Separation (m)

Figure 14.9
Example of Variogram Models in the Lynx Main Area

Source: Osisko, 2020

14.10.2 Search Ellipsoids

The 3D directional-specific investigations yielded best-fit models along an orientation corresponding to the mean strike, dip and plunge of the most representative zones or group of zones in each area.

The best-fit model of each representative group of zones was adjusted to fit the orientation of each mineralized group; the long axis was set parallel to the direction of discernible high-grade trend at the scale of the mineralized zone. The direction of the mineralization plunge, although occasionally isotropic, is mainly varying from 30 to 60 degrees to the northeast and was determined from observations based on longitudinal views showing mineralization trends.

Ultimately, the search ellipsoids were oriented dynamically in such a way that the strike and dip follow the undulations observed in the mineralization wireframes.

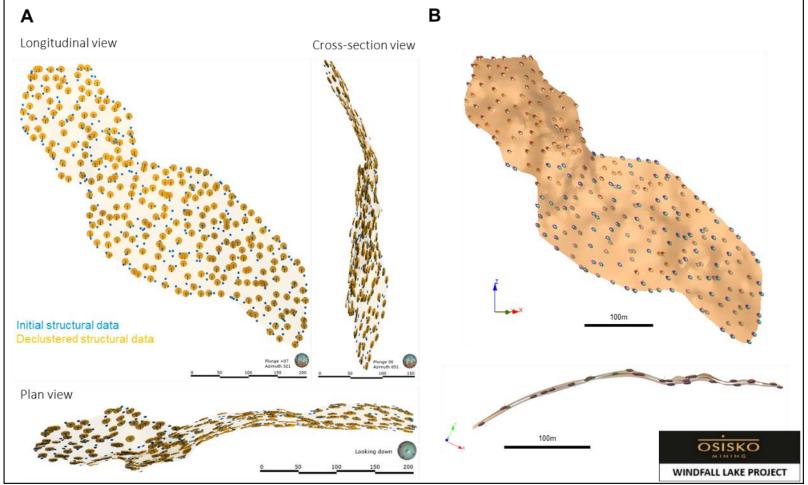
Structural data information was collected through Leapfrog software from the numerous triangulations shaping each of the mineralized zones. A declustered version of the structural information was then stored into each block located inside a zone, using a nearest neighbor interpolation. During the grade interpolation, the search ellipsoid orientation was set according to the strike, dip and plunge data stored in each block. Note that the directions of maximum continuity prompted in the variogram model are equally based on the dynamic anisotropy process. Figure 14.10 illustrates an example of the dynamic anisotropy configuration of the search ellipsoids in Lynx Main.

The ellipsoid ranges were based on the variography study. The ranges of the ellipsoids for the first interpolation pass correspond to 0.75x to 1.5x the variography range results, to 1x to 3x the variography results for the second pass and to 4x to 8x the variography results for the third and last pass. This last pass considers larger ellipsoids in order to populate the remaining blocks inside the mineralized envelopes.

The search and grade interpolations are a three-pass process, defining grade blocks in a cumulative way through each pass. Three sets of search ellipsoids were built using the anisotropy ratio determined from the best fit variogram model in each group of zones. Where the mineralization plunge was not apparent, isotropic ranges in the first and second directions were used in the search, e.g. a search of 25 m by 25 m by 15 m was used for vertical zones with no discernable trend plunge in Zone 27 in the first interpolation pass.

Table 14.14. Summarizes the Parameters of the Ellipsoids used for each Interpolation Pass.

14.11 GRADE INTERPOLATION


The parameters for interpolating the grade models were derived from the variography study on the capped composites. The interpolations were executed on sets of points providing the locations X, Y, Z and gold grades extracted from the 2.0 m capped composites.

The composite points were assigned block codes corresponding to the mineralized zone in which they occur. The interpolation profiles specified a single composite zone code for each mineralized solid, thus establishing hard boundaries between the zones. Blocks are estimated using composite points associated with the same zone.

The Ordinary Kriging ("OK") method was selected for the resource estimate for all areas of the Windfall Lake gold deposit.

Figure 14.10 В Cross-section view

Example of the Dynamic Anisotropy Search Process in Zone 304, Lynx Main

A) Structural data collected on the wireframe through Leapfrog; B) Ellipsoids illustrating the moving orientation (based on structural data and plunge) of the search volume during the grade interpolation.

Source: Osisko, 2020

Table 14.14 Search Ellipsoid Ranges Defined by Interpolation Pass

		Pass	: 1			Pass	2			Pass 3	3	
Area	Vario Multiplier	X (m)	Y (m)	Z (m)	Vario Multiplier	X (m)	Y (m)	Z (m)	Vario Multiplier	X (m)	Y (m)	Z (m)
Lynx Main	0.75	30	18.75	11.25	1	40	25	15	4	160	100	60
Lynx 4	1	40	25	15	1.5	60	37.5	22.5	5	200	125	75
Lynx HW	1	40	25	15	1.5	60	37.5	22.5	5	200	125	75
Triple Lynx	1	40	25	15	1.5	60	37.5	22.5	5	200	125	75
Lynx SW	1.5	45	30	22.5	2	60	40	30	5	150	100	75
Underdog	1.5	45	30	22.5	2	60	40	30	8	240	160	120
Zone 27 - Vertical	1	25	20	15	3	75	60	45	8	200	160	120
Zone 27 - Horizontal	1	25	15	15	3	75	45	45	8	200	120	120
Caribou (Group A)	1.5	30	22.5	22.5	3	60	45	45	8	160	120	120
Caribou (Group B-C)	1.5	45	45	22.5	3	90	90	45	8	240	240	120
Mallard	1	25	20	20	3	75	60	60	8	200	160	160
Windfall North	1	40	35	35	2	80	70	70	8	320	280	280
F-Zones	1	30	20	15	2	60	40	30	4	120	80	60

As described above a three-step capping process on composites was used to limit unreasonable extrapolation of very high-grade samples. The first interpolation pass used composites where the highest capping value was applied and subsequent passes used lower capping limits on composites. For example, in Lynx Main, for the group of lower grade zones, composites were capped at 1) 75 g/t Au, 2) 40 g/t Au and 3) 20 g/t Au and respectively used in interpolation passes 1 to 3 (refer to Table 14.3 for capping limits).

The interpolations were run in three passes characterized by increasing search ranges (Table 14.14). The first pass used a relatively small radius search ellipsoid to interpolate the mineralization blocks located in the close vicinity of the drill holes. The second pass interpolated the blocks which were not interpolated during the previous pass. The third and last pass was defined to populate the remaining blocks within the mineralization solids.

The composite search specifications are presented in Table 14.15.

Figure 14.11 and Figure 14.12 illustrate examples of grade distribution on typical cross-section and longitudinal views.

14.12 BLOCK MODEL VALIDATION

14.12.1 Visual Validation

A visual comparison between block model grades, composite grades and gold assays was conducted on sections, plans and longitudinal views for both densely and sparsely drilled areas. No significant differences were observed during the comparison and it generally provided a good match in grade distribution without excessive smoothing in the block model.

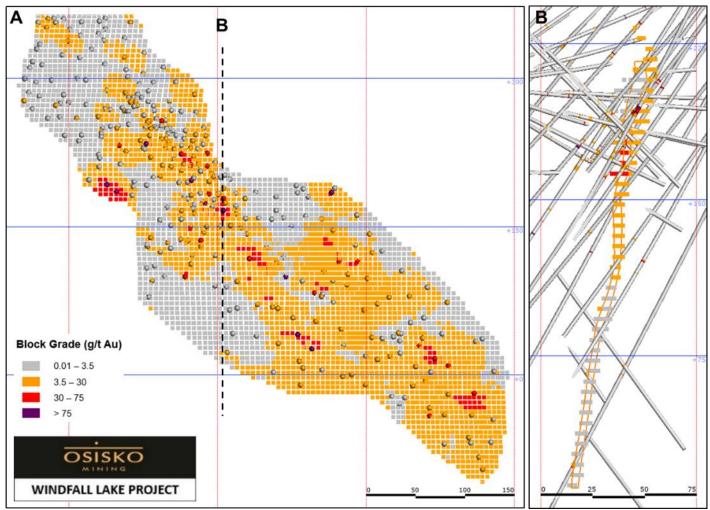
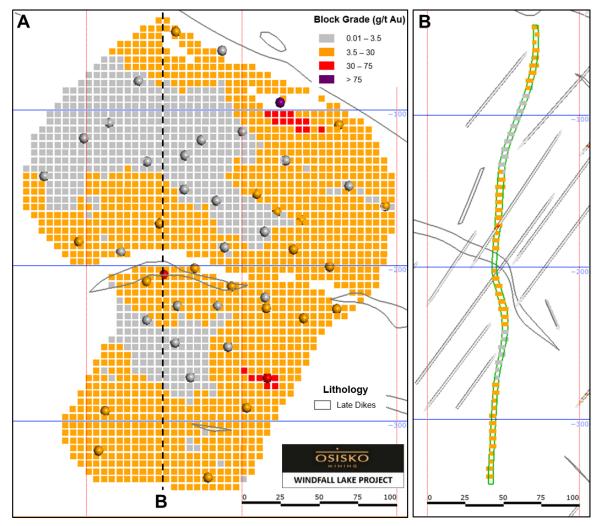

Visual comparisons were also conducted between OK, Inverse Distance Squared ("ID²") and Nearest Neighbour ("NN") interpolation scenarios. The scenarios used for the resource estimate, i.e. ordinary kriging, produced a block grade distribution representative of the mineralization style observed in the deposit.

Table 14.15 Composite Search Specifications by Interpolation Pass


		Maximum	Minimum					
	Pass 1		Pass 2		Pass 3		Number of	Number
Area	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Composites Per Drill Hole	of Drill Holes
Lynx Main	5	12	3	12	3	12	2	2
Lynx (except Lynx Main)	3	12	3	12	3	12	2	2
Underdog	5	12	3	12	3	12	2	2
Main zone (except F-Zones)	5	18	3	18	3	18	2	2
F-Zones	5	12	3	12	3	12	2	2

INTERNATIONAL LIMITED | consultant

Figure 14.11 Gold Grade Distribution in Mineralized Zone 304, Lynx Main Corridor

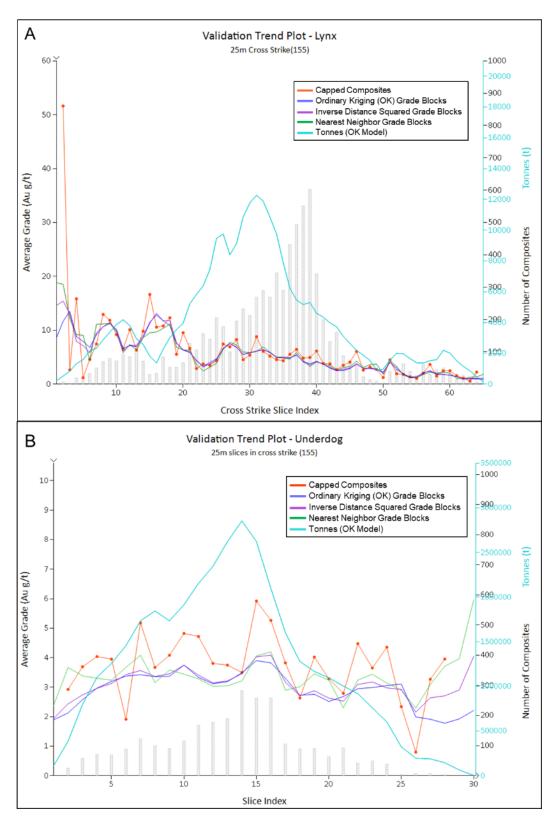
A) Longitudinal view looking N-NW - the dashed line shows the location of the cross-section; B) Cross section looking NE (±10 m). Source: Osisko, 2020

A) Longitudinal view looking N-NW - the dashed line shows the location of the cross-section; B) Cross section looking NE (± 10 m). Source: Osisko, 2020

14.12.2 Statistical Validation

Table 14.16 compares the global mean of the blocks for all three interpolation scenarios (all classified blocks weighted on their volume inside a mineralized zone) to the composite grades for each mineralized zone at a zero cut-off grade. The comparison was done using the composite grades capped at the highest capping value (or first pass capping limit).

The comparison between composite and block grade distributions did not identify significant issues. As expected, the block grades are generally lower than the composite grades.


Table 14.16 Comparison of the Block and Composite Mean Grades at a Zero Cut-Off Grade for Blocks of all Resource Classes

Area	Number of Composites	Composite Mean	Number of Blocks	OK Model Mean	ID ² Model Mean	NN Model Mean
		(g/t Au)		(g/t Au)	(g/t Au)	(g/t Au)
Lynx Main	4,332	5.1	58,075	4.5	4.5	4.5
Lynx 4-HW	2,397	7.1	114,990	6.8	6.8	6.7
Triple Lynx	576	6.8	63,735	5.6	5.6	5.7
Lynx SW	489	2.1	22,347	1.9	2.0	2.1
Underdog	2,751	4.1	266,033	3.2	3.3	3.3
Zone 27	4,773	3.3	80,379	2.9	2.9	3.0
Caribou	4,201	4.5	177,290	2.7	2.8	2.9
Mallard	846	2.5	44,708	2.7	2.8	2.9
Windfall North	371	1.7	39,511	1.5	1.5	1.3
F-Zones	522	2.7	39,216	2.4	2.3	2.3

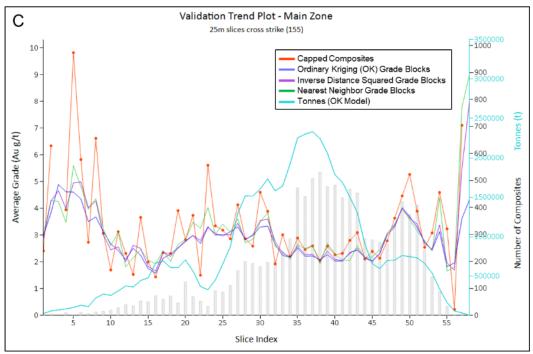

Figure 14.13 illustrates the cross-section swath plots to compare the block model grades with the composite grades for each major area. In general, the model correctly reflects the trends shown by the composites, with the expected smoothing effect.

Figure 14.13 Cross-section Swath Plots by Mineralization Area

A) Lynx, B) Underdog, C) Main Zone (except F Zones).

Source: Osisko, 2020

14.13 CUT-OFF PARAMETERS

The selected cut-off grade of 3.5 g/t Au was used to determine the mineral potential of the deposit and report the mineral resources. The underground cut-off grade ("UCoG") determination was based on the parameters presented in Table 14.17.

Table 14.17
Parameters Used to Estimate the UCoG for the 2020 Mineral Resource Estimate

Parameters	Unit	Value
Gold price	USD/oz	1,325
Exchange rate	USD/CAD	1.30
Mill recovery	%	93
Selling cost	\$/oz	5.00
Royalties (NSR)	%	2
Mining cost	\$/t milled	100.00
G&A cost	\$/t milled	30.00
Processing cost	\$/t milled	40.00
Transportation	\$/t milled	2.00
Environment	\$/t milled	4.00
Calculated cut-off grade	g/t Au	3.5

211

14.14 MINERAL RESOURCE CLASSIFICATION

14.14.1 Mineral Resource Classification Definition

The resource classification definitions used for this report are those published by the Canadian Institute of Mining, Metallurgy and Petroleum in their documents "CIM Definition Standards - For Mineral Resources and Mineral Reserves" and "CIM Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" published in May 10, 2014 and November 2019, respectively. Refer to the definitions section.

14.14.2 Mineral Resource Classification for the Windfall Lake Gold Deposit

Several criteria were considered for the resource classification into the inferred and indicated categories:

- The distance to closest drill hole.
- The interpolation pass.
- The number of holes informing a grade block.
- The variogram ranges.
- The anisotropy ratio of search ellipsoids
- The level of confidence in the continuity of the dikes and in the geological understanding of the mineralized zones.

Table 14.18 presents the main criteria that were used to categorize the blocks in each resource class.

Table 14.18

Main Criteria for Resource Classification

Resource Category	Drill Hole Spacing (m)	Number of Holes Informing a Block	Interpolation Pass	Reliability of the Geological and Grade Continuity
Indicated	≤ 25	Mostly ≥ 3	Mostly first pass	Good
Inferred	≤ 100	≥ 2	First to third pass	Moderate

A series of outline rings (or clipping boundaries) were created manually for each mineralized zone on longitudinal views using the classification criteria described above. The resource boundaries were drawn keeping in mind that a significant cluster of blocks is necessary to delineate a resource category. In some cases, blocks that did not meet the criteria of a category were upgraded to that category to homogenize the class group (i.e. no spotted dog effect).

Blocks were assigned to the chosen resource category based on the classification clipping boundaries.

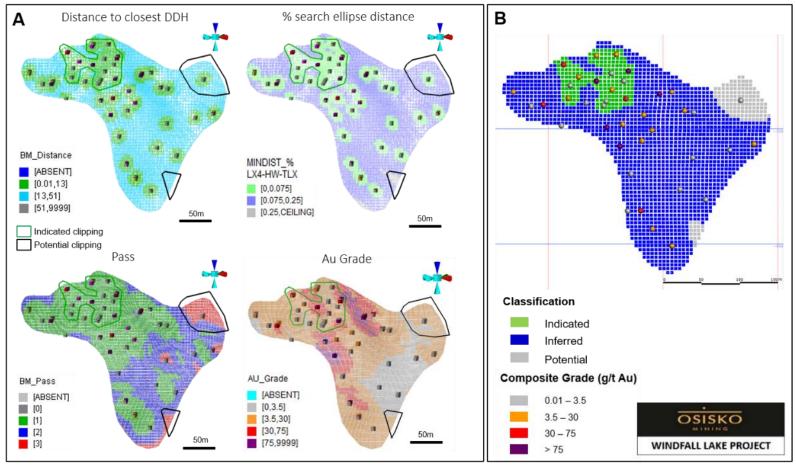
In some areas, interpolated blocks remained unclassified due to the lack of confidence in grade and/or mineralization continuity. This mainly occurs where drill hole spacing is wide. Measured resources were not defined at this stage for the Project.

Figure 14.14 illustrates an example of the resource classification decision making in zone 313 in the Lynx 4 HW corridor.

14.15 CONSTRAINING MINEABLE VOLUMES

The mineral resource reported herein is not solely based on the application of a cut-off grade. In order to satisfy the reasonable prospects for eventual economic extraction for underground mining scenarios, as required by the CIM, blocks were included or excluded from the mineral resource based on the following mineable shape considerations:

- 1. Isolated and discontinuous blocks above the reported cut-off grade were excluded from the mineral resource.
- 2. Must-take material, i.e. isolated blocks below cut-off grade located within a potentially mineable volume, were included in the mineral resource.


The application of these conditions was performed in StudioRM on indicated and inferred blocks, on a per zone basis and for all block models. The process involved grouping the blocks above cut-off grade and grouping blocks below cut-off grade, followed by filtering in or out of the resource the block clusters based on their volume and grade category.

The clusters of blocks above cut-off grade for which the volume was less than 100 m³ (equivalent to the volume of two parent blocks) were excluded from the mineral resource. Similarly, blocks below cut-off grade surrounded by blocks above cut-off grade (sometimes referred to must-take material) were including in the mineral resource.

Figure 14.15 shows a comparison between the blocks selected above cut-off grade and the actual blocks reported, including the blocks below cut-off grade added in the mineral resource.

14.16 MINERAL RESOURCE ESTIMATE

Given the density of the processed data, the search ellipse criteria, the drilling density and the specific interpolation parameters, the current mineral resource estimate was classified as Indicated and Inferred resources. The present mineral resource estimate was based on data of reliable quality, and reasonable hypotheses and parameters following the CIM Definition Standards.

A) Main criteria used for the decision-making in the drawing of the resource clipping boundaries; B) Resource classification result. Source: Osisko, 2020

Α Au grade Composite Grade (g/t Au) 0.01 - 3.53.5 - 3030 - 75> 75 100m Blocks reported in the mineral resource В Reported Blocks Blocks > 3.5 g/t Au "Must take" material OSISKO 100m WINDFALL LAKE PROJECT

Figure 14.15
Example of Blocks Discarded or Included in the Mineral Resource in Zone 337, Lynx Area

A) Selection of blocks above 3.5 g/t Au; B) Reported blocks based on the mineable shape criteria. Source: Osisko, 2020

Table 14.19 displays the results of the 2020 mineral resource estimate for the Windfall Lake gold deposit at the 3.5 g/t Au cut-off grade. Table 14.20 displays the in situ resource and sensitivity at other cut-off grade scenarios for all areas. The reader should be cautioned that the figures provided in Table 14.20 should not be interpreted as a mineral resource statement. The reported quantities and grade estimates at different cut-off grades are presented with the sole purpose of demonstrating the sensitivity of the resource model to the selection of different reporting cut-off grades.

Table 14.19
Windfall Lake Gold Deposit Indicated and Inferred Mineral Resources by Area

				rce (cut-off grade 3.5 g/t Au)			
Mineralized	Ind	icated Resour	rces	Inf	Inferred Resources		
Area	Tonnes ('000 t)	Grade (g/t Au)	Ounces Au ('000 oz)	Tonnes ('000 t)	Grade (g/t Au)	Ounces Au ('000 oz)	
Lynx (1)	1,817	11.3	661	6,349	10.9	2,233	
Underdog	561	8.0	145	4,776	6.9	1,067	
Main Zone (2)	1,749	7.1	401	3,407	5.8	638	
Total	4,127	9.1	1,206	14,532	8.4	3,938	

Notes

- (1) Lynx area includes: Lynx Main, Lynx HW, Lynx SW and Lynx 4, Triple Lynx.
- (2) Main area includes: Zone 27, Caribou, Mallard, Windfall Nord and F-Zones.

Mineral Resource Estimate notes:

- 1. The Windfall 2020 mineral resource estimate, with an effective date of January 3, 2020, was (i) prepared by Judith St-Laurent, P.Geo (OGQ #1023)., B.Sc., Senior Resource Geologist of Osisko and (ii) reviewed and approved by Charley Murahwi, M.Sc., P.Geo., FAusIMM, each of whom is a qualified person within the meaning of NI 43-101. Mr. Murahwi is an employee of Micon International Limited and is considered to be independent of Osisko for purposes of section 1.5 of NI 43-101.
- 2. The Windfall mineral resource estimate is compliant with the May 10, 2014 CIM Definition Standards For Mineral Resources and Mineral Reserves and the November 29, 2019 CIM Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines for reporting mineral resources and reserves.
- 3. Resources are presented undiluted and in situ and are considered to have reasonable prospects for economic extraction. Isolated and discontinuous blocks above the stated cut-off grade were excluded from the mineral resource estimate. Must-take material, i.e. isolated blocks below cut-off grade located within a potentially mineable volume, were included in the mineral resource estimate.
- 4. As of January 3, 2020, the database comprised a total of 2,941 drill holes for 1,101,008 m of drilling in the areal extent of the mineral resource estimate, of which 2,280 drill holes (918,273 m) were completed and assayed by Osisko. The drill hole grid spacing is approximately 25 m x 25 m for infill drilling and larger for extension drilling.
- 5. All core assays reported by Osisko were obtained by analytical methods described above under Quality Control and Reporting Protocols.
- 6. Geological interpretation of the deposit is based on lithologies, mineralization style, alteration and structural features. Most mineralized envelopes are subvertical, striking NE-SW and plunging approximately 40° towards the North-East. The 3D wireframing was generated in Leapfrog Geo, a modelling software, from hand selections of mineralized intervals. The mineral resource estimate includes a total of 292 tabular, sub-vertical gold-bearing domains defined by individual wireframes with a minimum true thickness of 2.0 m.
- 7. Assays were composited within the mineralized domains into 2.0-m long composites. A value of 0.00125 g/t Au (¼ of the detection limit) was applied to unassayed core intervals.
- 8. High-grade composites were capped. Capping levels were determined in each area from statistical studies on groups of zones sharing similar mineralization characteristics. Capping levels vary from 15 g/t Au to 130 g/t Au and are applied using a three-step capping strategy where the capping value decreases as interpolation search distances increase.
- 9. Five block models were produced using DatamineTM Studio RM Software. The models are defined by parent cell sizes of 5 m NE, 2 m NW and 5 m height, and sublocked to minimum subcell sizes of 1.25 m NE, 0.5 m NW and 1.25 m height.
- 10. Ordinary Kriging (OK) based interpolations were produced for each area of the Windfall gold deposit. Estimation parameters are based on composite variography analyses.
- 11. Density values of 2.8 were applied to the mineralized zones.
- 12. The Windfall mineral resource estimate is categorized as indicated and inferred mineral resource as follows:

- The indicated mineral resource category is manually defined and encloses areas where drill spacing is generally less than 25 m. Blocks are informed by a minimum of two drill holes and reasonable geological and grade continuity is shown.
- The inferred mineral resource category is manually defined and encloses areas where drill spacing is less than 100 m. Blocks are informed by a minimum of two drill holes and reasonable, but not verified, geological and grade continuity is observed.
- 13. The mineral resource is reported at 3.5 g/t Au cut-off. The cut-off grade is calculated using the following economic parameters: gold price at 1,325 US\$/oz, exchange rate at 1.30 USD/CAD, 93% mill recovery; selling cost at 5 C\$/oz, 2% NSR royalties, mining cost at 100 C\$/t milled, G&A cost at 30 C\$/t milled, processing cost at 40 C\$/t, transportation cost at 2 C\$/t considering mill at site and environment cost at 4 C\$/t.
- 14. Estimates use metric units (metres, tonnes and g/t). Metal contents are presented in troy ounces (metric tonne x grade / 31.10348).
- 15. Micon International Limited, and its QP, are not aware of any known environmental, permitting, legal, title-related, taxation, socio-political or marketing issues, or any other relevant issue, that could materially affect the mineral resource estimate.
- 16. These mineral resources are not mineral reserves as they do not have demonstrated economic viability. The quantity and grade of reported inferred mineral resources in this news release are uncertain in nature and there has been insufficient exploration to define these inferred mineral resources as indicated or measured mineral resources. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

Table 14.20
Windfall Lake Project Indicated and Inferred Mineral Resource Sensitivity Table.

Cut-off	Inc	dicated Resour	ces	Inferred Resources		
Grade (g/t Au)	Tonnes ('000 t)	Grade (g/t Au)	Ounces Au ('000 oz)	Tonnes ('000 t)	Grade (g/t Au)	Ounces Au ('000 oz)
5.0	2,792	11.4	1,026	9,495	10.7	3,258
4.5	3,150	10.7	1,081	10,844	9.9	3,464
4.0	3,586	9.9	1,141	12,566	9.2	3,701
3.5	4,127	9.1	1,206	14,532	8.4	3,938
3.0	4,773	8.3	1,274	17,213	7.6	4,218

Figure 14.16 to Figure 14.22 show the distribution of the blocks reported in the mineral resource in the Lynx, Underdog, Main zone and F-zones areas of the Windfall Lake deposit.

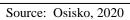
Figure 14.16
3D View Looking North Showing the Block Grades of the Reported Mineral Resource in the Lynx Corridor

125

250

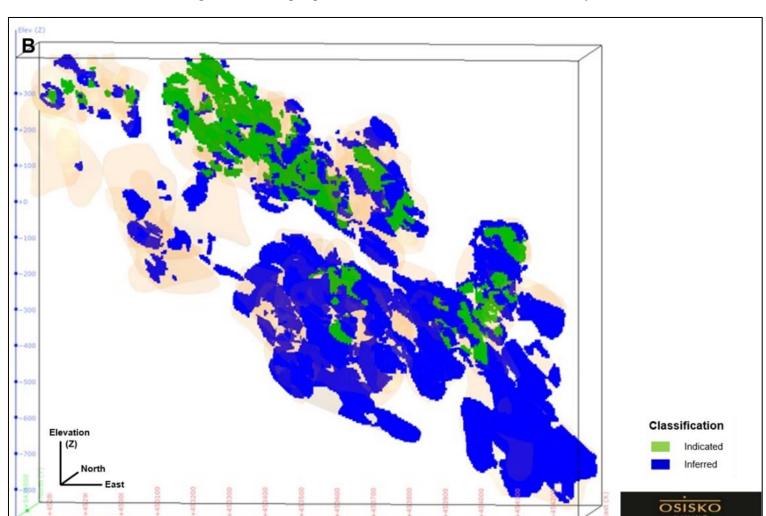
375

INTERNATIONAL LIMITED | mineral industry consultants


Block Grade (g/t Au) 0.01 – 3.5

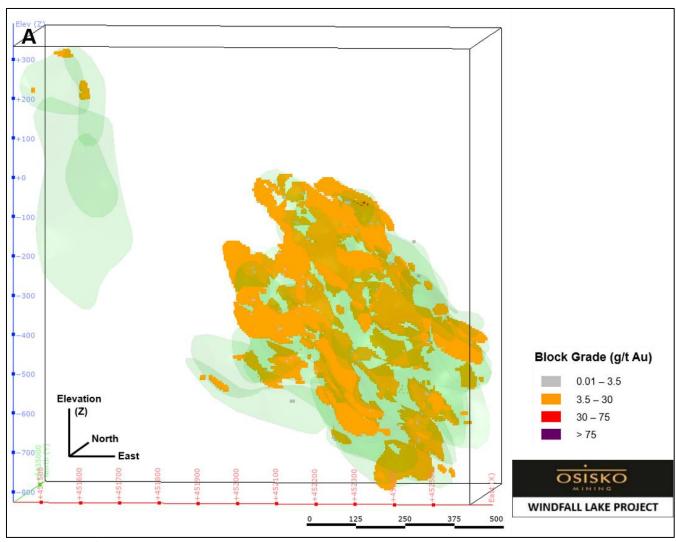
3.5 - 30

30 – 75 > 75


OSISKO
WINDFALL LAKE PROJECT

218

Elevation


(Z)

WINDFALL LAKE PROJECT

Figure 14.17
3D View Looking North Showing Reported Mineral Resource Classification in the Lynx Corridor.

Figure 14.18
3D View Looking North Showing the Block Grades of the Reported Mineral Resource in the Underdog Corridor

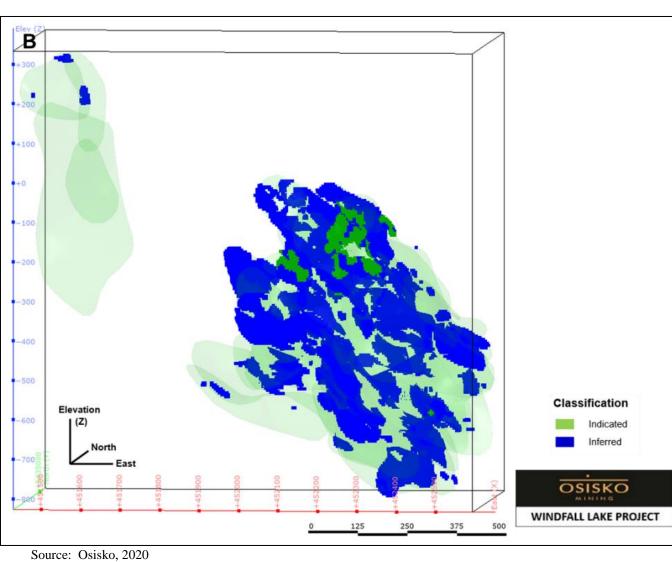


Figure 14.19
3D View Looking North Showing the Reported Mineral Resource Classification in the Underdog Corridor

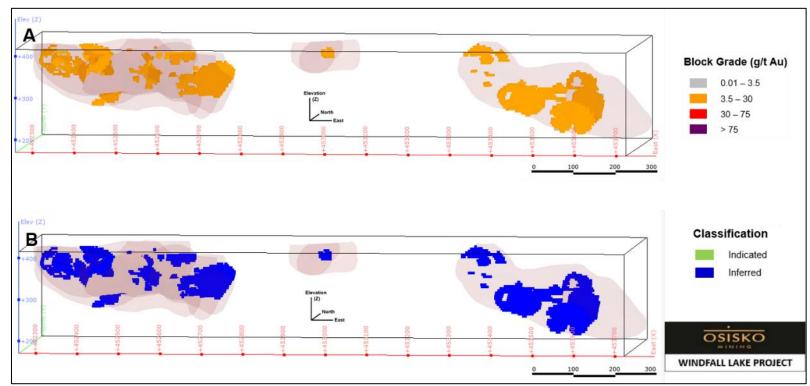

Block Grade (g/t Au) 0.01 - 3.53.5 - 30Elevation 30 - 75OSISKO WINDFALL LAKE PROJECT

Figure 14.20
3D View Looking North Showing the Block Grades of the Reported Mineral Resource in the Main Zone Corridor (Excluding F-Zones)

-100 Classification Elevation Indicated Inferred osisko

WINDFALL LAKE PROJECT

Figure 14.21
3D View Looking North Showing the Reported Mineral Resource Classification in the Main Zone Corridor (Excluding F-Zones)

A) Block grade (g/t Au); B) Indicated and inferred resource classification

14.17 COMPARISON TO PREVIOUS MINERAL RESOURCE ESTIMATES

The previous mineral resource estimate published on the Windfall Lake Project was filed on June 12, 2018 (see Technical Report and Mineral Resource Estimate for the Windfall Lake Project, Windfall Lake and Urban-Barry Properties, effective data May 14, 2018) and is available on SEDAR (www.sedar.com).

An update of the mineral resource for the Lynx area was published in a press release on November 27, 2018 (effective date November 27, 2018). The 2019 drilling increased the indicated mineral resource estimate by 60% (adding 452,000 ounces) and increased the inferred mineral resource estimate by 66% (adding 1,572,000 ounces).

14.18 MICON RESOURCE VERIFICATION

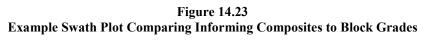
The QP has directed several checks of the updated Windfall Lake mineral resource estimate as set out below.

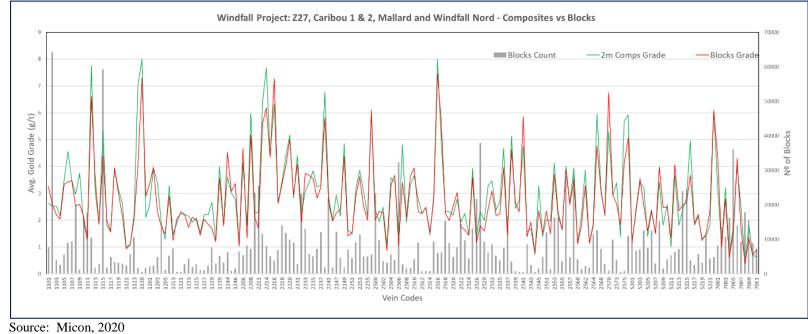
14.18.1 Wireframes

All wireframes were provided to Micon as Leapfrog project files. These were opened and reviewed on-screen. All interpreted veins for the multiple zones were checked to make certain that the informing data have been honored. The QP agrees with all interpretations.

14.18.2 Composites and Grade Capping

The composites were calculated at a 2-m base length with an equal distribution option for those intercepts that are not an even multiple of 2. All composites were capped at three different grades which were applied according to 3 different distances determined from variography ranges.


14.18.3 Estimation Parameters


In Datamine StudioRM, Osisko created estimation parameters for the different veins including use of the dynamic anisotropy function to optimize the searching strategy in the different vein orientations. These parameters were reviewed and the QP has accepted them as justified and appropriate.

14.18.4 Block Models and Grade Interpolation Results

Various block models were constructed to estimate the Windfall mineral resource including Main zone (Windfall), F zones, Underdog and Lynx.

The block model grades were reviewed checking the statistics of the average gold grades from the informing composites against the blocks. A swath plot showing this comparison is presented in Figure 14.23

The block models were also visually inspected against informing samples using 3D visualizers and vertical sections on-screen.

14.18.5 Resource Categorization

The mineral resource categorization was done individually for each vein taking care to avoid the "spotted dog effect" and cleaning up any isolated blocks. All blocks were categorized in the Indicated and Inferred category and, in the QPs opinion the categorization was appropriate.

14.18.6 Reporting Parameters

The reporting parameters for the Windfall estimate are considered to be NI 43-101 compliant. Osisko used a rigorous methodology using the Datamine MRO (Mineable Reserve Optimizer) tool to select the suitable underground mining shapes for reporting mineral resource which meet the requirement of reasonable prospect for economic extraction. The resulting mineral resource tabulation by Micon is presented below in Table 14.21.

Table 14.21 Windfall Gold Deposit Mineral Resource Estimate by Area (3.5 g/t Au cut-off)

Area	Indicated			Inferred		
	Tonnes (1)	Grade	Ounces Au (1)	Tonnes (1)	Grade	Ounces Au (1)
	(000 t)	(Au g/t)	(000 oz)	(000 t)	(Au g/t)	(000 oz)
Lynx ²	1,817	11.3	661	6,349	10.9	2,233
Underdog	561	8.0	145	4,776	6.9	1,067
Main ³	1,749	7.1	401	3,407	5.8	638
Total	4,127	9.1	1,206	14,532	8.4	3,938

Notes: 1. Values are rounded to nearest thousand which may cause apparent discrepancies.

- 2. Lynx area includes: Lynx Main, Lynx HW, Lynx SW and Lynx 4, Triple Lynx.
- 3. Main area includes: Zone 27, Caribou, Mallard, Windfall Nord and F-zones.
- 4. See Windfall Gold Deposit Mineral Resource Estimate Notes further below.

Using the block models and Datamine Software to prepare its resource tabulation, Micon was able to replicate exactly the same numbers presented by Osisko.

14.18.7 Conclusions

The QP is satisfied that the procedures used to estimate the mineral resources at the Windfall Lake Project are appropriate and the results can be disclosed to the public.

15.0 MINERAL RESERVE ESTIMATES

As no current feasibility or pre-feasibility studies have been completed at this time no mineral reserves have been estimated for the Windfall Lake Project.

16.0 MINING METHODS

As no current preliminary economic assessment, feasibility or pre-feasibility studies have been completed at this time, completion of this section is not required.

17.0 RECOVERY METHODS

As no current preliminary economic assessment, feasibility or pre-feasibility studies have been completed at this time, completion of this section is not required.

18.0 PROJECT INFRASTRUCTURE

As no current preliminary economic assessment, feasibility or pre-feasibility studies have been completed at this time, completion of this section is not required.

19.0 MARKET STUDIES AND CONTRACTS

As no current preliminary economic assessment, feasibility or pre-feasibility studies have been completed at this time, completion of this section is not required.

20.0 ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT

As no current preliminary economic assessment, feasibility or pre-feasibility studies have been completed at this time, completion of this section is not required.

21.0 CAPITAL AND OPERATING COSTS

As no current preliminary economic assessment, feasibility or pre-feasibility studies have been completed at this time, completion of this section is not required.

22.0 ECONOMIC ANALYSIS

As no current preliminary economic assessment, feasibility or pre-feasibility studies have been completed at this time, completion of this section is not required.

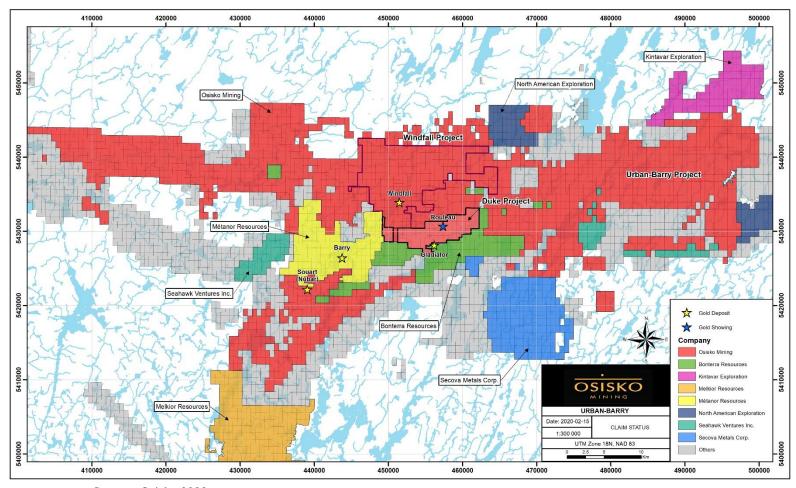
23.0 ADJACENT PROPERTIES

23.1 WINDFALL LAKE AND URBAN-BARRY PROPERTIES

Exploration in the Urban-Barry greenstone belt has led to the discovery of numerous gold prospects, all within a 20 km radius surrounding the Windfall Lake deposit. Three properties holding promising gold deposits in adjacent projects are presented below and on Figure 23.1. The remainder of the tenements in the region principally consist of small land packages owned by junior exploration companies or prospectors. Recent exploration on adjacent properties by competitor companies and independent prospectors has focused on gold and base metals.

The authors have not verified the information from the adjacent properties. This information is not necessarily indicative of the mineralization on the Windfall Lake and Urban-Barry properties.

23.1.1 Gladiator Gold Deposit - Bonterra Resources


Located approximately 10 km southeast of the Windfall Lake deposit, the Gladiator deposit is reported to contain indicated mineral resources of 743,000 tonnes, grading 8.46 g/t Au (3.5 g/t Au cut-off grade) for 202,000 ounces and inferred mineral resources of 3,065,000 tonnes, grading 9.10 g/t Au (3.5 g/t cut-off grade) for 897,000 ounces of gold. The mineral resource estimate and technical report were completed by SGS Geological Services (2019) with an effective date of May 24, 2019 and is available on the company's filings on SEDAR. The Gladiator deposit is described as highly altered mafic volcanics cross-cut by syenite and quartz porphyry intrusions. Mineralization is mainly hosted at the contact between the wall rocks and intrusions with smoky quartz veins. At least five distinct mineral zones have been identified.

23.1.2 Barry Gold Deposit - Bonterra Resources (Formerly Métanor Resources Inc.)

The Barry Gold deposit is located approximately 10 km southwest of the Windfall Lake deposit. The Barry Gold Deposit was recently acquired by Bonterra Resources on September 24th, 2018. An NI 43-101-compliant technical report on an updated mineral resource estimate was carried out by SGS (2019) with an effective date of May 24, 2010 and is available on the company's filings on SEDAR. It reported 2.05 Mt at 5.84 g/t Au for 385,000 ounces of gold in the indicated category and 2.7 Mt at 5.14 g/t Au for 453,000 ounces of gold in the inferred category. The former Barry pit is reported to have produced 43,682 ounces of gold between 2008 and 2010.

Gold mineralization at the Barry deposit is located in silicified-carbonatized basalts near the contacts with quartz-feldspar porphyry dikes and in albite-carbonate-quartz veins adjacent to altered wall rocks.

Figure 23.1 Properties and Mineralization in the Vicinity of the Windfall Lake and Urban-Barry Properties as of January, 2020

23.1.3 Lac Rouleau - Osisko Mining Inc. (Formerly Beaufield Resources Inc.)

On October 19th, 2018, Osisko acquired Beaufield Resources Inc. which included the Lac Rouleau Claim Block located approximately 5 km from the Windfall Lake deposit. It is reported to contain three main gold mineralized zones (Zones 14, 17 and 18) and six showings (1, 2, 3, 4, Quesnel and Cominco showings) mainly surrounding Rouleau Lake. Mineralization is generally hosted in altered volcanic rocks adjacent to quartz-feldspar porphyry intrusions. Geologica Group-Conseil produced an NI 43-101F1 technical report (2018); however, no mineral resource estimate was carried out in the Lac Rouleau Claim Block.

24.0 OTHER RELEVANT DATA AND INFORMATION

No additional information or explanation is necessary to make this technical report understandable and not misleading.

25.0 INTERPRETATION AND CONCLUSIONS

Since project acquisition, continued exploration at the Windfall Lake - Urban-Barry project has resulted in the nearly continuous discovery of new zones and concomitant increases in the mineral resources.

The deposit has been classified as a structurally-controlled orogenic gold deposit in an Archean greenstone belt setting.

25.1 MINERAL RESOURCE UPDATE

The previous mineral resource estimate published on the Windfall Lake Project was released on August 1, 2018 (see "Preliminary Economic Assessment of the Windfall Lake Project, Québec, Canada", effective date July 12, 2018) followed by an update of the mineral resource for the Lynx area published in a press release on November 27, 2018 (with an effective date of November 27, 2018).

The 2020 mineral resource estimate reflects the current status of the geological interpretation supported by infill drilling, underground mapping and bulk sample results. The resource includes newly defined mineralization zones, namely Lynx 4-HW and Triple Lynx areas in the Lynx corridor, as well as additional drilling information in the Lynx, Underdog and Main zone areas. The mineralization wireframes, totalling 292 gold-bearing individual solids, were modelled based on the geological interpretation of the deposit involving various lithological environments, mineralization style, alteration and structural features.

The key assumptions and block modeling parameters were reviewed or newly defined, depending on the infill drill holes added in some zones and extension of mineralization envelopes, or newly discovered zones.

The gold price, project costs and exchange rate assumptions for the cut-off grade determination were revised to reflect the 2020 market conditions.

The 2020 resource area measures 3.0 km on strike and 1.7 km wide and is 1.2 km deep. The estimate was based on a compilation of 2,941 surface and underground drill holes.

The mineral resources in the 2020 mineral resource estimate are not mineral reserves as they do not have demonstrated economic viability. The estimate is categorized into the indicated and inferred resources categories based on data density, search ellipse criteria, drill hole density, and reliability of the geological and grade continuity. The effective date of the estimate is January 3, 2020.

The QP considers the report and resource estimate to be reliable and thorough, based on quality data, reasonable hypotheses and parameters compliant with NI 43 101 criteria and the CIM Definition Standards.

After conducting a detailed review of all pertinent information for the Windfall Lake Project and completing the 2020 mineral resource estimate, the following conclusions have been drawn:

- Geological and reasonable grade continuity have been demonstrated for 292 gold-bearing zones in the project.
- For an underground mining scenario, using a cut-off grade of 3.50 g/t Au, it is estimated that the Project contains 4.127 Million tons at an average of 9.1 g/t Au for 1,206,000 ounces of gold in the Indicated category and 14.532 Million tons at an average of 8.4 g/t Au for 3,938,000 ounces of gold in the Inferred category (Section 14.16).
- It is considered likely that additional diamond drilling would upgrade much of the inferred resources to indicated resources.
- The potential for adding new resources with additional drilling on the project is considered to be good at depth, mainly in the Lynx and Underdog areas. The mineralization is open down plunge and towards the northeast.

25.2 METALLURGICAL TESTWORK

Metallurgical testwork was conducted using material from various zones within the Windfall deposit including: Zone 27, Caribou and Lynx. Representative samples were selected considering different rock types, precious metal grades and special location (depth) within the deposit. The projected metallurgical recovery was established using the results of gravity recovery testwork followed by leaching testwork (CIL) on a composite from the Caribou, Zone 27 and Lynx zones. Limited testwork was performed on Lynx mineralization due to sample availability. No testwork was performed on the Underdog zone, however, based on mineralization similarities between the Caribou and Underdog zones, the average gold recovery for Caribou and Zone 27 was assigned to Underdog. Additional metallurgical recovery testwork will be conducted on Lynx and Underdog material. Additional grindability indices will be measured for Underdog.

Both bulk samples (Zone 27 and Lynx) presented higher gravity recovery than the values observed during the PEA gravity testwork program (see Table 13.10). This difference in Au gravity recovery should be studied in the next phase of the Project.

25.3 PROCESS FLOWSHEET

Based on the testwork conducted, the process flowsheet consists of primary crushing, followed by a grinding circuit consisting of a SAG mill (in open circuit) and ball mill (in close circuit with cyclones). A gravity circuit followed by intensive leaching recovers coarse gold from the cyclone underflow, while the cyclone overflow is treated in a carbon-in-leach circuit. Gold is recovered in an ADR circuit followed by EW cells.

25.4 RISK AND OPPORTUNITIES

Table 25.1 identifies the significant internal risks, potential impacts and possible risk mitigation measures that could affect the future economic outcome of the project as identified by Osisko. The list does not include the external risks that apply to all mining projects (e.g., changes in metal prices, exchange rates, availability of investment capital, change in government regulations, etc.). Significant opportunities that could improve the economics, timing and permitting are identified in Table 25.2. Further information and studies are required before these opportunities can be included in the project economics.

The QP has reviewed the tables and agrees with them.

Table 25.1 Project Risks (Preliminary Risk Assessment)

Area	Risk Description and Potential Impact	Mitigation Approach
	Windfall Lake Deposit	Windfall Lake deposit
	1. Gold grades estimated inside the mineralization panels	Surface and underground definition drilling will
	could vary due to the presence of nugget effect in the gold	increase the definition of the gold grade
	distribution of the deposit.	distribution. The planned beneficiation plant
	2. The variable geometry of the dikes and structural	includes a gravity recovery circuit for coarse gold.
Geology and	features is complex to model, as is the modelling of the	2. Underground mapping and definition drilling
Mineral Resources	mineralization zones. The locations of mineralization	will help define the shapes of the zones and
	zones could be off slightly with variable shapes locally.	confirm their geological and grade continuity.
	3. The structural model is not entirely integrated as it is	3. Complete the structural study and update the
	ongoing along with the drilling program. The shape and	structural and mineralization models based on the
	geometry of the mineralization zones could be impacted	conclusions of the study.
	by further refinements of the structural model.	
	Underdog recovery is lower than assigned as no recovery	Perform metallurgical recovery testwork on
Metallurgy	testwork was done on this material. Therefore the	Underdog material.
Wictariargy	recovery was assigned based on mineralogical	
	similarities.	
	Lynx recovery lower than expected as limited testwork	Perform additional metallurgical testwork on Lynx
Metallurgy	was performed on Lynx material according to a whole ore	suiting the selected flowsheet.
	leach-CIL flowsheet.	

Area	Opportunity Explanation	Benefit
	Windfall Lake deposit	Windfall Lake deposit
	1. As the deposit remains open at depth, additional exploration	1. Potential to increase resources.
	drilling in the vicinity of the Windfall Lake Project could increase	2. Potential to convert Inferred resources to the Indicated
	mineral resources.	category.
	2. Reducing the drill spacing by adding infill drilling could	3. Better understanding and definition of the structural and
Geology	eventually upgrade Inferred resources to the Indicated category.	mineralization models.
and	3. Continuing underground mapping in the exploration ramp could	4. Potential to upgrade some Inferred resources to the
Mineral	increase the understanding of the organization of the dikes and the	Indicated category.
Resources	geometry of the structural features and mineralization corridors.	5. Potential to capture gold that was not included in the
resources	4. Underground definition drilling could increase the confidence in	mineralization zones and increase mineral resources.
	the distribution of the mineralization.	6. Increase revenue estimation due to silver recovery. Will
	5. Integrating the ongoing structural model could continue to	lead to better estimate of carbon requirement in the leaching
	increase the confidence in the geometry and shapes of the	circuit.
	mineralization zones.	
	6. Add silver assay in the block model.	
	1. Perform additional gravity testwork and understand discrepancy	1. Higher gravity recovery, better performance in leaching.
	between e-GRG and bulk sample results.	2. a) Optimizing grind size may reduce size of grinding
	2. Optimizing CIL testwork:	mills and reduce CAPEX
	a. Target optimum P80.	b) Reducing CIL retention time will lower capital
	b. Target optimum leach time.	investment and may reduce the operating cost by
Processing	c. Optimize pre-treatment by reducing reagent consumption (CN).	reducing reagent consumption
		c) Oxidize sulphides and reduce cyanide consumption.
		Use of leach nitrate may reduce CN consumption and
		leach time. Potential for reduction of CAPEX/OPEX.
		Lower CN addition could reduce reagents used in
		Cyanide destruction

26.0 RECOMMENDATIONS

26.1 WINDFALL LAKE AND URBAN-BARRY PROPERTIES, RECOMMENDED FUTURE WORK

Based on the results of the 2020 mineral resource estimate, and considering the project's advancement as well as the information provided by the exploration ramp at Windfall, Micon recommends that the project be advanced towards the feasibility stage. In preparation for the feasibility study, additional work, including conversion drilling and further bulk samples, in two phases, is warranted.

A two-phase program of work is proposed by Osisko. Following positive phase 1 and 2 results, a feasibility study would then be recommended.

26.1.1 Phase 1

In Phase 1, Osisko has recommended addressing the following technical aspects of the project:

26.1.1.1 Conversion drilling on the Windfall Project

Conversion drilling is recommended on the project in order to upgrade Inferred resources to the indicated and measured category. A drill spacing of 25 m is recommended for the indicated category. Additional drilling to evaluate the extension of the Triple Lynx zones up-plunge and down-plunge is also recommended. Approximately 200,000 m should be dedicated to this purpose with a significant amount performed using underground drills.

26.1.1.2 Exploration drilling

The objective of the exploration drilling program would be to continue investigating untested gold targets on the entire Windfall Project as well as any potential lateral and depth extensions of known mineralization. Positive results would potentially add inferred resources.

Approximately 30,000 m should be dedicated to this purpose.

On the Urban-Barry regional exploration, Osisko has recommended that exploration work should be performed to assess the potential outside of the actual footprint of the known deposit along favourable geological features present regionally, such as the Bank fault. To properly explore that extensive regional structure, a 30,000 m drilling program is recommended.

26.1.1.3 Metallurgical testing

Additional metallurgical testwork is recommended on mineralized material from the Windfall Lake gold deposit. The testwork program should include additional comminution and metallurgical tests (gravity separation followed by cyanidation of mineralized ore). Additionally, rheological tests should be performed based on the selected flowsheet and target

particle size. It is recommended that the testwork is conducted on representative composite samples from Main, Lynx and Underdog.

26.1.2 Phase 2

In Phase 2, Osisko has recommended addressing the following technical aspects of the project.

26.1.2.1 Bulk Sampling

A third bulk sample in the Triple Lynx area would also bring additional information as well as additional underground drilling stations. This will gain a better understanding of the deposit in several areas. It will also validate different mining and metallurgical assumptions as well as improving the litho-structural model using data from underground mapping collected during development.

26.1.2.2 Geotechnical and Hydrogeological survey

Additionally, a geotechnical survey should be performed in order to cover the current expansion of the resource base footprint. Also, hydrogeological measurements should be performed on the Bank fault for future planning needs.

26.1.2.3 NI 43-101 Mineral Resource Estimate Update on the Windfall Project and Feasibility Study

Osisko has proposed updating the mineral resource estimate after completing the drilling program. This update should be used in the preparation of a Feasibility Study.

26.1.2.4 Cost Estimate for Recommended Programs

Osisko has prepared a cost estimate for the recommended two-phase work program. Expenditures for Phase 1 are estimated at C\$60,030,000 (including 15% for contingencies). The estimated cost for Phase 2 is approximately C\$24,150,000 (including 15% for contingencies). The grand total is C\$84,180,000 (including 15% for contingencies). Phase 2 can be performed simultaneously to Phase 1.

Table 26.1 presents the estimated costs for the various phases of the recommended exploration program.

Table 26.1 Work Program Budget

Phase 1 - Work Program	Buc	lget
Fliase 1 - Work Program	Description	Cost (CAD\$)
Surface Drilling	150,000 m	30,000,000
Underground Drilling	100,000 m	10,000,000
Exploration Drilling	60,000 m	12,000,000
Metallurgical Testing	-	200,000
Contingencies (~15%)	-	7,830,000
Phase 1 subtotal	310,000 m	60,030,000
Phase 2 - Work Program	Bud	lget
Fliase 2 - Work Flogram	Description	Cost (CAD\$)
Hydrogeological and Geotechnical Study		1,000,000
Third Bulk Sample and Underground Ramp for		20,000,000
Drilling Station Access		20,000,000
Contingencies (~15%)	-	3,150,000
Phase 2 subtotal	-	24,150,000
Total - Phase 1 and Phase 2		84,180,000

26.2 SUMMARY

The QP has reviewed the proposed program of work and budget and finds them to be reasonable and justified in light of the observations made in this report. The recommended work program and proposed expenditures are appropriate and well thought out. The proposed budget reasonably reflects the type and scope of the contemplated activities. The QP recommends that Osisko conduct the planned activities subject to availability of funding and any other matters which may cause the objectives to be altered in the normal course of business activities.

27.0 DATE AND SIGNATURE PAGE

MICON INTERNATIONAL LIMITED

"Charley Murahwi" {signed, sealed and dated}

Charley Murahwi, M.Sc. P.Geo., Pr. Sci. Nat., FAusIMM Senior Geologist Micon International Limited

BBA INC.

April 3, 2020

"Jorge Torrealba" {signed, sealed and dated}

"Jorge Torrealba" P. Eng., Ph.D. Consulting Process Engineer BBA Inc.

April 3, 2020

28.0 REFERENCES

Abitibi Géophysique Inc. (2017a). Levé IPower 3D Projet Black Dog, Canton de Barry, Québec, Canada, 29 p.

Abitibi Géophysique Inc. (2017b). Levé OreVision® Projet Urban-Barry, Canton de Buteaux, Québec, Canada, Rapport d'interprétation, 22p.

Abitibi Géophysique Inc. (2017c). Levé OreVision® Projet Windfall, Canton d'Urban, Québec, Canada, Rapport d'interprétation, 24p.

Abitibi Géophysique Inc. (2018). Levé OreVision® Projet Urban-Barry, Canton de Lacroix, Québec, Canada, Rapport d'interprétation, 21 p.

Abitibi Géophysique Inc. (2018b). Hole-to-Hole 3D IP Windfall Deposit - Preliminary Report, 13 p.

Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika, 70: 57-65.

Armstrong, T. J. (2006). Geological report on the Windfall Lake property, Chibougamau mining district, Québec, Canada; for Noront Resources Inc.; P & E Mining Consultants Inc., Report 125; August 28, 2006.

Armstrong, T. J. (2007). Updated geological report on the Windfall Lake property, Chibougamau mining district, Québec, Canada; for Noront Resources Inc.; P & E Mining Consultants Inc., Report 138; June 20, 2007.

Armstrong, T. J. (2011). Technical Report on the Windfall Lake Property, Chibougamau Mining District, Québec, Canada; for Eagle Hill Exploration Corporation; P & E Mining Consultants Inc., Report No. 222.

Bandyayera, D., Théberge, L. and Fallara, F. (2002a). Géologie de la région des lacs Piquet et Mesplet (32G/04 et 32B/13), Ministère des Richesses naturelles du Québec; Report RG 2001-14.

Bandyayera, D., Théberge, L., Fallara, F. (2002b). Compilation géoscientifique - Géologie 1/20 000, 32G04-200-0102 - Lac Windfall. Ministère des Richesses naturelles du Québec, Série Sigeom SI-32G04B-C4G-02C.

Bandyayera, D., Rhéaume, P., Doyon, J. and Sharma, K. N. M. (2004). Géologie de la région du lac Hébert (32G/03). Ministère des Ressources Naturelles et de la Faune, RG2003-07.

Barrett, T. J. and MacLean, W. H. (1994). Mass changes in hydrothermal alteration zones associated with VMS deposits of the Noranda area. Exploration and Mining Geology, 3: 131-160.

BBA, (2018). NI 43-101 Technical Report Preliminary Economic Assessment of the Windfall Lake Project, Lebel-sur-Quévillon, Québec. August 1, 2018, 850 pages.

Bernard, D. (1999a). Drill logs for diamond drill holes ATO-97-17 to ATO-99-23 Alto/Noront Project, Urban Township, Québec; for Inmet Mining Corporation, 208 p. GM 57443.

Bernard, D. (1999b). Drill logs for diamond drill holes ATO-97-3a, ATO-99-24 to ATO-99-33, Alto/Noront Project, Urban Township, Québec; for Inmet Mining Corporation, 186 p. GM 57413.

Boucher, D., 2018. Osisko Mining Inc. Windfall Lake Gold Project, Flow Property Test Results for Crushed Gold Ore. Jenike & Johanson Ltd. Report 71032-1, May 28, 2018.

Brown, C. and Cheman, M. (2014). Hole-to-Hole 3D IP survey, Windfall Project; for Eagle Hill Exploration. Report 13N057. 22 p.

Card, K. D. (1990). A review of the Superior Province of the Canadian Shield, a product of Archean accretion. Precambrian Research, 48: 99-156.

Chainey, D. (1997). Résultats des forages, Propriété Urban-Barry; For Ressources Orient Inc. Octopus, 60 p. GM 55698

Chance, P. N. (2009a). Summary Report of the 2007-2008 Underground Sampling Program, Windfall Property, Canton Urban, Abitibi Region, Québec; an internal report prepared for Noront Resources Ltd.

Chance, P. N. (2009b). NI 43-101 Compliant Technical Report of the Windfall Property, Canton Urban, Abitibi Region, Québec. Prepared for Eagle Hill Exploration Corporation. Filed on SEDAR.

Cheman, M. (2013). OreVision Induced Polarization Survey, Windfall Lake Project. Report 13N067. 35 pages and pseudosections.

Chown, E. H., Daigneault, R., Mueller, W. and Mortensen, J. K. (1992). Tectonic evolution of the northern volcanic zone, Abitibi belt, Québec. Canadian Journal of Earth Sciences, 29: 2211-2225.

Clearview Geophysics Inc. (2017). Report on regional compilation and interpretation of IP/Resistivity surveys at the Windfall Project, NE Québec, 33 p.

Cloos, H. (1928). Experimenten zur inneren Tektonic. Centralblatt fur Mineralogie und Paleontologie B, 609.

Colvine, A. C. (1989). An Empirical Model for The Formation of Archean Gold Deposits: Products of Final Cratonization of The Superior Province, Canada. Economic Geology Monograph, 6, 37-53.

Côté, R. (1977). Summary Report, Barry Lake Project, Barry Lake Area, Québec; for Shell Canada Resources Limited, Volume I, 41 p. GM 38828.

Coyle, T. (1996). Report of diamond drilling, Urban Project, Freewest Block and Inmet Option, Urban Township, Chibougamau Mining Division; for Freewest Resources, 105 p. GM 54546.

Coyle, T. (1998). Report on diamond drilling on the Windfall property, Urban Township, Québec; for Murgor Resources, 139p. GM 55791.

Coyle, T. (2005). Drill logs diamond drill holes NOT-05-39 to NOT-05-82, Windfall Lake Property, Urban Township; for Noront Resources Inc.

Daigneault, R., Mueller, W. and Chown, E. H. (2004). Abitibi greenstone belt plate-tectonics: the diachronous history of arc development, accretion and collision. In: The Precambrian Earth: Tempos and events (Eriksson, P., Altermann, W., Nelson, D., Mueller, W. U., Catuneanu, O., Strand, K. (editors)). Developments in Precambrian Geology 12, Elsevier, pp.88-103.

Davis, D. W. (2016). U-Pb Geochronology of Pre- and Post-Mineralization plutons from the Windfall Project, Urban-Barry Greenstone Belt. Unpublished data.

Desrochers, J. P. (2013). Assessment Report for the 2011-2012 Drilling Program Windfall Lake Project Urban Township Abitibi Region, Québec; for Eagle Hill Exploration, 84 p. GM 68042.

Desrochers, J. P. and Blouin, S. (2015). Assessment Report for the 2013 and 2014 Drilling Programs, Windfall Lake Project Urban Township Abitibi Region, Québec; for Eagle Hill Exploration, 10757 p. GM 69122.

Farrel, K. (1998). Drill hole records ATO-98-04 to ATO-98-16, Windfall Lake property, Urban Township, Québec; for Alto Minerals Inc., preliminary copy, 28 p.

Feneke, M. (1996). Report of linecutting and ground magnetic survey, Urban Project (2430), Urban Township, Chibougamau Mining division, N.T.S. 32 G/4 49°05' N. Lat., 75°44' W. Long., 11 9. GM 54545

Frazer, R. J. (1986). Report on diamond drilling performed on the Urban-Barry claims, Urban-Barry Project; for Exploration Kerr Addison Inc., 80 p. GM 45089.

Fullam, M., (2018). Preliminary Gravity circuit simulations for Windfall Lake ore. FLS. Salt Lake City, UT. USA.

Gagnon, R. (2005). Drill logs diamond drill holes WG-05-01 à WG-05-03, Windfall Lake property, Urban township; for Murgor Resources Inc.

Gagnon, R. (2006). Drill logs diamond drill holes WIN-06-86 to WIN-06-111, Windfall Lake property, Urban Towship; for Murgor Resources Inc.

Gaudreault, D. (1987). Rapport de travaux sur la propriété Urban 32G/4; for Ressources Minérales De Montigny Inc., Géologica Groupe conseil, 121 p. GM 46103.

Gaudreault, D. (1988). Rapport de travaux de sondage, Propriété Urban 32G/4; for Ressources Minérales De Montigny Inc., Géologica Groupe conseil, 112 p. GM 47861.

Gaumond, C. and Trépanier, S. (2015). Report on the 2015 till sampling program. Osisko Exploration James Bay, 413 p.

Gaumond, C., Roussel-L'Allier, R., Bouchard, R. and Simard, P. (2016). Report and Recommendations, 2016 Sampling Till Program, Osisko Mining, 16p.

Geo Data Solutions GDS. Inc. (2017). Final technical report high resolution helicopter-borne magnetic survey, for Osisko Mining Inc., 26 p.

Geotech Ltd. (2016). Report on a helicopter-borne aeromagnetic geophysical survey, Main A Block, Lebel-sur-Quévillon, 25 p.

Geotech Ltd. (2017). Report on a helicopter-borne versatile time domain electromagnetic (VTEMTM plus) and horizontal magnetic gradiometer geophysical survey, Urban-Barry Project, 90 p.

Gebre-Mariam, M., Hagemann, S. G. and Groves, D. I. (1995). A Classification Scheme for Epigenetic Archaean Lode-Gold Deposits. Mineralium Deposita, 30, 408-410.

Girard, T. and Roussel-L'Allier, A. (2018a). Technical Report and Recommendations 2016-2017 Exploration Program, Urban-Barry Project, James Bay, Québec, 142 p.

Girard, T. and Aumond, R. (2018b). Report and Recommendations for the 2018 Summer Exploration Program, Urban-Barry Project, James Bay, Québec, 17 p.

Goldfarb, R. J., Groves, D. I. and Gardoll, S. (2001). Orogenic gold and geologic time: a global synthesis. Ore geology reviews, 18: 1-75.

Goldfarb, R., Baker, T., Dube, B., Groves, D. I., Hart, C. J. and Gosselin, P. (2005). Distribution, Character and Genesis of Gold Deposits in Metamorphic Terranes. Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littleton, Colorado, USA, 407-450.

Goldfarb, R. J. and Groves, D. I. (2015). Orogenic Gold: Common or Evolving Fluid and Metal Sources Through Time. Lithos, 233, 2-26.

Groves, D. I. (1993). The Crustal Continuum Model for Late-Archaean Lode-Gold Deposits of The Yilgarn Block, Western Australia. Mineralium Deposita, 28, 357-387.

Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., Hagemann, S. G. and Robert, F. (1998). Orogenic Gold Deposits: A Proposed Classification in The Context of Their Crustal Distribution and Relationship To Other Gold Deposit Types. Ore Geology Reviews, 13, 7-27.

Groves, D. I., Goldfarb, R. J., Robert, F. and Hart, C. J. (2003). Gold Deposits in Metamorphic Belts: Overview of Current Understanding, Outstanding Problems, Future Research and Exploration Significance. Economic Geology, 98, 1-29.

Groves, D., Condie, K. C., Goldfarb, R. J., Hronsky, J. M. A. and Vielreicher, R. (2005). Secular Changes in Global Tectonic Processes and Their Influence On The Temporal Distribution of Gold-Bearing Mineral Deposits. Economic Geology, 100, 203-224.

G&T Metallurgical Services Ltd. (2011). Preliminary Assessment of the Eagle Hill Deposit. Internal Report prepared for Eagle Hill Exploration Corporation, August 12, 2011.

Hagemann, S. G. and Cassidy, K. F. (2000). Archean Orogenic Lode Gold Deposits: SEG Reviews, 13, 9-68.

Hart, C. J., Baker, T. and Burke, M. (2000). New Exploration Concepts for Country-Rock-Hosted, Intrusion-Related Gold Systems: Tintina Gold Belt in Yukon. British Columbia and Yukon Chamber of Mines, Cordilleran Roundup, January 2000, 2, 145-172.

Hart, C. J., McCoy, D. T., Goldfarb, R. J., Smith, M., Roberts, P., Hulstein, R., Bakke, A. A. and Bundtzen, T. K. (2002). Geology, Exploration and Discovery in The Tintina Gold Province, Alaska and Yukon. Economic Geology Special Publication, 9, 241-274.

Hocq, M. (1989). Carte Lithotectonique des sous-provinces de l'Abitibi et du Pontiac, 1:500,000: Ministère de l'Énergie et des Ressources (Mines), Gouvernement du Québec, DV 89-04.

Hoffman, P. F. (1991). On accretion of granite-greenstone terranes. In: Robert, F., Sheahan, P. A., Green, S. B. Eds. NUNA Conference on Greenstone Gold and Crustal Evolution. Geological Association of Canada, Mineral Deposits Division, St. John's, Newfoundland, Canada, pp. 32-45.

Hronsky, J. M. A (2019). Deposit-scale structural controls on orogenic gold deposits: an integrated, physical process-based hypothesis and practical targeting implications. Mineralium Deposita, 55: 1-20.

InnovExplo, (2018). NI 43-101 Technical report and mineral resource estimate – Osborne Bell deposit, Quévillon property. Longueuil, Québec.

Jackson, S. L. and Cruden, A. R. (1995). Formation of the Abitibi greenstone belt by arc trench migration. Geology, 23: 471-474

Jenike & Johanson, (May 2018). Osisko Mining Inc. Windfall Lake Gold Project, Flow Property Test Results for Crushed Gold Ore.

Joly, M. (1990). Geologie de la region du Lac aux Loutres et du lac Lacroix. Ministère de l'Énergie et des Ressources, Québec ; MB 90-42, 55 p.

Katz, Y., Weinberger, R. and Aydin, A. (2004). Geometry and kinematic evolution of Riedel shear fractures, Capitol Reef National Park, Utah. Journal of Structural Geology, 26: 491-501. Kitney, K. E., Olivo, G. R., Davis, D. W., Desrochers, J. P. and Tessier, A. (2011). The Barry Gold Deposit, Abitibi Subprovince, Canada: A greenstone belt-hosted gold deposit coeval with Late Archean deformation and magmatism. Economic Geology, 106: 1129-1154.

Kerrich, R. and Cassidy, K. F. (1994). Temporal Relationships of Lode Gold Mineralization to Accretion, Magmatism, Metamorphism and Deformation—Archean To Present: A Review. Ore Geology Reviews, 9, 263-310.

Lambert, G. (1988). Levé géophysique, Projet Urban. For Ressources Maufort Inc and Shiva Ventures Inc; Val-d'Or Géophysique Ltee.

Lambert, G. (1999). Memorandum: Levés géophysiques en forage, trous ATO-99-17 à 99-21, Projet Windfall. Report prepared for Inmet Mining, May 26, 1999, 11 p.

Lambert, G. (2012). Rapport sur des travaux géophysiques au sol: levés de polarisation provoquée; for Eagle Hill Exploration; TMC Geophysique.

Lambert, G. (2014). Rapport sur des travaux géophysique au sol : Levés Magnétométriques champ total, projet Windfall; for Eagle Hill Exploration by Géosciences, 13 pages including maps.

Lang, J. R., Baker, T., Hart, C. J. R. and Mortensen, J. K. (2000). An Exploration Model for Intrusion-Related Gold Systems. Society of Economic Geologists Newsletter, 40, 1-15.

Lang, J. R. and Baker, T. (2001). Intrusion-Related Gold Systems: The Present Level of Understanding. Mineralium Deposita, 36, 477-489.

Lanthier, G. (2004 and 2005). Drill logs diamond drill holes WIN-04-01 à WIN-04-11 et WIN-05-12 à WIN-05-85, Windfall Lake propery, Urban township; for Murgor Resources Inc.

Large, R. R., Bull, S. W. and Maslennikov, V. V. (2011). A Carbonaceous Sedimentary Source-Rock Model for Carlin-Type and Orogenic Gold Deposits. Economic Geology, 106, 331-358.

Lavoie, C. (1996a). Induced polarization survey performed on the property owned by Alto Industries Inc., Windfall property, Urban Township, Qc, 19 p. GM 54734

Lavoie, C. (1996b). Induced polarization survey performed on the property owned by Alto Industries Inc., Alcane property, Urban Township, Qc, 20 p. GM 54405

Lavoie, C. (1996c). Induced polarization survey performed on the property owned by Freewest Resources Inc. Urban Project (24-30), Urban Township, Qc, 20 p. GM 54544

Mehrfert, P., (2018). IsaMill grinding Test Report. ALS Metallurgy, 2018. Report prepared for SGS Québec. Kamloops, British Columbia.

Nguyên, K., (2019). Zone 27 Bulk Sample Processing at Redstome Mill. Osisko Mining Inc. Internal Memo. Sept 25, 2019.

Nguyên, K., (2020). Lynx Bulk Sample Processing at Redstome Mill. Osisko Mining Inc. Internal Memo. February 5, 2020.

Osisko Mining Inc., (2018). Osisko Delivers Positive PEA for Windfall Project. Osisko press release, July 17, 2018. Retrieved from https://www.osiskomining.com/news.

Osisko Mining Inc., (2019). Osisko Windfall Zone 27 Bulk Sample Returns 8.53 g/t Au Reconciled head grade. Osisko press release, June 11, 2019. Retrieved from https://www.osiskomining.com/news.

Phillips, G. N. and Groves, D. I. (1983). The nature of Archaean gold-bearing fluids as deduced from gold deposits of Western Australia. Journal of the Geological Society of Australia, 30: 25-39.

Phillips, G. N. and Powell, R. (2010). Formation of Gold Deposits: A Metamorphic Devolatilization Model. Journal of Metamorphic Geology, 28, 689-718.

Plante, L. (1997). Geophysical surveys - IP and Mag, performed on a property owned by Alto Industries Inc., Alcane property, Urban Township, Qc, 19 p. GM 56245

Plante, L. (1998). Geophysical surveys - HEM, VLF and MAG for Alto Industries Inc. Windfall property, Urban Township, Qc, 17 p. GM 56450

Pocock Industrial, (2018). Flocculant Screening, Gravity Sedimentation, Paste Rheology and Pressure Filtration Studies Conducted for Osisko - Windfall Project. Salt Lake City, UT, USA.

Powell, R., Will, T. M. and Phillips, G. N. (1991). Metamorphism in Archaean Greenstone Belts: Calculated Fluid Compositions and Implications for Gold Mineralization. Journal of Metamorphic Geology, 9, 141-150.

Relevés Géophysique Inc. (1983). Levé aérien par input MK VI - Région de Marin-Barry. Report : DP-83-08.

Ridley, J., Groves, D. and Knight, J. T. (2000). Gold Deposits in Amphibolite and Granulite Facies Terranes of The Archean Yilgarn Craton, Western Australia: Evidence and Implications of Synmetamorphic Mineralization. Reviews in Economic Geology, 11, 265-290.

Riedel, W. (1929) Zur mechanik geologischer Brucherscheinungen. Zentral-blatt fur Mineralogie, Geologie, und Paleontologie B, 354-368.

Rhéaume, P. and Bandyayera, D. (2006). Révision stratigraphique de la Ceinture d'Urban-Barry: Ministère des Ressources naturelles et de la Faune, Québec, RP 2006-08, 11 p.

Rhéaume, P., Bandyayera, D., Fallara, F., Boudrias, G. and Cheng L. (2004). Géologie et métallogénie du secteur du lac aux Loutres, synthèse métallogénique d'Urban-Barry (Phase 1 de 2). Ministère des Ressources naturelles, Faune et Parcs, Québec, RP 2004-05, 10 p.

Robert, F. and Poulsen, K. H. (2001). Vein formation and deformation in greenstone gold deposits. Reviews in Economic Geology, 14: 111-155.

SGS (July 2017). Gold Deportment of Four Composite Samples from the Windfall Project, Project 16159-001.

SGS (May 2018). Gold Deportment of One Composite Samples from the Windfall Project, Project 16159-001.

Sillitoe, R. H. (1991). Intrusion-Related Gold Deposits. in Foster, R. P., Ed., Gold Metallogeny and Exploration. Glasgow, Blackie & Son, Ltd., Pp. 165-209.

Sillitoe, R. H. and Thompson, J. H. F. (1998). Intrusion-Related Vein Gold Deposits: Types, Tectono-Magmatic Settings and Difficulties of Distinction From Orogenic Gold Deposits. Resource Geology, 48, 237-250.

Simard, J. (2014). Rapport sur un levé de polarisation provoquée effectué sur la propriété Rousseau, canton Belmont, Baie James, Québec; for Eagle Hill Exploration by Géophysique TMC. Réf: 14C-153, 25 p.

SkyTEM Canada Inc. (2016). Data Report for Oban Mining Corporation, 61 p.

Sproule, R. and Tuscherer, M. (2016). Report on targeting and field validation in the Urban-Barry belt for Osisko Mining, 87 p.

SRK Consulting (Canada) Inc. (2011). Mineral Resource Evaluation Technical Report, Windfall Lake Gold Project, Québec; for Eagle Hill Exploration Corporation, By Dorota El-Rassi, Glen Cole and Dominic Chartier.

SRK Consulting (Canada) Inc. (2012). Mineral Resource Evaluation Technical Report, Windfall Lake Gold Project, Québec; for Eagle Hill Exploration Corporation, By Dorota El-Rassi, Glen Cole, Lars Weiershäuser and Dominic Chartier.

Swanson, M. T. (2006). Late Paleozoic strike-slip faults and related vein arrays of Cape Elizabeth, Maine. Journal of Structural Geology, 28: 456-473.

Thompson, J. H. F. and Newberry, R. J. (2000). Gold Deposits Related To Reduced Granitic Intrusions. Reviews in Economic Geology, 13, 377-400.

Tomkins, A. G. (2010). Windows of Metamorphic Sulfur Liberation in The Crust: Implications for Gold Deposit Genesis. Geochimica Et Cosmochimica Acta, 74, 3246-3259. Thorsen, K. (2004). Exploration report on the 2004 diamond drill program on the Windfall Lake Property, Urban Township; for Fury Exploration Ltd, 14 p.

Tremblay, R. J. (1996). Preliminary report on Geological mapping, prospecting, trenching and sampling program, Alcane Lake and Windfall Lake properties; for Alto Industries, 42p. GM 54404.

Tremblay, R. J. (1999a). Summary report on the Fall 1998 diamond drilling program, DDH ATO- 98-09 to ATO-98-11, Windfall property, Urban Township; for Alto Minerals Inc and Noront Resources Ltd, 122 p. GM 56449.

Tremblay, R. J. (1999b). Summary report on the Fall 1998 diamond drilling program, DDH ATO-98-12 to ATO-98-13, Alcane property, Urban Township; for Alto Minerals Inc and Noront Resources Ltd.

Tremblay, R. J. (1999c). Drill logs diamond drill holes, ATO-98-14 to ATO-98-16, Alto/Noront project, Urban township; for Alto Minerals Inc/Noront Resources Ltd./Inmet Mining Corporation, 62 p. GM 57412.

Turcotte, D. (2011). Assessment Report for Windfall Lake Project, Diamond drilling/Surface mapping report, Urban Township, Abitibi Region, Québec; for Eagle Hill Exploration.

Verret, F., (2018). An Investigation into Metallurgical Test Program on the Windfall Project in Support of Preliminary Economic Assessment, prepared for Osisko Mining. SGS Canada Inc., Québec City and Lakefield). Project 16159-001. Report in progress.

Villahermosa, B. (2019). Windfall Lake Project, Canada, Seismic De-Risking Report, Stage 1, 33p.

White, M.V. (1998). Report on phase I and II drilling carried out on Windfall/Alcane properties, Urban Township, Québec; for Alto Minerals Inc., 27 p. GM 56448.

Zhou, H. and Dowining, S., (2017). Gold Deportment of Four Composite Samples from the Windfall Project, Project 16159-001. SGS Final Report, July 28, 2017.

Zhou, H. and Dowining, S., (2018). Gold Deportment of One Composite Samples from the Windfall Project, Project 16159-001. SGS Draft Report, May 11, 2018.

29.0 CERTIFICATES

CERTIFICATE OF QUALIFIED PERSON

Charley Murahwi, M.Sc., P.Geo., Pr.Sci.Nat., FAusIMM

As the author of this report entitled "An Updated Mineral Resource Estimate For The Windfall Project, Located In The Abitibi Greenstone Belt, Urban Township, Eeyou Istchee James Bay, Québec, Canada" dated April 3, 2020 with effective date of January 3, 2020, I, Charley Murahwi, do hereby certify that:

- 1. I am employed as a Senior Geologist by Micon International Limited, Suite 900, 390 Bay Street, Toronto, Ontario M5H 2Y2, tel. +1 416 362 5135, e-mail cmurahwi@micon-international.com;
- 2. I hold the following academic qualifications:

B.Sc. (Geology) University of Rhodesia, Zimbabwe, 1979; Diplôme d'Ingénieur Expert en Techniques Minières, Nancy, France, 1987; M.Sc. (Economic Geology), Rhodes University, South Africa, 1996.

- 3. I am a registered Professional Geoscientist in Ontario (membership # 1618) and in Newfoundland (PEGNL, membership # 05662), a registered Professional Natural Scientist with the South African Council for Natural Scientific Professions (membership # 400133/09) and am a Fellow of the Australasian Institute of Mining & Metallurgy (FAusIMM) (membership number 300395).
- 4. I have worked as a geologist in the minerals industry for over 40 years;
- 5. I am familiar with NI 43-101 and, by reason of education, experience and professional registration, I fulfill the requirements of a Qualified Person as defined in NI 43-101. My work experience includes 18 years on VMS, gold, silver, copper, tin and tantalite projects (on and off mine), 12 years on Cr-Ni-Cu-PGE deposits in layered intrusions/komatitic environments and 10 years as a consulting geologist on precious and base metals and industrial minerals;
- 6. I have read NI 43-101 and this Technical Report has been prepared in compliance with the instrument;
- 7. I visited the Windfall Project from 17 to 20 November 2019 and from 29 to 31 October 2018;
- 8. I had previously worked on the Windfall Project being the QP for the 2018 mineral resource estimate.
- 9. I am independent of Osisko Mining Inc. and any subsidiaries according to the definition described in NI 43-101 and the Companion Policy 43-101 CP;
- 10. I am responsible for all Sections of the Technical Report titled "An Updated Mineral Resource Estimate For The Windfall Project, Located In The Abitibi Greenstone Belt, Urban Township, Eeyou Istchee James Bay, Québec, Canada", except for Section 13, and summaries therefrom, in Section 1, 25 and 26.
- 12. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make this technical report not misleading;

Report Dated this 3rd day of April 2020, with an effective date of January 3, 2020.

"Charley Murahwi" {signed and sealed as of the report date}

Charley Murahwi, M.Sc., P.Geo., Pr.Sci.Nat., FAusIMM

bba.ca

CERTIFICATE OF QUALIFIED PERSON

Jorge Torrealba, P. Eng.

This certificate applies to the NI 43-101 Technical Report: An Updated Mineral Resource Estimate for the Windfall Lake Project, Located in the Abitibi Greenstone Belt, Urban Township, Eeyou Istchee James Bay, Québec, Canada, prepared for Osisko Mining Inc. ("Osisko") issued on April 3, 2020 (the "Technical Report") and effective January 3, 2020.

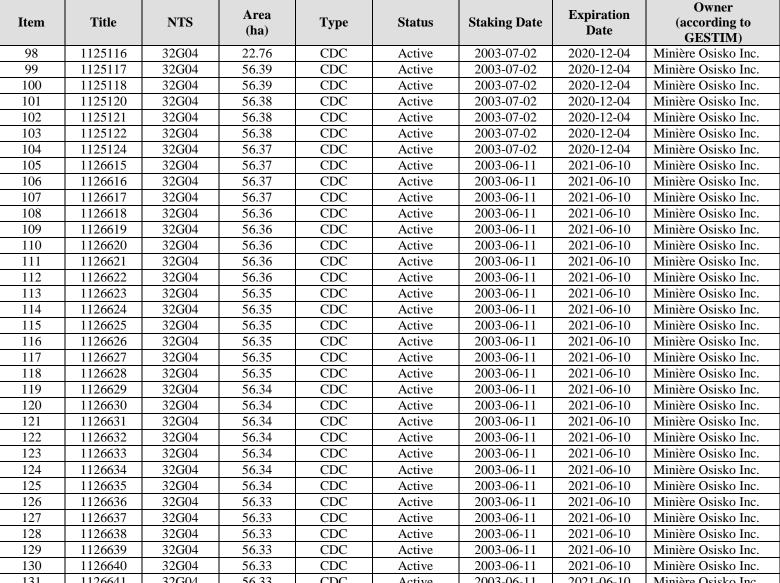
I, Jorge Torrealba, P. Eng., Ph.D. (APEGNB no. M7957), do hereby certify that:

- 1. I am employed as an engineer by and carried out this assignment for BBA Inc. Consulting Firm in Engineering, located at 2020 Blvd. Robert-Bourassa, Suite 300, Montréal, Québec, Canada, H3A 2A5.
- 2. I graduated with a B.Eng. and M.Sc. in Metallurgy from Santiago de Chile University (Santiago, Chile) in 1998. I obtained a Ph.D. degree in Metallurgy from McGill University (Montreal, Quebec) in 2005.
- 3. I am a member in good standing of the Association of Professional Engineers and Geoscientists of New Brunswick (APEGNB licence No. M7957) and a member of the Canadian Institute of Mining Metallurgy and Petroleum.
- 4. I have worked as an engineer for a total of nineteen (19) years since graduating from University in 1998. My expertise in Mineral processing has been acquired with Santiago de Chile University in Chile, with Chile University in Chile, with McGill University in Quebec. I have been a consulting process engineer for BBA Inc. since February 2005.
- 5. I have read the definition of "qualified person" set out in NI 43-101 Standards of Disclosure for Mineral Projects ("NI 43-101") and certify that, by reason of my education, affiliation with a professional association, and past relevant work experience, I fulfill the requirements to be a qualified person for the purposes of NI 43-101.
- 6. I am independent of the issuer applying all the tests in Section 1.5 of NI 43-101.
- 7. I am responsible for Chapter 13. I also provided contributions to Chapters 1, 25, 26 and 27.
- 8. I have not visited the Windfall Lake Project that is the subject of the Technical Report.
- 9. I have had no prior involvement with the properties that are the subject of the Technical Report.
- 10. I have read NI 43-101 and the sections of the Technical Report for which I am responsible have been prepared in compliance with NI 43-101.
- 11. As at the effective date of the Technical Report, to the best of my knowledge, information and belief, the sections of the Technical Report for which I am responsible contain all scientific and technical information that is required to be disclosed to make the portions of the Technical Report for which I am responsible not misleading.

Signed this 3rd day of April 2020.

"Jorge Torrealba" {signed and sealed as of the report date}

"Signed and sealed original on file" Jorge Torrealba, P. Eng., Ph.D. BBA Inc.


30.0 APPENDIX - CLAIMS LIST AND STATUS

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1	1106259	32G04	56.37	CDC	Active	2002-12-06	2020-12-05	Minière Osisko Inc.
2	1106260	32G04	56.36	CDC	Active	2002-12-06	2020-12-05	Minière Osisko Inc.
3	1106261	32G04	56.36	CDC	Active	2002-12-06	2020-12-05	Minière Osisko Inc.
4	1106262	32G04	56.35	CDC	Active	2002-12-06	2020-12-05	Minière Osisko Inc.
5	1106263	32G04	56.35	CDC	Active	2002-12-06	2020-12-05	Minière Osisko Inc.
6	1106264	32G04	56.34	CDC	Active	2002-12-06	2020-12-05	Minière Osisko Inc.
7	1107033	32G04	56.35	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
8	1107034	32G04	56.35	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
9	1107035	32G04	56.35	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
10	1107036	32G04	56.35	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
11	1107037	32G04	56.35	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
12	1107038	32G04	56.35	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
13	1107039	32G04	56.35	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
14	1107040	32G04	56.35	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
15	1107041	32G04	56.34	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
16	1107042	32G04	56.34	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
17	1107043	32G04	56.34	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
18	1107044	32G04	56.34	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
19	1107045	32G04	56.34	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
20	1107046	32G04	56.34	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
21	1107047	32G04	56.34	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
22	1107048	32G04	56.34	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
23	1107049	32G04	56.34	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
24	1107050	32G04	56.34	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
25	1107051	32G04	56.34	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
26	1107052	32G04	56.33	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
27	1107053	32G04	56.33	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
28	1107054	32G04	56.33	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
29	1107055	32G04	56.33	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.

								Owner
Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	(according to GESTIM)
30	1107056	32G04	56.33	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
31	1107057	32G04	56.33	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
32	1107058	32G04	56.33	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
33	1107059	32G04	56.33	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
34	1107060	32G04	56.33	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
35	1107061	32G04	56.33	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
36	1107062	32G04	56.33	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
37	1107063	32G04	56.33	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
38	1107064	32G04	56.33	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
39	1107065	32G04	56.33	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
40	1107066	32G04	56.33	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
41	1107067	32G04	56.32	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
42	1107068	32G04	56.32	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
43	1107069	32G04	56.32	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
44	1107070	32G04	56.32	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
45	1107071	32G04	56.32	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
46	1107072	32G04	56.32	CDC	Active	2002-12-11	2020-12-10	Minière Osisko Inc.
47	1119376	32G04	10.67	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
48	1119377	32G04	11.15	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
49	1119378	32G04	3.29	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
50	1119379	32G04	56.39	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
51	1119380	32G04	56.39	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
52	1119381	32G04	45.66	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
53	1119386	32G04	56.38	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
54	1119387	32G04	55.18	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
55	1119388	32G04	27.07	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
56	1119389	32G04	27.33	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
57	1119390	32G04	27.63	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
58	1119391	32G04	41.61	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
59	1119392	32G04	56.38	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
60	1119393	32G04	54.73	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
61	1119394	32G04	46.55	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
62	1119395	32G04	46.83	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
63	1119396	32G04	46.86	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
64	1119397	32G04	41.71	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
65	1119398	32G04	56.37	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
66	1119399	32G04	56.37	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
67	1119400	32G04	56.37	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
68	1119401	32G04	56.37	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
69	1119402	32G04	56.37	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
70	1119403	32G04	56.37	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
71	1119404	32G04	56.37	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
72	1119405	32G04	56.37	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
73	1119406	32G04	56.37	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
74	1119407	32G04	56.37	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
75	1119408	32G04	56.27	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
76	1119409	32G04	56.18	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
77	1119410	32G04	56.37	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
78	1119411	32G04	56.36	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
79	1119412	32G04	56.36	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
80	1119413	32G04	56.36	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
81	1119414	32G04	56.36	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
82	1119415	32G04	56.36	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
83	1119416	32G04	56.36	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
84	1119417	32G04	56.36	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
85	1119418	32G04	56.36	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
86	1119419	32G04	56.36	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
87	1119420	32G04	56.35	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
88	1119421	32G04	56.35	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
89	1119422	32G04	56.35	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
90	1119423	32G04	56.35	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
91	1119424	32G04	56.35	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
92	1119425	32G04	56.35	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
93	1119426	32G04	56.35	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
94	1119427	32G04	56.34	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
95	1119428	32G04	56.34	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
96	1119429	32G04	56.34	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.
97	1119430	32G04	56.34	CDC	Active	2003-05-23	2021-03-05	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
98	1125116	32G04	22.76	CDC	Active	2003-07-02	2020-12-04	Minière Osisko Inc.
99	1125117	32G04	56.39	CDC	Active	2003-07-02	2020-12-04	Minière Osisko Inc.
100	1125118	32G04	56.39	CDC	Active	2003-07-02	2020-12-04	Minière Osisko Inc.
101	1125120	32G04	56.38	CDC	Active	2003-07-02	2020-12-04	Minière Osisko Inc.
102	1125121	32G04	56.38	CDC	Active	2003-07-02	2020-12-04	Minière Osisko Inc.
103	1125122	32G04	56.38	CDC	Active	2003-07-02	2020-12-04	Minière Osisko Inc.
104	1125124	32G04	56.37	CDC	Active	2003-07-02	2020-12-04	Minière Osisko Inc.
105	1126615	32G04	56.37	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
106	1126616	32G04	56.37	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
107	1126617	32G04	56.37	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
108	1126618	32G04	56.36	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
109	1126619	32G04	56.36	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
110	1126620	32G04	56.36	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
111	1126621	32G04	56.36	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
112	1126622	32G04	56.36	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
113	1126623	32G04	56.35	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
114	1126624	32G04	56.35	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
115	1126625	32G04	56.35	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
116	1126626	32G04	56.35	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
117	1126627	32G04	56.35	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
118	1126628	32G04	56.35	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
119	1126629	32G04	56.34	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
120	1126630	32G04	56.34	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
121	1126631	32G04	56.34	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
122	1126632	32G04	56.34	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
123	1126633	32G04	56.34	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
124	1126634	32G04	56.34	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
125	1126635	32G04	56.34	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
126	1126636	32G04	56.33	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
127	1126637	32G04	56.33	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
128	1126638	32G04	56.33	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
129	1126639	32G04	56.33	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
130	1126640	32G04	56.33	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
131	1126641	32G04	56.33	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.

INTERNATIONAL LIMITED consultants

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
132	1126642	32G04	56.33	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
133	1126643	32G04	56.33	CDC	Active	2003-06-11	2021-06-10	Minière Osisko Inc.
134	1133001	32G04	56.38	CDC	Active	2005-07-11	2021-03-05	Minière Osisko Inc.
135	2225915	32G03	56.39	CDC	Active	2010-05-03	2020-05-02	Minière Osisko Inc.
136	2225916	32G03	56.39	CDC	Active	2010-05-03	2020-05-02	Minière Osisko Inc.
137	2225917	32G03	56.38	CDC	Active	2010-05-03	2020-05-02	Minière Osisko Inc.
138	2225918	32G03	56.38	CDC	Active	2010-05-03	2020-05-02	Minière Osisko Inc.
139	2225919	32G03	56.37	CDC	Active	2010-05-03	2020-05-02	Minière Osisko Inc.
140	2225920	32G03	56.37	CDC	Active	2010-05-03	2020-05-02	Minière Osisko Inc.
141	2225921	32G03	56.36	CDC	Active	2010-05-03	2020-05-02	Minière Osisko Inc.
142	2225922	32G03	56.36	CDC	Active	2010-05-03	2020-05-02	Minière Osisko Inc.
143	2225923	32G04	56.38	CDC	Active	2010-05-03	2020-05-02	Minière Osisko Inc.
144	2225924	32G04	56.37	CDC	Active	2010-05-03	2020-05-02	Minière Osisko Inc.
145	2225925	32G04	56.36	CDC	Active	2010-05-03	2020-05-02	Minière Osisko Inc.
146	2226346	32G04	56.38	CDC	Active	2010-05-04	2020-05-03	Minière Osisko Inc.
147	2226347	32G04	56.38	CDC	Active	2010-05-04	2020-05-03	Minière Osisko Inc.
148	2226348	32G04	56.37	CDC	Active	2010-05-04	2020-05-03	Minière Osisko Inc.
149	2226349	32G04	56.37	CDC	Active	2010-05-04	2020-05-03	Minière Osisko Inc.
150	2226350	32G04	56.37	CDC	Active	2010-05-04	2020-05-03	Minière Osisko Inc.
151	2226351	32G04	56.37	CDC	Active	2010-05-04	2020-05-03	Minière Osisko Inc.
152	2226352	32G04	56.37	CDC	Active	2010-05-04	2020-05-03	Minière Osisko Inc.
153	2360634	32G04	56.33	CDC	Active	2012-08-15	2020-08-14	Minière Osisko Inc.
154	2360635	32G04	56.33	CDC	Active	2012-08-15	2020-08-14	Minière Osisko Inc.
155	2360636	32G04	56.33	CDC	Active	2012-08-15	2020-08-14	Minière Osisko Inc.
156	2360637	32G04	56.33	CDC	Active	2012-08-15	2020-08-14	Minière Osisko Inc.
157	2360638	32G04	56.33	CDC	Active	2012-08-15	2020-08-14	Minière Osisko Inc.
158	2369488	32G04	0.01	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
159	2371957	32G04	6.05	CDC	Active	2013-01-21	2020-08-02	Minière Osisko Inc.
160	2371958	32G04	11.17	CDC	Active	2013-01-21	2020-08-02	Minière Osisko Inc.
161	2371959	32G04	3.75	CDC	Active	2013-01-21	2020-08-02	Minière Osisko Inc.
162	2371960	32G04	5.22	CDC	Active	2013-01-21	2020-08-02	Minière Osisko Inc.
163	2372910	32G04	28.34	CDC	Active	2013-01-21	2020-08-02	Minière Osisko Inc.
164	2372911	32G04	3.72	CDC	Active	2013-01-21	2020-08-02	Minière Osisko Inc.
165	2372912	32G04	3.36	CDC	Active	2013-01-21	2020-08-02	Minière Osisko Inc.

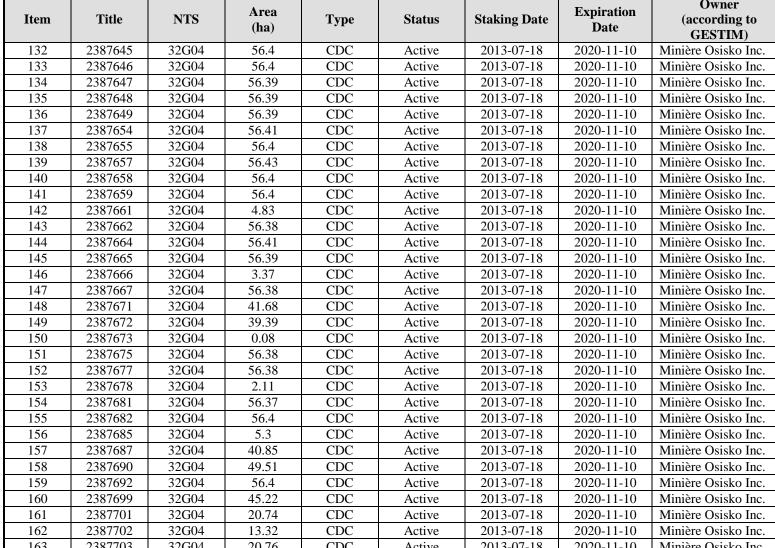
Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
166	2372913	32G04	3	CDC	Active	2013-01-21	2020-08-02	Minière Osisko Inc.
167	2372914	32G04	1.6	CDC	Active	2013-01-21	2020-08-02	Minière Osisko Inc.
168	2376794	32G04	12.38	CDC	Active	2013-03-04	2020-08-02	Minière Osisko Inc.
169	2376795	32G04	47.15	CDC	Active	2013-03-04	2020-08-02	Minière Osisko Inc.
170	2376796	32G04	6.88	CDC	Active	2013-03-04	2020-08-02	Minière Osisko Inc.
171	2376797	32G04	15.53	CDC	Active	2013-03-04	2020-08-02	Minière Osisko Inc.
172	2376841	32G04	9.08	CDC	Active	2013-03-11	2022-01-22	Minière Osisko Inc.
173	2376842	32G04	15.06	CDC	Active	2013-03-11	2022-01-22	Minière Osisko Inc.
174	2376843	32G04	21.71	CDC	Active	2013-03-11	2022-01-22	Minière Osisko Inc.
175	2376844	32G04	27.22	CDC	Active	2013-03-11	2022-01-22	Minière Osisko Inc.
176	2376845	32G04	1.51	CDC	Active	2013-03-11	2022-01-22	Minière Osisko Inc.
177	2376846	32G04	1.9	CDC	Active	2013-03-11	2022-01-22	Minière Osisko Inc.
178	2376847	32G04	56.44	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
179	2376848	32G04	56.44	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
180	2376849	32G04	56.43	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
181	2376850	32G04	56.43	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
182	2376851	32G04	56.43	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
183	2376852	32G04	56.43	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
184	2376853	32G04	56.42	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
185	2376854	32G04	56.42	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
186	2376855	32G04	56.42	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
187	2376856	32G04	56.42	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
188	2376857	32G04	56.41	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
189	2376858	32G04	56.41	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
190	2376859	32G04	56.41	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
191	2376860	32G04	56.41	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
192	2376861	32G04	56.4	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
193	2376862	32G04	56.4	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
194	2376863	32G04	56.4	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
195	2376864	32G04	56.4	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
196	2376865	32G04	56.44	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
197	2376866	32G04	56.4	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
198	2376868	32G04	9.56	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
199	2376869	32G04	34.34	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
200	2376870	32G04	44.73	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
201	2376871	32G04	5.93	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
202	2376872	32G04	30.09	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
203	2376873	32G04	51.1	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
204	2376874	32G04	24.57	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
205	2376875	32G04	6.49	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
206	2376876	32G04	51.45	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
207	2376877	32G04	6.15	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
208	2376878	32G04	23.36	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
209	2376879	32G04	4.55	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
210	2376880	32G04	22.22	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
211	2376881	32G04	43.1	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
212	2376882	32G04	55.34	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
213	2376883	32G04	13.53	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
214	2376884	32G04	51.13	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
215	2376885	32G04	51.6	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
216	2376886	32G04	1.57	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
217	2376887	32G04	47.91	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
218	2376888	32G04	9.53	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
219	2376889	32G04	1.6	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
220	2376890	32G04	31.91	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
221	2376891	32G04	4.21	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
222	2376892	32G04	8.15	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
223	2376893	32G04	5.86	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
224	2376894	32G04	3.56	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
225	2376895	32G04	20.8	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
226	2376896	32G04	1.83	CDC	Active	2013-03-11	2020-09-25	Minière Osisko Inc.
227	2379285	32G04	56.4	CDC	Active	2013-03-25	2020-12-04	Minière Osisko Inc.
228	2379286	32G04	56.4	CDC	Active	2013-03-25	2020-12-04	Minière Osisko Inc.
229	2379287	32G04	10.28	CDC	Active	2013-03-25	2020-12-04	Minière Osisko Inc.
230	2379288	32G04	21.5	CDC	Active	2013-03-25	2020-12-04	Minière Osisko Inc.
231	2379289	32G04	28.59	CDC	Active	2013-03-25	2020-12-04	Minière Osisko Inc.
232	2379290	32G04	29.19	CDC	Active	2013-03-25	2020-12-04	Minière Osisko Inc.
233	2379291	32G04	6.03	CDC	Active	2013-03-25	2020-12-04	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
234	2379292	32G04	9.41	CDC	Active	2013-03-25	2020-12-04	Minière Osisko Inc.
235	2379293	32G04	15.9	CDC	Active	2013-03-25	2021-03-20	Minière Osisko Inc.
236	2379294	32G04	34.77	CDC	Active	2013-03-25	2021-03-20	Minière Osisko Inc.
237	2379295	32G04	48.16	CDC	Active	2013-03-25	2021-03-20	Minière Osisko Inc.
238	2379296	32G04	35.65	CDC	Active	2013-03-25	2021-03-20	Minière Osisko Inc.
239	2379297	32G04	33.48	CDC	Active	2013-03-25	2021-03-20	Minière Osisko Inc.
240	2379298	32G04	35.68	CDC	Active	2013-03-25	2021-03-20	Minière Osisko Inc.
241	2379299	32G04	25.16	CDC	Active	2013-03-25	2021-03-20	Minière Osisko Inc.
242	2379300	32G04	19.83	CDC	Active	2013-03-25	2021-03-20	Minière Osisko Inc.
243	2379301	32G04	25.43	CDC	Active	2013-03-25	2021-03-20	Minière Osisko Inc.
244	2379355	32G04	10.73	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
245	2379356	32G04	1.2	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
246	2379357	32G04	29.31	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
247	2379358	32G04	29.05	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
248	2379359	32G04	28.75	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
249	2379360	32G04	14.77	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
250	2379361	32G04	1.65	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
251	2379362	32G04	9.83	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
252	2379363	32G04	9.55	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
253	2379364	32G04	9.52	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
254	2379365	32G04	14.67	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
255	2379366	32G04	0.1	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
256	2379367	32G04	30.39	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
257	2379368	32G04	38.76	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
258	2379369	32G04	46.96	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
259	2379370	32G04	33.04	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
260	2379371	32G04	51.84	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
261	2379372	32G04	34.17	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
262	2379373	32G04	42.85	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
263	2379374	32G04	54.79	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
264	2379375	32G04	52.18	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
265	2379376	32G04	50.53	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
266	2379377	32G04	37.09	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
267	2379378	32G04	26	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
268	2379379	32G04	25.99	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
269	2379380	32G04	16.99	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
270	2379381	32G04	2.33	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
271	2379382	32G04	9.23	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
272	2379383	32G04	0.19	CDC	Active	2013-03-25	2021-03-10	Minière Osisko Inc.
273	2611	32G04	56.38	CDC	Active	2003-09-25	2021-09-24	Minière Osisko Inc.
274	2612	32G04	56.38	CDC	Active	2003-09-25	2021-09-24	Minière Osisko Inc.
275	2613	32G04	56.37	CDC	Active	2003-09-25	2021-09-24	Minière Osisko Inc.
276	2614	32G04	56.37	CDC	Active	2003-09-25	2021-09-24	Minière Osisko Inc.
277	2615	32G04	56.37	CDC	Active	2003-09-25	2021-09-24	Minière Osisko Inc.
278	2616	32G04	56.37	CDC	Active	2003-09-25	2021-09-24	Minière Osisko Inc.
279	2619	32G04	56.36	CDC	Active	2003-09-25	2021-09-24	Minière Osisko Inc.
280	2620	32G04	56.36	CDC	Active	2003-09-25	2021-09-24	Minière Osisko Inc.
281	2621	32G04	56.36	CDC	Active	2003-09-25	2021-09-24	Minière Osisko Inc.
282	2622	32G04	56.36	CDC	Active	2003-09-25	2021-09-24	Minière Osisko Inc.
283	2623	32G04	56.36	CDC	Active	2003-09-25	2021-09-24	Minière Osisko Inc.
284	2624	32G04	56.36	CDC	Active	2003-09-25	2021-09-24	Minière Osisko Inc.
285	2625	32G04	56.36	CDC	Active	2003-09-25	2021-09-24	Minière Osisko Inc.

Owner Area **Expiration** Title NTS **Staking Date** (according to Item Type Status (ha) Date **GESTIM**) 2360749 32G04 **CDC** 2012-09-04 2020-12-31 56.42 Active Minière Osisko Inc. 2 2360750 32G04 56.42 **CDC** 2012-09-04 2020-12-31 Active Minière Osisko Inc. 3 2360751 32G04 56.41 **CDC** Active 2012-09-04 2020-12-31 Minière Osisko Inc. 4 2360752 32G04 56.42 **CDC** 2012-09-04 2020-12-31 Active Minière Osisko Inc. 5 2360753 32G04 56.41 **CDC** Active 2012-09-04 2020-12-31 Minière Osisko Inc. 6 2360754 32G04 7.56 **CDC** 2012-09-04 2020-12-31 Active Minière Osisko Inc. 7 2360755 32G04 56.43 **CDC** Active 2012-09-04 2020-12-31 Minière Osisko Inc. 8 2360756 32G04 56.42 **CDC** Active 2012-09-04 2020-12-31 Minière Osisko Inc. 9 2360757 32G04 56.41 **CDC** Active 2012-09-04 2020-12-31 Minière Osisko Inc. 10 2360758 32G04 36.8 **CDC** 2012-09-04 2020-12-31 Active Minière Osisko Inc. 11 2360759 32G04 55.13 **CDC** 2012-09-04 2020-12-31 Minière Osisko Inc. Active 2360760 32G04 56.41 **CDC** 2012-09-04 2020-12-31 12 Active Minière Osisko Inc. 13 2360761 32G04 49.18 **CDC** Active 2012-09-04 2020-12-31 Minière Osisko Inc. 14 2360762 32G04 18.71 **CDC** 2012-09-04 2020-12-31 Active Minière Osisko Inc. 15 2360763 32G04 14.87 **CDC** 2012-09-04 2020-12-31 Active Minière Osisko Inc. 2360764 32G04 52.03 **CDC** 2012-09-04 2020-12-31 16 Active Minière Osisko Inc. 54.94 17 2360765 32G04 **CDC** 2012-09-04 2020-12-31 Active Minière Osisko Inc. 18 2360766 32G04 14.33 **CDC** Active 2012-09-04 2020-12-31 Minière Osisko Inc. 19 2360767 32G04 1.75 **CDC** 2012-09-04 2020-12-31 Minière Osisko Inc. Active 20 2360768 32G04 41.99 **CDC** 2012-09-04 Active 2020-12-31 Minière Osisko Inc. 21 2360769 32G04 CDC 46.8 2012-09-04 2020-12-31 Active Minière Osisko Inc. 22 2360794 32B13 4.94 **CDC** Active 2012-09-04 2020-11-22 Minière Osisko Inc. 23 2360795 32B13 25.52 **CDC** Active 2012-09-04 2020-11-22 Minière Osisko Inc. 24 2360796 32B13 8.64 **CDC** 2012-09-04 2020-11-22 Minière Osisko Inc. Active 25 2360797 32B13 53.78 **CDC** 2012-09-04 2020-11-22 Active Minière Osisko Inc. 26 2360798 32B13 9.79 **CDC** 2012-09-04 2020-11-22 Minière Osisko Inc. Active 2360799 27 32B13 **CDC** 2012-09-04 2020-11-22 6.45 Active Minière Osisko Inc. 28 2360800 32B13 42.51 **CDC** Active 2012-09-04 2020-11-22 Minière Osisko Inc. 29 32B13 9.9 2360801 **CDC** Active 2012-09-04 2020-11-22 Minière Osisko Inc.


Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
30	2360802	32B13	56.53	CDC	Active	2012-09-04	2022-01-13	Minière Osisko Inc.
31	2360803	32B13	56.52	CDC	Active	2012-09-04	2022-01-13	Minière Osisko Inc.
32	2360804	32B13	56.52	CDC	Active	2012-09-04	2022-01-13	Minière Osisko Inc.
33	2360805	32B13	56.51	CDC	Active	2012-09-04	2022-01-13	Minière Osisko Inc.
34	2360806	32B13	56.51	CDC	Active	2012-09-04	2022-01-13	Minière Osisko Inc.
35	2360807	32B13	56.53	CDC	Active	2012-09-04	2022-01-13	Minière Osisko Inc.
36	2360808	32B13	56.54	CDC	Active	2012-09-04	2022-01-13	Minière Osisko Inc.
37	2360809	32B13	56.54	CDC	Active	2012-09-04	2022-01-13	Minière Osisko Inc.
38	2360810	32B13	55.44	CDC	Active	2012-09-04	2022-01-13	Minière Osisko Inc.
39	2360811	32B13	4.76	CDC	Active	2012-09-04	2022-01-13	Minière Osisko Inc.
40	2360812	32B13	21.16	CDC	Active	2012-09-04	2022-01-13	Minière Osisko Inc.
41	2360813	32B13	54.45	CDC	Active	2012-09-04	2022-01-13	Minière Osisko Inc.
42	2364938	32B13	56.53	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
43	2364939	32B13	56.53	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
44	2364940	32B13	56.52	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
45	2364941	32B13	56.52	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
46	2364942	32B13	56.51	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
47	2364943	32B13	51.77	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
48	2364944	32B13	4.97	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
49	2364945	32B13	1.1	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
50	2364946	32B13	23.98	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
51	2364947	32B13	2.09	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
52	2364948	32B13	56.54	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
53	2364949	32B13	16.65	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
54	2364950	32B13	56.54	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
55	2364951	32B13	56.53	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
56	2364952	32B13	33.04	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
57	2364953	32B13	3.63	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
58	2364954	32B13	56.53	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
59	2364955	32B13	14.78	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
60	2364956	32B13	56.53	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
61	2364957	32B13	18.35	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
62	2364958	32B13	56.53	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
63	2364959	32B13	56.52	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
64	2364960	32B13	48.02	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
65	2364961	32B13	2.91	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
66	2364962	32B13	56.52	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
67	2364963	32B13	9.72	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
68	2364964	32B13	56.52	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
69	2364965	32B13	56.51	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
70	2364966	32B13	30.69	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
71	2364967	32B13	33.19	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
72	2364968	32B13	49.76	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
73	2364969	32B13	49.48	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
74	2364970	32B13	44.42	CDC	Active	2012-10-23	2021-07-30	Minière Osisko Inc.
75	2369489	32G04	1.07	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
76	2369490	32G04	0.11	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
77	2369491	32G04	8.49	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
78	2369492	32G04	0.04	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
79	2369493	32G04	8.51	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
80	2369713	32G04	56.4	CDC	Active	2012-12-03	2021-08-08	Minière Osisko Inc.
81	2369714	32G04	56.4	CDC	Active	2012-12-03	2021-08-08	Minière Osisko Inc.
82	2369715	32G04	56.39	CDC	Active	2012-12-03	2021-08-08	Minière Osisko Inc.
83	2369716	32G04	56.4	CDC	Active	2012-12-03	2021-08-08	Minière Osisko Inc.
84	2369717	32G04	28.05	CDC	Active	2012-12-03	2021-08-08	Minière Osisko Inc.
85	2369718	32G04	7.22	CDC	Active	2012-12-03	2021-08-08	Minière Osisko Inc.
86	2369719	32G04	52.67	CDC	Active	2012-12-03	2021-08-08	Minière Osisko Inc.
87	2369720	32G04	1.47	CDC	Active	2012-12-03	2021-08-08	Minière Osisko Inc.
88	2369721	32G04	42.07	CDC	Active	2012-12-03	2021-08-08	Minière Osisko Inc.
89	2369722	32G04	53.03	CDC	Active	2012-12-03	2021-08-08	Minière Osisko Inc.
90	2369723	32G04	3.42	CDC	Active	2012-12-03	2021-08-08	Minière Osisko Inc.
91	2369724	32G04	11.3	CDC	Active	2012-12-03	2021-08-08	Minière Osisko Inc.
92	2369725	32G04	53.39	CDC	Active	2012-12-03	2021-08-08	Minière Osisko Inc.
93	2369726	32G04	12.64	CDC	Active	2012-12-03	2021-08-08	Minière Osisko Inc.
94	2369727	32G04	34.89	CDC	Active	2012-12-03	2021-08-08	Minière Osisko Inc.
95	2369728	32G04	32.03	CDC	Active	2012-12-03	2021-08-08	Minière Osisko Inc.
96	2376832	32G04	56.4	CDC	Active	2013-02-27	2021-03-20	Minière Osisko Inc.
97	2376833	32G04	19.37	CDC	Active	2013-02-27	2021-03-20	Minière Osisko Inc.

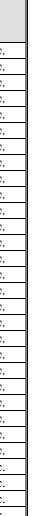
Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
98	2376834	32G04	35.6	CDC	Active	2013-02-27	2021-03-20	Minière Osisko Inc.
99	2376835	32G04	17.48	CDC	Active	2013-02-27	2021-03-20	Minière Osisko Inc.
100	2376836	32G04	31.24	CDC	Active	2013-02-27	2021-03-20	Minière Osisko Inc.
101	2376837	32G04	30.38	CDC	Active	2013-02-27	2021-03-20	Minière Osisko Inc.
102	2376838	32G04	28.86	CDC	Active	2013-02-27	2021-03-20	Minière Osisko Inc.
103	2376839	32G04	52.34	CDC	Active	2013-02-27	2021-03-20	Minière Osisko Inc.
104	2376840	32G04	27.03	CDC	Active	2013-02-27	2021-03-20	Minière Osisko Inc.
105	2387601	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
106	2387602	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
107	2387612	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
108	2387613	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
109	2387614	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
110	2387615	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
111	2387616	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
112	2387617	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
113	2387618	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
114	2387619	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
115	2387626	32G04	56.42	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
116	2387627	32G04	56.42	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
117	2387628	32G04	56.42	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
118	2387629	32G04	56.42	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
119	2387630	32G04	56.42	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
120	2387631	32G04	56.42	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
121	2387632	32G04	56.42	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
122	2387635	32G04	56.41	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
123	2387636	32G04	56.41	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
124	2387637	32G04	56.41	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
125	2387638	32G04	56.41	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
126	2387639	32G04	56.41	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
127	2387640	32G04	56.41	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
128	2387641	32G04	56.41	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
129	2387642	32G04	56.41	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
130	2387643	32G04	56.4	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
131	2387644	32G04	56.4	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
132	2387645	32G04	56.4	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
133	2387646	32G04	56.4	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
134	2387647	32G04	56.39	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
135	2387648	32G04	56.39	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
136	2387649	32G04	56.39	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
137	2387654	32G04	56.41	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
138	2387655	32G04	56.4	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
139	2387657	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
140	2387658	32G04	56.4	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
141	2387659	32G04	56.4	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
142	2387661	32G04	4.83	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
143	2387662	32G04	56.38	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
144	2387664	32G04	56.41	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
145	2387665	32G04	56.39	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
146	2387666	32G04	3.37	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
147	2387667	32G04	56.38	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
148	2387671	32G04	41.68	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
149	2387672	32G04	39.39	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
150	2387673	32G04	0.08	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
151	2387675	32G04	56.38	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
152	2387677	32G04	56.38	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
153	2387678	32G04	2.11	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
154	2387681	32G04	56.37	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
155	2387682	32G04	56.4	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
156	2387685	32G04	5.3	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
157	2387687	32G04	40.85	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
158	2387690	32G04	49.51	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
159	2387692	32G04	56.4	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
160	2387699	32G04	45.22	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
161	2387701	32G04	20.74	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
162	2387702	32G04	13.32	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
163	2387703	32G04	20.76	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
164	2387704	32G04	21.64	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
165	2387706	32G04	4.06	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.

INTERNATIONAL LIMITED | consultants

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
166	2387707	32G04	36.59	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
167	2402808	32G04	56.44	CDC	Active	2014-04-23	2020-04-22	Minière Osisko Inc.
168	2402809	32G04	56.44	CDC	Active	2014-04-23	2020-04-22	Minière Osisko Inc.
169	2402810	32G04	56.44	CDC	Active	2014-04-23	2020-04-22	Minière Osisko Inc.
170	2402811	32G04	56.38	CDC	Active	2014-04-23	2020-04-22	Minière Osisko Inc.
171	2402812	32G04	56.38	CDC	Active	2014-04-23	2020-04-22	Minière Osisko Inc.
172	2402813	32G04	56.38	CDC	Active	2014-04-23	2020-04-22	Minière Osisko Inc.
173	2402814	32G04	56.37	CDC	Active	2014-04-23	2020-04-22	Minière Osisko Inc.
174	2402815	32G04	56.37	CDC	Active	2014-04-23	2020-04-22	Minière Osisko Inc.
175	2402816	32G04	56.37	CDC	Active	2014-04-23	2020-04-22	Minière Osisko Inc.
176	2417076	32G03	56.46	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
177	2417077	32G03	56.46	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
178	2417078	32G03	56.46	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
179	2417079	32G03	56.45	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
180	2417080	32G03	56.45	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
181	2417081	32G03	56.45	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
182	2417082	32G03	56.45	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
183	2417083	32G03	56.44	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
184	2417084	32G03	56.44	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
185	2417085	32G03	56.44	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
186	2417086	32G03	56.44	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
187	2417088	32G03	56.43	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
188	2417089	32G03	56.43	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
189	2417090	32G03	56.43	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
190	2417091	32G03	56.43	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
191	2417092	32G03	56.43	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
192	2417093	32G03	56.43	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
193	2417094	32G03	56.42	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
194	2417095	32G03	56.42	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
195	2417096	32G03	56.42	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
196	2417097	32G03	56.42	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
197	2417098	32G03	56.42	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
198	2417099	32G03	56.42	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
199	2417100	32G03	56.42	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
200	2417101	32G03	56.42	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
201	2417102	32G03	56.41	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
202	2417103	32G03	56.41	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
203	2417104	32G03	56.41	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
204	2417105	32G03	56.41	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
205	2417106	32G03	56.41	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
206	2417107	32G03	56.41	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
207	2417108	32G03	56.41	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
208	2417109	32G03	56.41	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
209	2417110	32G03	56.41	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
210	2417111	32G03	56.41	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
211	2417112	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
212	2417113	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
213	2417114	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
214	2417115	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
215	2417116	32G03	56.43	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
216	2417117	32G03	56.43	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
217	2417118	32G03	56.42	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
218	2417119	32G03	56.41	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
219	2417120	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
220	2417121	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
221	2417122	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
222	2417123	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
223	2417124	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
224	2417125	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
225	2417126	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
226	2417127	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
227	2417128	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
228	2417129	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
229	2417130	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
230	2417131	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
231	2417132	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
232	2417133	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
233	2417134	32G03	56.4	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.


Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
234	2417135	32G03	56.39	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
235	2417136	32G03	56.39	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
236	2417137	32G03	56.39	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
237	2417138	32G03	56.39	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
238	2417139	32G03	56.39	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
239	2417140	32G03	56.39	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
240	2417141	32G03	56.39	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
241	2417142	32G03	56.39	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
242	2417143	32G03	56.39	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
243	2417144	32G03	56.39	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
244	2417145	32G03	56.39	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
245	2417146	32G03	56.39	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
246	2417147	32G03	56.39	CDC	Active	2014-11-25	2020-11-24	Minière Osisko Inc.
247	2417220	32G03	56.38	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
248	2417221	32G03	56.37	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
249	2417222	32G03	56.36	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
250	2417223	32G03	56.35	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
251	2417224	32G03	56.35	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
252	2417225	32G03	56.35	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
253	2417226	32G03	56.35	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
254	2417227	32G03	56.35	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
255	2417228	32G03	56.35	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
256	2417229	32G03	56.35	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
257	2417230	32G03	56.35	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
258	2417231	32G03	56.35	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
259	2417232	32G03	56.35	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
260	2417233	32G03	56.35	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
261	2417234	32G03	56.35	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
262	2417235	32G03	56.35	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
263	2417236	32G03	56.35	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
264	2417237	32G03	56.35	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
265	2417238	32G03	56.34	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
266	2417239	32G03	56.34	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
267	2417240	32G03	56.34	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
268	2417241	32G03	56.34	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
269	2417242	32G03	56.34	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
270	2417243	32G03	56.34	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
271	2417244	32G03	56.34	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
272	2417245	32G03	56.34	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
273	2417246	32G03	56.34	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
274	2417247	32G03	56.34	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
275	2417248	32G03	56.34	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
276	2417249	32G03	56.34	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
277	2417250	32G03	56.34	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
278	2417251	32G03	56.33	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
279	2417252	32G03	56.33	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
280	2417253	32G03	56.33	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
281	2417254	32G03	56.33	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
282	2417255	32G03	56.33	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
283	2417256	32G03	56.33	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
284	2417257	32G03	56.33	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
285	2417258	32G03	56.33	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
286	2417259	32G03	56.33	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
287	2417260	32G03	56.33	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
288	2417261	32G03	56.33	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
289	2417266	32G04	56.38	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
290	2417267	32G04	56.37	CDC	Active	2014-11-26	2020-11-25	Minière Osisko Inc.
291	2417382	32G03	56.4	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
292	2417383	32G03	56.4	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
293	2417384	32G03	56.4	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
294	2417385	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
295	2417386	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
296	2417387	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
297	2417388	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
298	2417389	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
299	2417390	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
300	2417391	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
301	2417392	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
302	2417393	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
303	2417394	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
304	2417395	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
305	2417396	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
306	2417397	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
307	2417398	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
308	2417399	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
309	2417400	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
310	2417401	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
311	2417402	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
312	2417403	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
313	2417404	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
314	2417405	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
315	2417406	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
316	2417407	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
317	2417408	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
318	2417409	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
319	2417410	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
320	2417411	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
321	2417412	32G03	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
322	2417416	32G03	56.34	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
323	2417417	32G03	56.34	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
324	2417418	32G03	56.34	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
325	2417419	32G03	56.4	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
326	2417420	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
327	2417421	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
328	2417422	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
329	2417423	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
330	2417424	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
331	2417425	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
332	2417426	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
333	2417427	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
334	2417428	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
335	2417429	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
336	2417430	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
337	2417431	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
338	2417432	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
339	2417433	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
340	2417434	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
341	2417435	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
342	2417436	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
343	2417437	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
344	2417438	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
345	2417439	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
346	2417440	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
347	2417441	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
348	2417442	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
349	2417443	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
350	2417444	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
351	2417445	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
352	2417446	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
353	2417447	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
354	2417448	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
355	2417449	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
356	2417450	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
357	2417451	32G03	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
358	2417452	32G03	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
359	2417453	32G03	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
360	2417454	32G03	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
361	2417457	32G03	56.34	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
362	2417458	32G03	56.34	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
363	2417537	32B13	56.6	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
364	2417538	32B13	56.6	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
365	2417539	32B13	56.6	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
366	2417540	32B13	56.6	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
367	2417541	32B13	56.6	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
368	2417542	32B13	56.6	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
369	2417543	32B13	56.59	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.

								1
Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
370	2417544	32B13	56.59	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
371	2417545	32B13	56.59	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
372	2417546	32B13	56.59	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
373	2417547	32B13	56.59	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
374	2417548	32B13	56.59	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
375	2417549	32B13	56.59	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
376	2417550	32B13	56.59	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
377	2417551	32B13	56.58	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
378	2417552	32B13	56.58	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
379	2417553	32B13	56.58	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
380	2417554	32B13	56.58	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
381	2417555	32B13	56.56	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
382	2417556	32B13	56.56	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
383	2417557	32B13	56.56	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
384	2417558	32B13	56.56	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
385	2417559	32B13	56.56	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
386	2417560	32B13	56.56	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
387	2417561	32B13	56.56	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
388	2417562	32B13	56.56	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
389	2417563	32B13	56.55	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
390	2417564	32B13	56.55	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
391	2417565	32B13	56.55	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
392	2417566	32B13	56.55	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
393	2417567	32B13	56.55	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
394	2417568	32B13	56.55	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
395	2417569	32B13	56.55	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
396	2417570	32B13	56.55	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
397	2417571	32B13	56.54	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
398	2417572	32B13	56.54	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
399	2417573	32B13	56.54	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
400	2417574	32B13	56.54	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
401	2417575	32B13	56.54	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
402	2417576	32B13	56.54	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
403	2417577	32B13	56.54	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
404	2417578	32B13	56.54	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
405	2417579	32B13	56.5	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
406	2417581	32G03	56.46	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
407	2417582	32G03	56.46	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
408	2417583	32G03	56.46	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
409	2417584	32G03	56.46	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
410	2417585	32G03	56.46	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
411	2417586	32G03	56.45	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
412	2417587	32G03	56.45	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
413	2417588	32G03	56.45	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
414	2417589	32G03	56.45	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
415	2417590	32G03	56.45	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
416	2417593	32G03	56.44	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
417	2417594	32G03	56.44	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
418	2417595	32G03	56.44	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
419	2417596	32G03	56.44	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
420	2417597	32G03	56.43	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
421	2417598	32G03	56.43	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
422	2417599	32G03	56.43	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
423	2417600	32G03	56.42	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
424	2417601	32G03	56.42	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
425	2417602	32G03	56.42	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
426	2417603	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
427	2417604	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
428	2417605	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
429	2417606	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
430	2417607	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
431	2417608	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
432	2417609	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
433	2417610	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
434	2417611	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
435	2417612	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
436	2417613	32G03	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
437	2417614	32G03	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.

								Owner
Item	Title	NTS	Area (ha)	Type	Status	Staking Date	Expiration Date	(according to GESTIM)
438	2417615	32G03	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
439	2417618	32G04	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
440	2417619	32G04	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
441	2417620	32G04	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
442	2417621	32G04	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
443	2417622	32G04	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
444	2417623	32G04	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
445	2417624	32G04	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
446	2417625	32G04	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
447	2417626	32G04	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
448	2417627	32G04	56.34	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
449	2417628	32G04	56.34	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
450	2417629	32G04	56.34	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
451	2417630	32G04	56.34	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
452	2417631	32G04	56.34	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
453	2417632	32G04	56.32	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
454	2417633	32G04	56.32	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
455	2417634	32G04	56.32	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
456	2417636	32G04	56.32	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
457	2417638	32G04	56.32	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
458	2417639	32G04	56.32	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
459	2417640	32G04	56.32	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
460	2417641	32G04	56.32	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
461	2417642	32G04	56.32	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
462	2417643	32G04	56.32	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
463	2417644	32G04	56.32	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
464	2417645	32G04	56.31	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
465	2417646	32G04	56.31	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
466	2417650	32G04	56.31	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
467	2417651	32G04	56.31	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
468	2417652	32G04	56.3	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
469	2417653	32G04	56.3	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
470	2417654	32G04	56.3	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
471	2417655	32G03	56.4	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
472	2417656	32G03	56.4	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
473	2417657	32G03	56.4	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
474	2417658	32G03	56.4	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
475	2417659	32G03	56.4	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
476	2417660	32G03	56.4	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
477	2417661	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
478	2417662	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
479	2417663	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
480	2417664	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
481	2417665	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
482	2417666	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
483	2417667	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
484	2417668	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
485	2417669	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
486	2417670	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
487	2417671	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
488	2417672	32G03	56.39	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
489	2417673	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
490	2417674	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
491	2417675	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
492	2417676	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
493	2417677	32G03	56.38	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
494	2417678	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
495	2417679	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
496	2417680	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
497	2417681	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
498	2417682	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
499	2417683	32G03	56.37	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
500	2417684	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
501	2417685	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
502	2417686	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
503	2417687	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
504	2417688	32G03	56.36	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
505	2417689	32G03	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
506	2417690	32G03	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
507	2417691	32G03	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
508	2417692	32G03	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
509	2417693	32G03	56.35	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
510	2417694	32G03	56.34	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
511	2417695	32G04	56.32	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
512	2417699	32G04	56.31	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
513	2417700	32G04	56.31	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
514	2417701	32G04	56.31	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
515	2417703	32G04	56.31	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
516	2417704	32G04	56.31	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
517	2417705	32G04	56.31	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
518	2417708	32G04	56.31	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
519	2417709	32G04	56.31	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
520	2417710	32G04	56.31	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
521	2417711	32G04	56.31	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
522	2417713	32G04	56.3	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
523	2417721	32G04	56.29	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
524	2417723	32G04	56.29	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
525	2417724	32G04	56.29	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
526	2417728	32G04	56.28	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
527	2417734	32G04	56.27	CDC	Active	2014-12-01	2020-11-30	Minière Osisko Inc.
528	2418096	32G03	56.4	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
529	2418097	32G03	56.4	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
530	2418098	32G03	56.4	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
531	2418099	32G03	56.4	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
532	2418100	32G03	56.4	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
533	2418101	32G03	56.4	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
534	2418102	32G03	56.4	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
535	2418103	32G03	56.39	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
536	2418104	32G03	56.39	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
537	2418105	32G03	56.39	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
538	2418106	32G03	56.39	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
539	2418107	32G03	56.39	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
540	2418108	32G03	56.39	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
541	2418109	32G03	56.39	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
542	2418110	32G03	56.39	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
543	2418111	32G03	56.39	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
544	2418112	32G03	56.39	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
545	2418113	32G03	56.39	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
546	2418114	32G03	56.39	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
547	2418115	32G03	56.39	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
548	2418116	32G03	56.39	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
549	2418117	32G03	56.38	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
550	2418118	32G03	56.38	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
551	2418119	32G03	56.38	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
552	2418120	32G03	56.38	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
553	2418121	32G03	56.38	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
554	2418122	32G03	56.38	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
555	2418123	32G03	56.38	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
556	2418124	32G03	56.38	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
557	2418125	32G03	56.37	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
558	2418126	32G03	56.37	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
559	2418127	32G03	56.37	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
560	2418128	32G03	56.37	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
561	2418129	32G03	56.37	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
562	2418130	32G03	56.37	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
563	2418131	32G03	56.36	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
564	2418132	32G03	56.46	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
565	2418133	32G03	56.45	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
566	2418134	32G03	56.43	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
567	2418135	32G03	56.41	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
568	2418136	32G03	56.4	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
569	2418137	32G03	56.4	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
570	2418138	32G03	56.38	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
571	2418139	32G03	56.38	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
572	2418140	32G03	56.38	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
573	2418141	32G03	56.37	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
574	2418142	32G03	56.37	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
575	2418143	32G03	56.37	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
576	2418144	32G03	56.37	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
577	2418145	32G03	56.36	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
578	2418146	32G03	56.36	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
579	2418147	32G03	56.36	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
580	2418148	32G03	56.36	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
581	2418149	32G03	56.36	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
582	2418150	32G03	56.36	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
583	2418151	32G03	56.36	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
584	2418152	32G03	56.36	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
585	2418153	32G03	56.36	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
586	2418154	32G03	56.36	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
587	2418155	32G03	56.36	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
588	2418156	32G03	56.35	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
589	2418157	32G03	56.35	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
590	2418158	32G03	56.35	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
591	2418159	32G03	56.35	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
592	2418160	32G03	56.35	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
593	2418161	32G03	56.35	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
594	2418162	32G03	56.35	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
595	2418163	32G03	56.35	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
596	2418164	32G03	56.35	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
597	2418165	32G03	56.35	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
598	2418166	32G03	56.35	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
599	2418167	32G03	56.35	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
600	2418168	32G03	56.35	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
601	2418169	32G03	56.35	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
602	2418170	32G03	56.35	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
603	2418192	32B14	56.5	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
604	2418193	32B14	56.5	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
605	2418194	32B14	56.5	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
606	2418195	32B14	56.5	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
607	2418196	32B14	56.5	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
608	2418197	32B14	56.5	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
609	2418198	32B14	56.5	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
610	2418202	32B14	56.49	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
611	2418205	32B14	56.49	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
612	2418206	32B14	56.49	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
613	2418207	32B14	56.49	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
614	2418208	32B14	56.49	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
615	2418212	32B14	56.48	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
616	2418213	32B14	56.48	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
617	2418214	32B14	56.48	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
618	2418215	32B14	56.48	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
619	2418216	32B14	56.48	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
620	2418217	32B14	56.48	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
621	2418218	32B14	56.48	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
622	2418219	32B14	56.47	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
623	2418224	32B14	56.47	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
624	2418225	32B14	56.47	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
625	2418226	32B14	56.47	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
626	2418227	32B14	56.47	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
627	2418228	32B14	56.47	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
628	2418229	32B14	56.47	CDC	Active	2014-12-02	2020-12-01	Minière Osisko Inc.
629	2418370	32G03	56.41	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
630	2418371	32G03	56.4	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
631	2418372	32G03	56.4	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
632	2418373	32G03	56.4	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
633	2418374	32G03	56.4	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
634	2418375	32G03	56.38	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
635	2418376	32G03	56.37	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
636	2418377	32G03	56.37	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
637	2418378	32G03	56.34	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
638	2418379	32G03	56.34	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
639	2418380	32G03	56.34	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
640	2418381	32G03	56.34	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
641	2418382	32G03	56.34	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
642	2418383	32G03	56.34	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
643	2418384	32G03	56.34	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
644	2418385	32G03	56.34	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
645	2418386	32G03	56.33	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
646	2418387	32G03	56.33	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
647	2418388	32G03	56.33	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
648	2418389	32G03	56.33	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
649	2418390	32G03	56.33	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
650	2418391	32G03	56.32	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
651	2418392	32G03	56.32	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
652	2418393	32G03	56.32	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
653	2418394	32G03	56.32	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
654	2418395	32G03	56.32	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
655	2418396	32G03	56.32	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
656	2418397	32G03	56.32	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
657	2418398	32G03	56.32	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
658	2418399	32G03	56.32	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
659	2418400	32G03	56.32	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
660	2418401	32G03	56.31	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
661	2418402	32G03	56.31	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
662	2418403	32G03	56.31	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
663	2418404	32G03	56.31	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
664	2418405	32G03	56.31	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
665	2418406	32G03	56.31	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
666	2418407	32G03	56.31	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
667	2418408	32G03	56.31	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
668	2418409	32G03	56.31	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
669	2418410	32G03	56.46	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
670	2418411	32G03	56.46	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
671	2418412	32G03	56.46	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
672	2418413	32G03	56.46	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
673	2418414	32G03	56.46	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
674	2418415	32G03	56.46	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
675	2418416	32G03	56.46	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
676	2418417	32G03	56.46	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
677	2418419	32G03	56.46	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
678	2418420	32G03	56.46	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
679	2418421	32G03	56.46	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
680	2418422	32G03	56.46	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
681	2418423	32G03	56.45	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
682	2418424	32G03	56.45	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
683	2418425	32G03	56.45	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
684	2418426	32G03	56.45	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
685	2418427	32G03	56.45	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
686	2418428	32G03	56.45	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
687	2418429	32G03	56.45	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
688	2418430	32G03	56.45	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
689	2418431	32G03	56.45	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
690	2418432	32G03	56.45	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
691	2418433	32G03	56.43	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
692	2418434	32G03	56.42	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
693	2418435	32G03	56.42	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
694	2418436	32G03	56.39	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
695	2418437	32G03	56.39	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
696	2418438	32G03	56.39	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
697	2418439	32G03	56.35	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
698	2418440	32G03	56.35	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
699	2418441	32G03	56.35	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
700	2418442	32G03	56.35	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
701	2418444	32G03	56.34	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
702	2418445	32G03	56.34	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
703	2418450	32G03	56.42	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
704	2418451	32G03	56.41	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
705	2418452	32G03	56.41	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
706	2418453	32G03	56.38	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
707	2418454	32G03	56.38	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
708	2418455	32G03	56.37	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
709	2418456	32G03	56.37	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
710	2418457	32G03	56.37	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
711	2418458	32G03	56.36	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
712	2418459	32G03	56.36	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
713	2418460	32G03	56.36	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
714	2418461	32G03	56.35	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
715	2418462	32G03	56.35	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
716	2418463	32G03	56.35	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
717	2418464	32G03	56.35	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
718	2418465	32G03	56.35	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
719	2418466	32G03	56.35	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
720	2418467	32G03	56.34	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
721	2418472	32G03	56.34	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
722	2418473	32G03	56.34	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
723	2418474	32G03	56.34	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
724	2418475	32G03	56.34	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
725	2418476	32G03	56.34	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
726	2418477	32G03	56.34	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
727	2418484	32G03	56.33	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
728	2418485	32G03	56.33	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
729	2418486	32G03	56.33	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
730	2418487	32G03	56.33	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
731	2418488	32G03	56.33	CDC	Active	2014-12-03	2020-12-02	Minière Osisko Inc.
732	2418541	32G03	56.46	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
733	2418542	32G03	56.46	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
734	2418544	32G03	56.45	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
735	2418545	32G03	56.44	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
736	2418546	32G03	56.44	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
737	2418547	32G03	56.44	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
738	2418548	32G03	56.44	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
739	2418549	32G03	56.44	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
740	2418550	32G03	56.42	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
741	2418551	32G03	56.42	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
742	2418552	32G03	56.42	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
743	2418553	32G03	56.42	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
744	2418554	32G03	56.41	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
745	2418555	32G03	56.4	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
746	2418556	32G03	56.4	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
747	2418557	32G03	56.4	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
748	2418558	32G03	56.4	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
749	2418559	32G03	56.4	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
750	2418560	32G03	56.4	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
751	2418561	32G03	56.39	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
752	2418562	32G03	56.39	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
753	2418563	32G03	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
754	2418564	32G03	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
755	2418565	32G03	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
756	2418572	32G03	56.33	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
757	2418574	32G03	56.33	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
758	2418575	32G03	56.33	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
759	2418576	32G03	56.33	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
760	2418577	32G03	56.33	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
761	2418578	32G04	56.32	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
762	2418579	32G04	56.32	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
763	2418580	32G04	56.32	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
764	2418581	32G04	56.32	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
765	2418582	32G04	56.32	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
766	2418583	32G04	56.31	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
767	2418584	32G04	56.31	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
768	2418585	32G04	56.31	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
769	2418586	32G04	56.31	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
770	2418587	32G04	56.31	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
771	2418589	32G04	56.3	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
772	2418590	32G04	56.3	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
773	2418591	32G04	56.3	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
774	2418592	32G04	56.3	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
775	2418594	32G04	56.3	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
776	2418595	32G04	56.3	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
777	2418596	32G04	56.3	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
778	2418600	32G04	56.29	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
779	2418601	32G04	56.29	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
780	2418602	32G04	56.29	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
781	2418603	32G04	56.29	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
782	2418618	32B13	56.62	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
783	2418619	32B13	56.62	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
784	2418620	32B13	56.62	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
785	2418621	32B13	56.62	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
786	2418622	32B13	56.62	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
787	2418623	32B13	56.62	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
788	2418624	32B13	56.61	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
789	2418625	32B13	56.61	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
790	2418626	32B13	56.61	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
791	2418627	32B13	56.61	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
792	2418628	32B13	56.61	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
793	2418629	32B13	56.61	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
794	2418630	32B13	56.61	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
795	2418631	32B13	56.61	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
796	2418632	32B13	56.61	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
797	2418633	32B13	56.61	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
798	2418634	32B13	56.61	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
799	2418635	32B13	56.61	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
800	2418636	32B13	56.61	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
801	2418637	32B13	56.61	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
802	2418638	32B13	56.61	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
803	2418639	32B13	56.61	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
804	2418640	32B13	56.6	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
805	2418641	32B13	56.6	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
806	2418642	32B13	56.6	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
807	2418643	32B13	56.6	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
808	2418644	32B13	56.6	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
809	2418645	32B13	56.59	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
810	2418646	32B13	56.58	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
811	2418647	32B13	56.58	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
812	2418648	32B13	56.58	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
813	2418649	32B13	56.57	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
814	2418650	32B13	56.57	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
815	2418651	32B13	56.57	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
816	2418652	32B13	56.57	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
817	2418653	32B13	56.57	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
818	2418654	32B13	56.57	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
819	2418655	32B13	56.56	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
820	2418656	32B13	56.56	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
821	2418657	32B13	56.56	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
822	2418658	32B13	56.56	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
823	2418659	32B13	56.56	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
824	2418660	32B13	56.55	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
825	2418661	32B13	56.55	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
826	2418662	32B13	56.55	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
827	2418663	32B13	56.55	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
828	2418664	32B13	56.53	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
829	2418665	32B13	56.53	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
830	2418666	32B13	56.53	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
831	2418667	32B13	56.53	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
832	2418668	32F01	56.44	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
833	2418669	32F01	56.44	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
834	2418670	32F01	56.43	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
835	2418671	32F01	56.43	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
836	2418672	32F01	56.43	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
837	2418673	32F01	56.42	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
838	2418674	32F01	56.42	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
839	2418675	32F01	56.42	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
840	2418676	32F01	56.42	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
841	2418677	32F01	56.42	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
842	2418678	32F01	56.42	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
843	2418679	32F01	56.4	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
844	2418680	32F01	56.39	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
845	2418681	32F01	56.39	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
846	2418682	32F01	56.39	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
847	2418683	32F01	56.39	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
848	2418684	32F01	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
849	2418685	32F01	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
850	2418686	32F01	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
851	2418687	32F01	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
852	2418688	32F01	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
853	2418689	32F01	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
854	2418690	32F01	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
855	2418691	32F01	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
856	2418692	32F01	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
857	2418693	32F01	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
858	2418694	32F01	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
859	2418695	32F01	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
860	2418696	32F01	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
861	2418697	32F01	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
862	2418698	32F01	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
863	2418699	32F01	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
864	2418700	32F01	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
865	2418701	32F01	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
866	2418702	32F01	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
867	2418703	32F01	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
868	2418704	32F01	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
869	2418705	32F01	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
870	2418706	32F01	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
871	2418707	32F01	56.32	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
872	2418708	32G03	56.41	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
873	2418709	32G03	56.41	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
874	2418710	32G03	56.4	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
875	2418711	32G03	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
876	2418712	32G03	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
877	2418713	32G03	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
878	2418714	32G03	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
879	2418719	32G03	56.33	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
880	2418733	32G03	56.3	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
881	2418734	32G03	56.3	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
882	2418735	32G03	56.3	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
883	2418736	32G03	56.3	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
884	2418737	32G03	56.3	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
885	2418738	32G03	56.3	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
886	2418739	32G03	56.29	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
887	2418740	32G03	56.29	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
888	2418741	32G03	56.29	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
889	2418742	32G03	56.29	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
890	2418743	32G03	56.29	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
891	2418744	32G03	56.28	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
892	2418745	32G03	56.28	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
893	2418746	32G03	56.27	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
894	2418747	32G03	56.27	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
895	2418748	32G03	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
896	2418749	32G03	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
897	2418750	32G03	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
898	2418751	32G03	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
899	2418752	32G03	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
900	2418753	32G03	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
901	2418754	32G03	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
902	2418755	32G03	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
903	2418775	32G03	56.29	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
904	2418776	32G03	56.29	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
905	2418778	32G03	56.28	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
906	2418779	32G03	56.28	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
907	2418781	32G03	56.27	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
908	2418787	32G04	56.44	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
909	2418789	32G04	56.45	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
910	2418790	32G04	56.45	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
911	2418791	32G04	56.45	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
912	2418792	32G04	56.44	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
913	2418793	32G04	56.44	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
914	2418794	32G04	56.44	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
915	2418795	32G04	56.43	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
916	2418796	32G04	56.43	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
917	2418797	32G04	56.43	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
918	2418799	32G04	56.39	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
919	2418800	32G04	56.39	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
920	2418801	32G04	56.39	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
921	2418802	32G04	56.39	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
922	2418803	32G04	56.39	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
923	2418804	32G04	56.39	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
924	2418805	32G04	56.39	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
925	2418806	32G04	56.39	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
926	2418807	32G04	56.39	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
927	2418808	32G04	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
928	2418809	32G04	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
929	2418810	32G04	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
930	2418811	32G04	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
931	2418812	32G04	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
932	2418813	32G04	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
933	2418814	32G04	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
934	2418815	32G04	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
935	2418816	32G04	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
936	2418817	32G04	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
937	2418818	32G04	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
938	2418819	32G04	56.38	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
939	2418820	32G04	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
940	2418821	32G04	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
941	2418822	32G04	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
942	2418823	32G04	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
943	2418824	32G04	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
944	2418825	32G04	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
945	2418826	32G04	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
946	2418827	32G04	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
947	2418828	32G04	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
948	2418829	32G04	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
949	2418830	32G04	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
950	2418831	32G04	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
951	2418832	32G04	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
952	2418833	32G04	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
953	2418834	32G04	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
954	2418835	32G04	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
955	2418836	32G04	56.37	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
956	2418837	32G04	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
957	2418838	32G04	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
958	2418839	32G04	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
959	2418840	32G04	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
960	2418841	32G04	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
961	2418842	32G04	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
962	2418843	32G04	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
963	2418844	32G04	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
964	2418845	32G04	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
965	2418846	32G04	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
966	2418847	32G04	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
967	2418848	32G04	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
968	2418849	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
969	2418850	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
970	2418852	32G04	56.31	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
971	2418853	32G04	56.31	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
972	2418856	32G04	56.31	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
973	2418858	32G04	56.3	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
974	2418863	32G04	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
975	2418864	32G04	56.36	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
976	2418865	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
977	2418866	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
978	2418867	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
979	2418868	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
980	2418869	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
981	2418870	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
982	2418871	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
983	2418872	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
984	2418873	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
985	2418874	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
986	2418875	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
987	2418876	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
988	2418877	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
989	2418878	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
990	2418879	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
991	2418880	32G04	56.35	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
992	2418881	32G04	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
993	2418882	32G04	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
994	2418883	32G04	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
995	2418884	32G04	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
996	2418885	32G04	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
997	2418886	32G04	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
998	2418887	32G04	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
999	2418888	32G04	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
1000	2418889	32G04	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
1001	2418890	32G04	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
1002	2418891	32G04	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
1003	2418892	32G04	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
1004	2418893	32G04	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
1005	2418894	32G04	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
1006	2418895	32G04	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
1007	2418896	32G04	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
1008	2418897	32G04	56.34	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
1009	2418898	32G04	56.33	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
1010	2418899	32G04	56.33	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
1011	2418900	32G04	56.33	CDC	Active	2014-12-04	2020-12-03	Minière Osisko Inc.
1012	2418912	32G03	56.44	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1013	2418913	32G03	56.44	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1014	2418914	32G03	56.44	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1015	2418915	32G03	56.43	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1016	2418916	32G03	56.43	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1017	2418917	32G03	56.43	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1018	2418918	32G03	56.43	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1019	2418919	32G03	56.43	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1020	2418920	32G03	56.43	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1021	2418921	32G03	56.43	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1022	2418922	32G03	56.43	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1023	2418923	32G03	56.42	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1024	2418924	32G03	56.42	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1025	2418925	32G03	56.42	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1026	2418926	32G03	56.42	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1027	2418927	32G03	56.42	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1028	2418928	32G03	56.42	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1029	2418929	32G03	56.42	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1030	2418930	32G03	56.42	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1031	2418931	32G03	56.42	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1032	2418932	32G03	56.42	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1033	2418933	32G03	56.41	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1034	2418934	32G03	56.41	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1035	2418935	32G03	56.41	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1036	2418936	32G03	56.41	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1037	2418937	32G03	56.41	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1038	2418938	32G03	56.41	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1039	2418939	32G03	56.41	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1040	2418940	32G03	56.41	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1041	2418941	32G03	56.4	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1042	2418942	32G03	56.4	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1043	2418943	32G03	56.4	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1044	2418944	32G03	56.4	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1045	2418945	32G03	56.4	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1046	2418946	32G03	56.4	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1047	2418947	32G03	56.4	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1048	2418948	32G03	56.4	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1049	2418949	32G03	56.39	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1050	2418950	32G03	56.39	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1051	2418951	32G03	56.39	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1052	2418953	32B13	56.61	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1053	2418955	32B13	56.6	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1054	2418956	32B13	56.6	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1055	2418957	32B13	56.6	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1056	2418958	32B13	56.6	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1057	2418959	32B13	56.6	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1058	2418962	32B13	56.59	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1059	2418963	32B13	56.59	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1060	2418964	32B13	56.59	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1061	2418965	32B13	56.59	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1062	2418966	32B13	56.59	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1063	2418970	32B13	56.58	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1064	2418971	32B13	56.58	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1065	2418972	32B13	56.58	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1066	2418973	32B13	56.58	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1067	2418974	32B13	56.58	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1068	2418979	32B13	56.57	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1069	2418980	32B13	56.57	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1070	2418981	32B13	56.57	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1071	2418982	32B13	56.57	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1072	2418986	32B13	56.56	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1073	2418988	32B13	56.56	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1074	2418990	32B13	56.56	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1075	2418991	32B13	56.56	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1076	2418992	32G03	56.46	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1077	2418993	32G03	56.46	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1078	2418994	32G03	56.46	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1079	2418995	32G03	56.46	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1080	2418996	32G03	56.46	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1081	2418997	32G03	56.46	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1082	2418998	32G03	56.46	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1083	2418999	32G03	56.46	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1084	2419000	32G03	56.45	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1085	2419001	32G03	56.45	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1086	2419002	32G03	56.45	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1087	2419003	32G03	56.45	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1088	2419004	32G03	56.45	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1089	2419005	32G03	56.45	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1090	2419006	32G03	56.45	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1091	2419007	32G03	56.45	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1092	2419008	32G03	56.45	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1093	2419009	32G03	56.45	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1094	2419010	32G03	56.45	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1095	2419013	32G03	56.44	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1096	2419014	32G03	56.44	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1097	2419015	32G03	56.44	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1098	2419016	32G03	56.43	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1099	2419017	32G03	56.43	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1100	2419018	32G03	56.43	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1101	2419020	32G03	56.42	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1102	2419021	32G03	56.42	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1103	2419022	32G03	56.42	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1104	2419024	32G03	56.41	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1105	2419025	32G03	56.41	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1106	2419028	32G03	56.4	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1107	2419029	32G03	56.39	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1108	2419031	32G03	56.35	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1109	2419032	32B14	56.54	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1110	2419033	32B14	56.54	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1111	2419034	32B14	56.54	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1112	2419035	32B14	56.54	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1113	2419040	32B14	56.54	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1114	2419041	32B14	56.54	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1115	2419042	32B14	56.54	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1116	2419043	32B14	56.54	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1117	2419049	32B14	56.53	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.

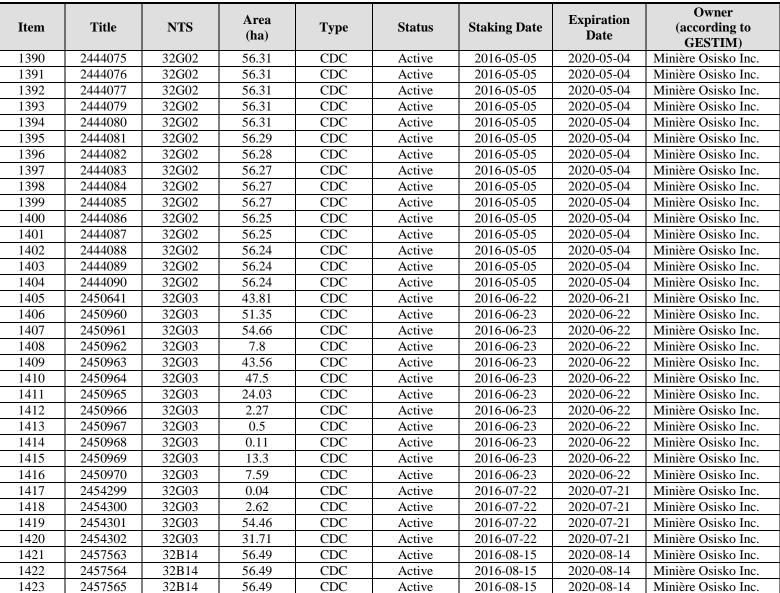
Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1118	2419050	32B14	56.53	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1119	2419051	32B14	56.53	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1120	2419052	32B14	56.53	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1121	2419070	32B14	56.48	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1122	2419075	32B14	56.47	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1123	2419082	32F01	56.43	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1124	2419083	32F01	56.43	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1125	2419085	32F01	56.43	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1126	2419086	32F01	56.42	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1127	2419090	32F01	56.41	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1128	2419091	32F01	56.41	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1129	2419092	32F01	56.41	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1130	2419095	32F01	56.4	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1131	2419096	32F01	56.4	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1132	2419097	32F01	56.4	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1133	2419109	32G04	56.4	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1134	2419110	32G04	56.4	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1135	2419111	32G04	56.4	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1136	2419112	32G04	56.4	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1137	2419113	32G04	56.39	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1138	2419114	32G04	56.39	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1139	2419115	32G04	56.39	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1140	2419116	32G04	56.39	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1141	2419117	32G04	56.39	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1142	2419118	32G04	56.39	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1143	2419119	32G04	56.38	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1144	2419120	32G04	56.38	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1145	2419121	32G04	56.38	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1146	2419122	32G04	56.38	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1147	2419123	32G04	56.38	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1148	2419124	32G04	56.38	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1149	2419125	32G04	56.38	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1150	2419126	32G04	56.38	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1151	2419127	32G04	56.37	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1152	2419128	32G04	56.37	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1153	2419129	32G04	56.37	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1154	2419130	32G04	56.37	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1155	2419131	32G04	56.37	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1156	2419132	32G04	56.36	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1157	2419133	32G04	56.36	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1158	2419134	32G04	56.36	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1159	2419135	32G04	56.36	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1160	2419136	32G04	56.36	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1161	2419137	32G04	56.36	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1162	2419138	32G04	56.36	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1163	2419139	32G04	56.36	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1164	2419140	32G04	56.36	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1165	2419141	32G04	56.35	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1166	2419142	32G04	56.35	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1167	2419143	32G04	56.35	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1168	2419144	32G04	56.35	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1169	2419145	32G04	56.35	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1170	2419146	32G04	56.35	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1171	2419147	32G04	56.35	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1172	2419148	32G04	56.35	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1173	2419149	32G04	56.35	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1174	2419157	32B13	56.61	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1175	2419158	32B13	56.6	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1176	2419159	32B13	56.6	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1177	2419160	32B13	56.59	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1178	2419161	32B13	56.57	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1179	2419169	32B13	56.52	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1180	2419170	32B13	56.51	CDC	Active	2014-12-05	2020-12-04	Minière Osisko Inc.
1181	2419580	32G04	56.45	CDC	Active	2014-12-08	2020-12-07	Minière Osisko Inc.
1182	2419581	32G04	56.45	CDC	Active	2014-12-08	2020-12-07	Minière Osisko Inc.
1183	2419873	32G04	56.36	CDC	Active	2014-12-15	2020-12-14	Minière Osisko Inc.
1184	2419874	32G04	56.4	CDC	Active	2014-12-15	2020-12-14	Minière Osisko Inc.
1185	2419875	32G04	56.4	CDC	Active	2014-12-15	2020-12-14	Minière Osisko Inc.

Item	Title	NTS	Area	Туре	Status	Staking Date	Expiration	Owner (according to
			(ha)	-JF	2 333 522	2g	Date	GESTIM)
1186	2419876	32G04	56.39	CDC	Active	2014-12-15	2020-12-14	Minière Osisko Inc.
1187	2419877	32G04	56.39	CDC	Active	2014-12-15	2020-12-14	Minière Osisko Inc.
1188	2420621	32B13	56.63	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1189	2420622	32B13	56.62	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1190	2420623	32B13	56.62	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1191	2420624	32B13	56.62	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1192	2420625	32B13	56.62	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1193	2420626	32B13	56.62	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1194	2420627	32B13	56.62	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1195	2420628	32B13	56.62	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1196	2420629	32B13	56.62	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1197	2420630	32B13	56.62	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1198	2420631	32B13	56.62	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1199	2420632	32B13	56.62	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1200	2420633	32B13	56.56	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1201	2420634	32B13	56.56	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1202	2420636	32B13	56.55	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1203	2420637	32B13	56.55	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1204	2420639	32B13	56.54	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1205	2420640	32B13	56.54	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1206	2420641	32B13	56.53	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1207	2420642	32B13	56.53	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1208	2420643	32B13	56.53	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1209	2420646	32B13	56.52	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1210	2420647	32B13	56.52	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1211	2420648	32B13	56.52	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1212	2420649	32B13	56.52	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1213	2420650	32B13	56.52	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1214	2420653	32B13	56.51	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1215	2420654	32B13	56.51	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1216	2420655	32B13	56.51	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1217	2420656	32B13	56.51	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1218	2420657	32B13	56.51	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1219	2420663	32F01	56.38	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1220	2420664	32G03	56.32	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1221	2420665	32G03	56.32	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1222	2420672	32G04	56.42	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1223	2420673	32G04	56.41	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1224	2420674	32G04	56.34	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1225	2420675	32G04	56.34	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1226	2420676	32G04	56.34	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1227	2420677	32G04	56.33	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1228	2420678	32G04	56.33	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1229	2420679	32G04	56.33	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1230	2420680	32G04	56.33	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1231	2420681	32G04	56.33	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1232	2420682	32G04	56.32	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1233	2420683	32G04	56.32	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1234	2420684	32G04	56.31	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1235	2420685	32G04	56.31	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1236	2420686	32G04	56.31	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1237	2420687	32G04	56.31	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1238	2420688	32G04	56.31	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1239	2420689	32G04	56.3	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1240	2420690	32G04	56.3	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1241	2420691	32G04	56.3	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1242	2420692	32G04	56.3	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1243	2420693	32G04	56.3	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1244	2420694	32G04	56.3	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1245	2420695	32G04	56.3	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1246	2420834	32G03	55.97	CDC	Active	2014-12-30	2020-12-29	Minière Osisko Inc.
1247	2424083	32G04	56.43	CDC	Active	2015-03-05	2021-03-04	Minière Osisko Inc.
1248	2424084	32G04	56.43	CDC	Active	2015-03-05	2021-03-04	Minière Osisko Inc.
1249	2424085	32G04	56.43	CDC	Active	2015-03-05	2021-03-04	Minière Osisko Inc.
1250	2424086	32G04	56.43	CDC	Active	2015-03-05	2021-03-04	Minière Osisko Inc.
1251	2424087	32G04	56.42	CDC	Active	2015-03-05	2021-03-04	Minière Osisko Inc.
1252	2424088	32G04	56.42	CDC	Active	2015-03-05	2021-03-04	Minière Osisko Inc.
1253	2424089	32G04	56.41	CDC	Active	2015-03-05	2021-03-04	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1254	2424090	32G04	56.41	CDC	Active	2015-03-05	2021-03-04	Minière Osisko Inc.
1255	2424091	32G04	56.41	CDC	Active	2015-03-05	2021-03-04	Minière Osisko Inc.
1256	2424092	32G04	56.4	CDC	Active	2015-03-05	2021-03-04	Minière Osisko Inc.
1257	2424093	32G04	56.4	CDC	Active	2015-03-05	2021-03-04	Minière Osisko Inc.
1258	2424094	32G04	56.4	CDC	Active	2015-03-05	2021-03-04	Minière Osisko Inc.
1259	2424095	32G04	56.4	CDC	Active	2015-03-05	2021-03-04	Minière Osisko Inc.
1260	2424096	32G04	56.39	CDC	Active	2015-03-05	2021-03-04	Minière Osisko Inc.
1261	2426099	32B13	56.57	CDC	Active	2015-04-10	2021-04-09	Minière Osisko Inc.
1262	2426100	32B13	56.57	CDC	Active	2015-04-10	2021-04-09	Minière Osisko Inc.
1263	2426101	32B13	56.56	CDC	Active	2015-04-10	2021-04-09	Minière Osisko Inc.
1264	2426102	32B13	56.56	CDC	Active	2015-04-10	2021-04-09	Minière Osisko Inc.
1265	2426103	32B13	56.55	CDC	Active	2015-04-10	2021-04-09	Minière Osisko Inc.
1266	2427494	32G04	56.36	CDC	Active	2015-05-11	2021-05-10	Minière Osisko Inc.
1267	2427495	32G04	56.36	CDC	Active	2015-05-11	2021-05-10	Minière Osisko Inc.
1268	2427776	32G04	56.35	CDC	Active	2015-05-19	2021-05-18	Minière Osisko Inc.
1269	2428339	32G04	56.37	CDC	Active	2015-06-02	2021-06-01	Minière Osisko Inc.
1270	2428340	32G04	56.37	CDC	Active	2015-06-02	2021-06-01	Minière Osisko Inc.
1271	2428341	32G04	56.36	CDC	Active	2015-06-02	2021-06-01	Minière Osisko Inc.
1272	2428342	32G04	56.43	CDC	Active	2015-06-02	2021-06-01	Minière Osisko Inc.
1273	2429947	32B13	56.53	CDC	Active	2015-07-08	2021-07-07	Minière Osisko Inc.
1274	2429948	32B13	56.52	CDC	Active	2015-07-08	2021-07-07	Minière Osisko Inc.
1275	2429949	32B13	56.51	CDC	Active	2015-07-08	2021-07-07	Minière Osisko Inc.
1276	2431719	32G04	56.36	CDC	Active	2015-07-30	2021-07-29	Minière Osisko Inc.
1277	2432474	32G03	56.38	CDC	Active	2015-08-21	2021-08-20	Minière Osisko Inc.
1278	2432475	32G03	56.38	CDC	Active	2015-08-21	2021-08-20	Minière Osisko Inc.
1279	2440496	32G03	56.44	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1280	2440497	32G03	56.44	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1281	2440498	32G03	56.44	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1282	2440499	32G03	56.44	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1283	2440500	32G03	56.44	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1284	2440501	32G03	56.43	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1285	2440502	32G03	56.43	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1286	2440503	32G03	56.43	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1287	2440504	32G03	56.43	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.


Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1288	2440505	32G03	56.43	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1289	2440506	32G03	56.42	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1290	2440507	32G03	56.42	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1291	2440508	32G03	56.41	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1292	2440509	32G03	56.41	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1293	2440510	32G03	56.4	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1294	2440511	32G03	56.4	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1295	2440512	32G03	56.39	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1296	2440513	32G03	56.39	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1297	2440514	32G03	56.39	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1298	2440515	32G03	56.39	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1299	2440516	32G03	56.42	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1300	2440517	32G03	56.42	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1301	2440518	32G03	56.41	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1302	2440519	32G03	56.41	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1303	2440520	32G03	56.41	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1304	2440521	32G03	56.4	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1305	2440522	32G03	56.4	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1306	2440523	32G03	56.4	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1307	2440524	32G03	56.39	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1308	2440525	32G03	56.39	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1309	2440526	32G03	56.39	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1310	2440527	32G03	56.39	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1311	2440528	32G03	56.39	CDC	Active	2016-04-08	2020-04-07	Minière Osisko Inc.
1312	2440725	32G03	56.38	CDC	Active	2016-04-12	2020-04-11	Minière Osisko Inc.
1313	2443381	32G03	56.32	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1314	2443382	32G03	56.32	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1315	2443383	32G03	56.32	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1316	2443384	32G03	56.32	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1317	2443385	32G03	56.32	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1318	2443386	32G03	56.31	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1319	2443387	32G03	56.31	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1320	2443388	32G03	56.31	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1321	2443389	32G03	56.31	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1322	2443390	32G03	56.31	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1323	2443391	32G03	56.3	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1324	2443392	32G03	56.3	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1325	2443393	32G03	56.3	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1326	2443394	32G03	56.3	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1327	2443395	32G03	56.3	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1328	2443396	32G03	56.29	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1329	2443397	32G03	56.29	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1330	2443398	32G03	56.29	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1331	2443399	32G03	56.29	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1332	2443400	32G03	56.29	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1333	2443401	32G03	56.29	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1334	2443402	32G03	56.29	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1335	2443403	32G03	56.29	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1336	2443404	32G03	56.29	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1337	2443405	32G03	56.29	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1338	2443406	32G03	56.29	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1339	2443407	32G03	56.29	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1340	2443410	32G03	56.28	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1341	2443411	32G03	56.28	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1342	2443412	32G03	56.28	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1343	2443413	32G03	56.28	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1344	2443414	32G03	56.28	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1345	2443417	32G03	56.28	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1346	2443418	32G03	56.28	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1347	2443419	32G03	56.27	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1348	2443421	32G03	56.32	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1349	2443422	32G03	56.32	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1350	2443423	32G03	56.32	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1351	2443424	32G03	56.32	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1352	2443425	32G03	56.32	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1353	2443426	32G03	56.32	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1354	2443427	32G03	56.32	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.
1355	2443428	32G03	56.31	CDC	Active	2016-04-26	2020-04-25	Minière Osisko Inc.

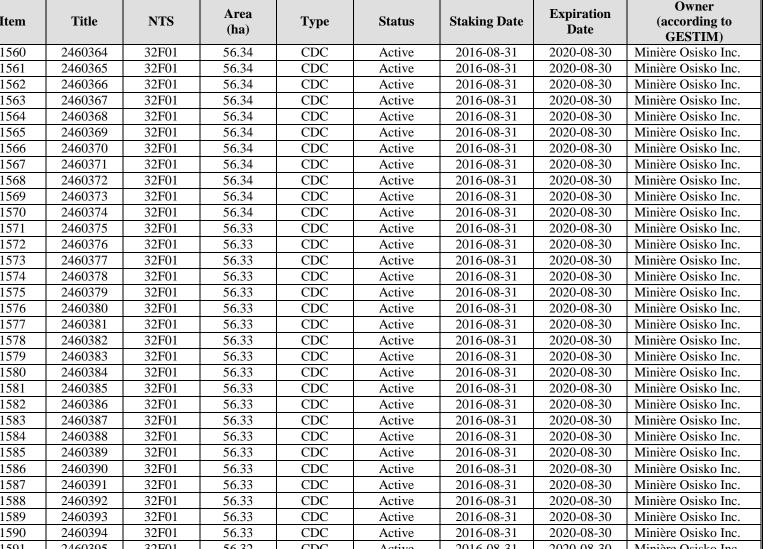
޶

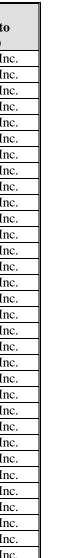
LIMITED

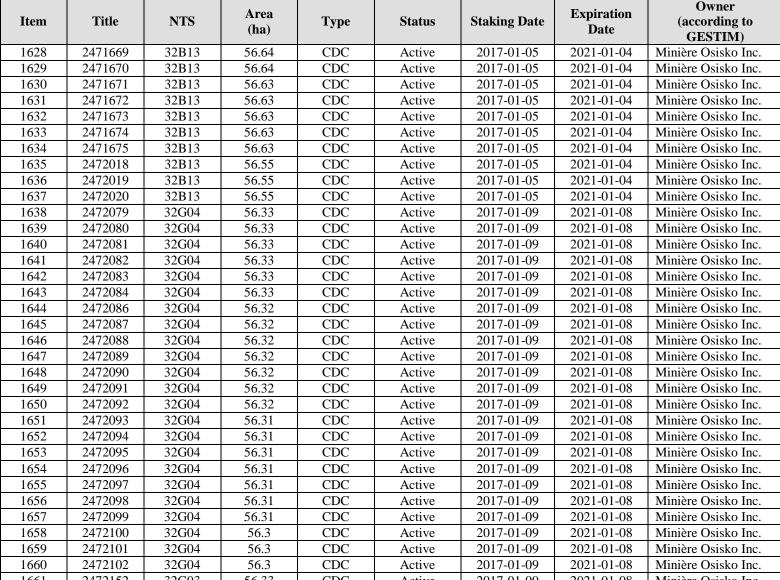
Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1390	2444075	32G02	56.31	CDC	Active	2016-05-05	2020-05-04	Minière Osisko Inc.
1391	2444076	32G02	56.31	CDC	Active	2016-05-05	2020-05-04	Minière Osisko Inc.
1392	2444077	32G02	56.31	CDC	Active	2016-05-05	2020-05-04	Minière Osisko Inc.
1393	2444079	32G02	56.31	CDC	Active	2016-05-05	2020-05-04	Minière Osisko Inc.
1394	2444080	32G02	56.31	CDC	Active	2016-05-05	2020-05-04	Minière Osisko Inc.
1395	2444081	32G02	56.29	CDC	Active	2016-05-05	2020-05-04	Minière Osisko Inc.
1396	2444082	32G02	56.28	CDC	Active	2016-05-05	2020-05-04	Minière Osisko Inc.
1397	2444083	32G02	56.27	CDC	Active	2016-05-05	2020-05-04	Minière Osisko Inc.
1398	2444084	32G02	56.27	CDC	Active	2016-05-05	2020-05-04	Minière Osisko Inc.
1399	2444085	32G02	56.27	CDC	Active	2016-05-05	2020-05-04	Minière Osisko Inc.
1400	2444086	32G02	56.25	CDC	Active	2016-05-05	2020-05-04	Minière Osisko Inc.
1401	2444087	32G02	56.25	CDC	Active	2016-05-05	2020-05-04	Minière Osisko Inc.
1402	2444088	32G02	56.24	CDC	Active	2016-05-05	2020-05-04	Minière Osisko Inc.
1403	2444089	32G02	56.24	CDC	Active	2016-05-05	2020-05-04	Minière Osisko Inc.
1404	2444090	32G02	56.24	CDC	Active	2016-05-05	2020-05-04	Minière Osisko Inc.
1405	2450641	32G03	43.81	CDC	Active	2016-06-22	2020-06-21	Minière Osisko Inc.
1406	2450960	32G03	51.35	CDC	Active	2016-06-23	2020-06-22	Minière Osisko Inc.
1407	2450961	32G03	54.66	CDC	Active	2016-06-23	2020-06-22	Minière Osisko Inc.
1408	2450962	32G03	7.8	CDC	Active	2016-06-23	2020-06-22	Minière Osisko Inc.
1409	2450963	32G03	43.56	CDC	Active	2016-06-23	2020-06-22	Minière Osisko Inc.
1410	2450964	32G03	47.5	CDC	Active	2016-06-23	2020-06-22	Minière Osisko Inc.
1411	2450965	32G03	24.03	CDC	Active	2016-06-23	2020-06-22	Minière Osisko Inc.
1412	2450966	32G03	2.27	CDC	Active	2016-06-23	2020-06-22	Minière Osisko Inc.
1413	2450967	32G03	0.5	CDC	Active	2016-06-23	2020-06-22	Minière Osisko Inc.
1414	2450968	32G03	0.11	CDC	Active	2016-06-23	2020-06-22	Minière Osisko Inc.
1415	2450969	32G03	13.3	CDC	Active	2016-06-23	2020-06-22	Minière Osisko Inc.
1416	2450970	32G03	7.59	CDC	Active	2016-06-23	2020-06-22	Minière Osisko Inc.
1417	2454299	32G03	0.04	CDC	Active	2016-07-22	2020-07-21	Minière Osisko Inc.
1418	2454300	32G03	2.62	CDC	Active	2016-07-22	2020-07-21	Minière Osisko Inc.
1419	2454301	32G03	54.46	CDC	Active	2016-07-22	2020-07-21	Minière Osisko Inc.
1420	2454302	32G03	31.71	CDC	Active	2016-07-22	2020-07-21	Minière Osisko Inc.
1421	2457563	32B14	56.49	CDC	Active	2016-08-15	2020-08-14	Minière Osisko Inc.
1422	2457564	32B14	56.49	CDC	Active	2016-08-15	2020-08-14	Minière Osisko Inc.
1423	2457565	32B14	56.49	CDC	Active	2016-08-15	2020-08-14	Minière Osisko Inc.

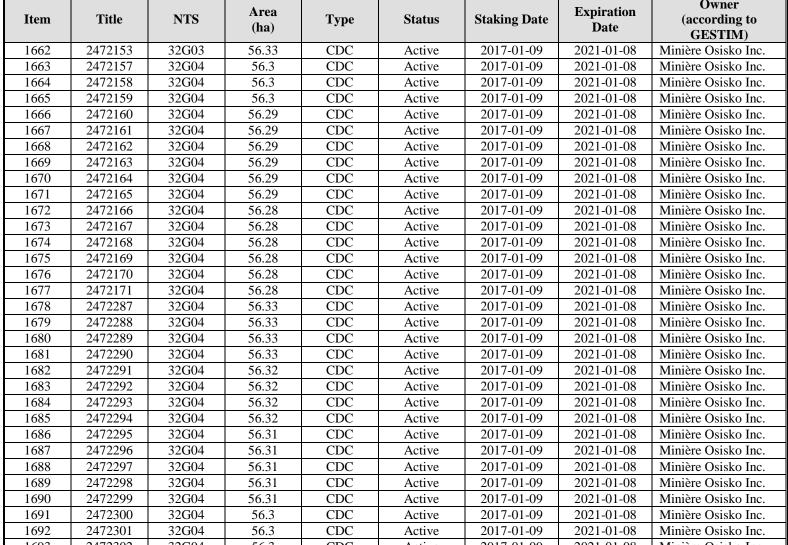
Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1424	2457566	32B14	56.49	CDC	Active	2016-08-15	2020-08-14	Minière Osisko Inc.
1425	2457567	32B14	56.49	CDC	Active	2016-08-15	2020-08-14	Minière Osisko Inc.
1426	2457568	32B14	56.48	CDC	Active	2016-08-15	2020-08-14	Minière Osisko Inc.
1427	2457569	32B14	56.48	CDC	Active	2016-08-15	2020-08-14	Minière Osisko Inc.
1428	2457570	32B14	56.48	CDC	Active	2016-08-15	2020-08-14	Minière Osisko Inc.
1429	2457571	32B14	56.48	CDC	Active	2016-08-15	2020-08-14	Minière Osisko Inc.
1430	2457572	32B14	56.48	CDC	Active	2016-08-15	2020-08-14	Minière Osisko Inc.
1431	2459947	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1432	2459948	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1433	2459949	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1434	2459950	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1435	2459951	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1436	2459952	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1437	2459953	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1438	2459954	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1439	2459955	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1440	2459956	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1441	2459957	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1442	2459958	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1443	2459959	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1444	2459960	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1445	2459961	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1446	2459962	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1447	2459963	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1448	2459964	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1449	2459965	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1450	2459966	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1451	2459967	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1452	2459968	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1453	2459969	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1454	2459970	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1455	2459971	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1456	2459972	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1457	2459973	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.

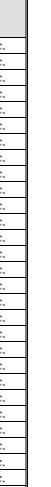
Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1458	2459974	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1459	2459975	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1460	2459976	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1461	2459977	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1462	2459978	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1463	2459979	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1464	2459980	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1465	2459981	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1466	2459982	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1467	2459983	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1468	2459984	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1469	2459985	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1470	2459986	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1471	2459987	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1472	2459988	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1473	2459989	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1474	2459990	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1475	2459991	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1476	2459992	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1477	2459993	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1478	2459994	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1479	2459995	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1480	2459996	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1481	2459997	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1482	2459998	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1483	2459999	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1484	2460000	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1485	2460001	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1486	2460002	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1487	2460003	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1488	2460004	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1489	2460005	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1490	2460006	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1491	2460007	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.

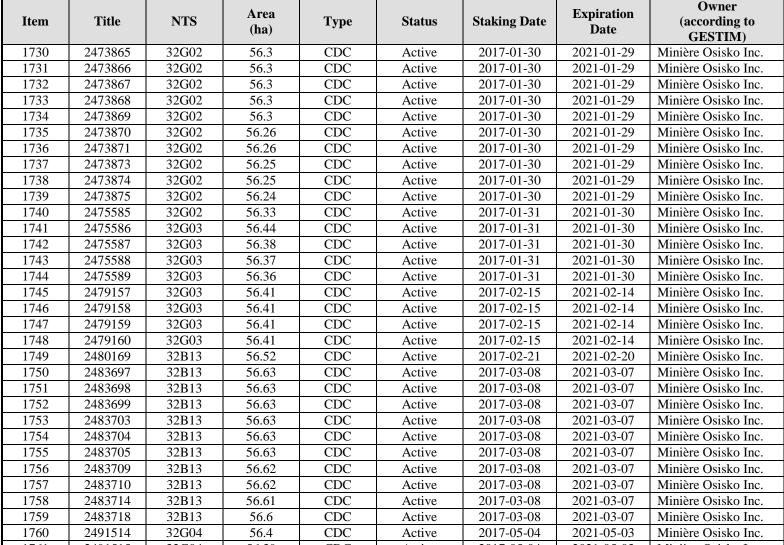

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1492	2460008	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1493	2460009	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1494	2460010	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1495	2460011	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1496	2460012	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1497	2460013	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1498	2460014	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1499	2460015	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1500	2460016	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1501	2460017	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1502	2460018	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1503	2460019	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1504	2460020	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1505	2460021	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1506	2460022	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1507	2460023	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1508	2460024	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1509	2460025	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1510	2460026	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1511	2460305	32F01	56.37	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1512	2460306	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1513	2460307	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1514	2460308	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1515	2460309	32F01	56.36	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1516	2460310	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1517	2460311	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1518	2460312	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1519	2460313	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1520	2460314	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1521	2460315	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1522	2460316	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1523	2460317	32F01	56.35	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1524	2460318	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1525	2460319	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.


Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1526	2460320	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1527	2460321	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1528	2460322	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1529	2460323	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1530	2460324	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1531	2460325	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1532	2460326	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1533	2460327	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1534	2460328	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1535	2460329	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1536	2460330	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1537	2460331	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1538	2460332	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1539	2460333	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1540	2460334	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1541	2460335	32F01	56.32	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1542	2460336	32F01	56.32	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1543	2460337	32F01	56.32	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1544	2460338	32F01	56.32	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1545	2460339	32F01	56.32	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1546	2460340	32F01	56.32	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1547	2460341	32F01	56.32	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1548	2460342	32F01	56.32	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1549	2460343	32F01	56.32	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1550	2460344	32F01	56.32	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1551	2460355	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1552	2460356	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1553	2460357	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1554	2460358	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1555	2460359	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1556	2460360	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1557	2460361	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1558	2460362	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1559	2460363	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.

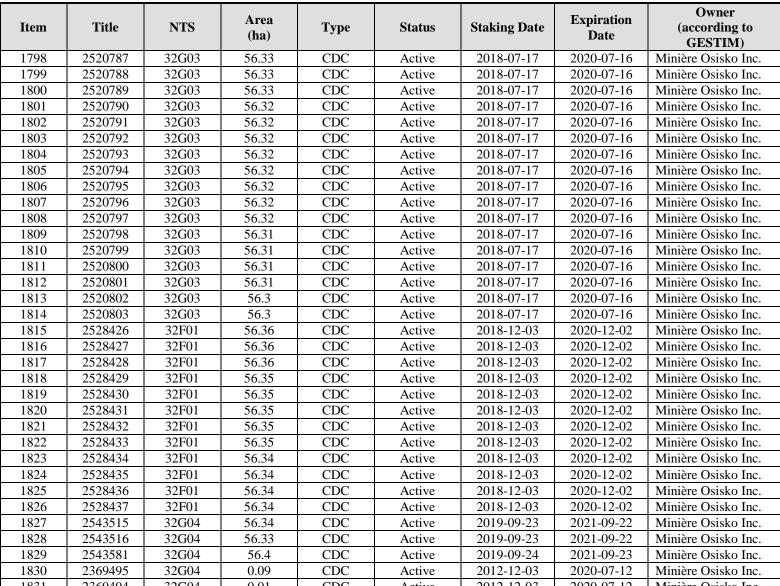

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1560	2460364	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1561	2460365	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1562	2460366	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1563	2460367	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1564	2460368	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1565	2460369	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1566	2460370	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1567	2460371	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1568	2460372	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1569	2460373	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1570	2460374	32F01	56.34	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1571	2460375	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1572	2460376	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1573	2460377	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1574	2460378	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1575	2460379	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1576	2460380	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1577	2460381	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1578	2460382	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1579	2460383	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1580	2460384	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1581	2460385	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1582	2460386	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1583	2460387	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1584	2460388	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1585	2460389	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1586	2460390	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1587	2460391	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1588	2460392	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1589	2460393	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1590	2460394	32F01	56.33	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1591	2460395	32F01	56.32	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1592	2460396	32F01	56.32	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1593	2460397	32F01	56.32	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.


Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1594	2460398	32F01	56.32	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1595	2460399	32F01	56.32	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1596	2460400	32F01	56.32	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1597	2460404	32F01	56.39	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1598	2460405	32F01	56.39	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1599	2460406	32F01	56.39	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1600	2460407	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1601	2460408	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1602	2460409	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1603	2460410	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1604	2460411	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1605	2460412	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1606	2460413	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1607	2460414	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1608	2460415	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1609	2460416	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1610	2460417	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1611	2460418	32F01	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1612	2460419	32G04	56.39	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1613	2460420	32G04	56.39	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1614	2460421	32G04	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1615	2460422	32G04	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1616	2460423	32G04	56.38	CDC	Active	2016-08-31	2020-08-30	Minière Osisko Inc.
1617	2467259	32G03	56.31	CDC	Active	2016-10-27	2020-10-26	Minière Osisko Inc.
1618	2467260	32G03	56.3	CDC	Active	2016-10-27	2020-10-26	Minière Osisko Inc.
1619	2467262	32G03	56.3	CDC	Active	2016-10-27	2020-10-26	Minière Osisko Inc.
1620	2471661	32B13	56.66	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.
1621	2471662	32B13	56.66	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.
1622	2471663	32B13	56.65	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.
1623	2471664	32B13	56.65	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.
1624	2471665	32B13	56.65	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.
1625	2471666	32B13	56.65	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.
1626	2471667	32B13	56.64	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.
1627	2471668	32B13	56.64	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.


Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1628	2471669	32B13	56.64	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.
1629	2471670	32B13	56.64	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.
1630	2471671	32B13	56.63	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.
1631	2471672	32B13	56.63	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.
1632	2471673	32B13	56.63	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.
1633	2471674	32B13	56.63	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.
1634	2471675	32B13	56.63	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.
1635	2472018	32B13	56.55	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.
1636	2472019	32B13	56.55	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.
1637	2472020	32B13	56.55	CDC	Active	2017-01-05	2021-01-04	Minière Osisko Inc.
1638	2472079	32G04	56.33	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1639	2472080	32G04	56.33	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1640	2472081	32G04	56.33	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1641	2472082	32G04	56.33	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1642	2472083	32G04	56.33	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1643	2472084	32G04	56.33	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1644	2472086	32G04	56.32	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1645	2472087	32G04	56.32	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1646	2472088	32G04	56.32	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1647	2472089	32G04	56.32	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1648	2472090	32G04	56.32	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1649	2472091	32G04	56.32	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1650	2472092	32G04	56.32	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1651	2472093	32G04	56.31	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1652	2472094	32G04	56.31	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1653	2472095	32G04	56.31	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1654	2472096	32G04	56.31	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1655	2472097	32G04	56.31	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1656	2472098	32G04	56.31	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1657	2472099	32G04	56.31	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1658	2472100	32G04	56.3	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1659	2472101	32G04	56.3	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1660	2472102	32G04	56.3	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1661	2472152	32G03	56.33	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.


Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1662	2472153	32G03	56.33	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1663	2472157	32G04	56.3	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1664	2472158	32G04	56.3	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1665	2472159	32G04	56.3	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1666	2472160	32G04	56.29	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1667	2472161	32G04	56.29	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1668	2472162	32G04	56.29	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1669	2472163	32G04	56.29	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1670	2472164	32G04	56.29	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1671	2472165	32G04	56.29	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1672	2472166	32G04	56.28	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1673	2472167	32G04	56.28	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1674	2472168	32G04	56.28	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1675	2472169	32G04	56.28	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1676	2472170	32G04	56.28	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1677	2472171	32G04	56.28	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1678	2472287	32G04	56.33	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1679	2472288	32G04	56.33	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1680	2472289	32G04	56.33	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1681	2472290	32G04	56.33	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1682	2472291	32G04	56.32	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1683	2472292	32G04	56.32	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1684	2472293	32G04	56.32	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1685	2472294	32G04	56.32	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1686	2472295	32G04	56.31	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1687	2472296	32G04	56.31	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1688	2472297	32G04	56.31	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1689	2472298	32G04	56.31	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1690	2472299	32G04	56.31	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1691	2472300	32G04	56.3	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1692	2472301	32G04	56.3	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1693	2472302	32G04	56.3	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1694	2472303	32G04	56.3	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1695	2472304	32G04	56.3	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1696	2472305	32G04	56.3	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1697	2472306	32G04	56.29	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1698	2472307	32G04	56.29	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1699	2472308	32G04	56.29	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1700	2472309	32G04	56.29	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1701	2472310	32G04	56.29	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1702	2472311	32G04	56.29	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1703	2472312	32G04	56.28	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1704	2472313	32G04	56.28	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1705	2472314	32G04	56.28	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1706	2472315	32G04	56.28	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1707	2472316	32G04	56.28	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1708	2472317	32G04	56.28	CDC	Active	2017-01-09	2021-01-08	Minière Osisko Inc.
1709	2472465	32G03	56.28	CDC	Active	2017-01-12	2021-01-11	Minière Osisko Inc.
1710	2472466	32G03	56.28	CDC	Active	2017-01-12	2021-01-11	Minière Osisko Inc.
1711	2473525	32G02	56.33	CDC	Active	2017-01-25	2021-01-24	Minière Osisko Inc.
1712	2473526	32G02	56.32	CDC	Active	2017-01-25	2021-01-24	Minière Osisko Inc.
1713	2473527	32G02	56.32	CDC	Active	2017-01-25	2021-01-24	Minière Osisko Inc.
1714	2473528	32G02	56.32	CDC	Active	2017-01-25	2021-01-24	Minière Osisko Inc.
1715	2473529	32G02	56.32	CDC	Active	2017-01-25	2021-01-24	Minière Osisko Inc.
1716	2473530	32G02	56.32	CDC	Active	2017-01-25	2021-01-24	Minière Osisko Inc.
1717	2473532	32G02	56.28	CDC	Active	2017-01-25	2021-01-24	Minière Osisko Inc.
1718	2473853	32G02	56.32	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1719	2473854	32G02	56.32	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1720	2473855	32G02	56.31	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1721	2473856	32G02	56.3	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1722	2473857	32G02	56.3	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1723	2473858	32G02	56.3	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1724	2473859	32G02	56.3	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1725	2473860	32G02	56.3	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1726	2473861	32G02	56.3	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1727	2473862	32G02	56.3	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1728	2473863	32G02	56.3	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1729	2473864	32G02	56.3	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.


Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1730	2473865	32G02	56.3	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1731	2473866	32G02	56.3	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1732	2473867	32G02	56.3	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1733	2473868	32G02	56.3	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1734	2473869	32G02	56.3	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1735	2473870	32G02	56.26	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1736	2473871	32G02	56.26	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1737	2473873	32G02	56.25	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1738	2473874	32G02	56.25	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1739	2473875	32G02	56.24	CDC	Active	2017-01-30	2021-01-29	Minière Osisko Inc.
1740	2475585	32G02	56.33	CDC	Active	2017-01-31	2021-01-30	Minière Osisko Inc.
1741	2475586	32G03	56.44	CDC	Active	2017-01-31	2021-01-30	Minière Osisko Inc.
1742	2475587	32G03	56.38	CDC	Active	2017-01-31	2021-01-30	Minière Osisko Inc.
1743	2475588	32G03	56.37	CDC	Active	2017-01-31	2021-01-30	Minière Osisko Inc.
1744	2475589	32G03	56.36	CDC	Active	2017-01-31	2021-01-30	Minière Osisko Inc.
1745	2479157	32G03	56.41	CDC	Active	2017-02-15	2021-02-14	Minière Osisko Inc.
1746	2479158	32G03	56.41	CDC	Active	2017-02-15	2021-02-14	Minière Osisko Inc.
1747	2479159	32G03	56.41	CDC	Active	2017-02-15	2021-02-14	Minière Osisko Inc.
1748	2479160	32G03	56.41	CDC	Active	2017-02-15	2021-02-14	Minière Osisko Inc.
1749	2480169	32B13	56.52	CDC	Active	2017-02-21	2021-02-20	Minière Osisko Inc.
1750	2483697	32B13	56.63	CDC	Active	2017-03-08	2021-03-07	Minière Osisko Inc.
1751	2483698	32B13	56.63	CDC	Active	2017-03-08	2021-03-07	Minière Osisko Inc.
1752	2483699	32B13	56.63	CDC	Active	2017-03-08	2021-03-07	Minière Osisko Inc.
1753	2483703	32B13	56.63	CDC	Active	2017-03-08	2021-03-07	Minière Osisko Inc.
1754	2483704	32B13	56.63	CDC	Active	2017-03-08	2021-03-07	Minière Osisko Inc.
1755	2483705	32B13	56.63	CDC	Active	2017-03-08	2021-03-07	Minière Osisko Inc.
1756	2483709	32B13	56.62	CDC	Active	2017-03-08	2021-03-07	Minière Osisko Inc.
1757	2483710	32B13	56.62	CDC	Active	2017-03-08	2021-03-07	Minière Osisko Inc.
1758	2483714	32B13	56.61	CDC	Active	2017-03-08	2021-03-07	Minière Osisko Inc.
1759	2483718	32B13	56.6	CDC	Active	2017-03-08	2021-03-07	Minière Osisko Inc.
1760	2491514	32G04	56.4	CDC	Active	2017-05-04	2021-05-03	Minière Osisko Inc.
1761	2491515	32G04	56.39	CDC	Active	2017-05-04	2021-05-03	Minière Osisko Inc.
1762	2491516	32G04	56.39	CDC	Active	2017-05-04	2021-05-03	Minière Osisko Inc.
1763	2491517	32G04	56.38	CDC	Active	2017-05-04	2021-05-03	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1764	2491518	32G04	56.38	CDC	Active	2017-05-04	2021-05-03	Minière Osisko Inc.
1765	2491519	32G04	56.35	CDC	Active	2017-05-04	2021-05-03	Minière Osisko Inc.
1766	2491520	32G04	56.35	CDC	Active	2017-05-04	2021-05-03	Minière Osisko Inc.
1767	2491612	32B13	56.56	CDC	Active	2017-05-05	2021-05-04	Minière Osisko Inc.
1768	2491613	32B13	56.55	CDC	Active	2017-05-05	2021-05-04	Minière Osisko Inc.
1769	2492749	32G04	56.42	CDC	Active	2017-05-24	2021-05-23	Minière Osisko Inc.
1770	2493123	32B14	56.49	CDC	Active	2017-05-24	2021-05-23	Minière Osisko Inc.
1771	2493124	32B14	56.49	CDC	Active	2017-05-24	2021-05-23	Minière Osisko Inc.
1772	2493125	32B14	56.47	CDC	Active	2017-05-24	2021-05-23	Minière Osisko Inc.
1773	2493126	32B14	56.47	CDC	Active	2017-05-24	2021-05-23	Minière Osisko Inc.
1774	2493127	32B14	56.47	CDC	Active	2017-05-24	2021-05-23	Minière Osisko Inc.
1775	2499645	32G04	56.41	CDC	Active	2017-08-11	2021-08-10	Minière Osisko Inc.
1776	2499653	32G04	56.4	CDC	Active	2017-08-11	2021-08-10	Minière Osisko Inc.
1777	2499654	32G04	56.38	CDC	Active	2017-08-11	2021-08-10	Minière Osisko Inc.
1778	2499655	32G04	56.45	CDC	Active	2017-08-11	2021-08-10	Minière Osisko Inc.
1779	2499656	32G04	56.44	CDC	Active	2017-08-11	2021-08-10	Minière Osisko Inc.
1780	2499658	32G03	56.27	CDC	Active	2017-08-11	2021-08-10	Minière Osisko Inc.
1781	2499659	32G03	56.27	CDC	Active	2017-08-11	2021-08-10	Minière Osisko Inc.
1782	2499660	32G03	56.35	CDC	Active	2017-08-11	2021-08-10	Minière Osisko Inc.
1783	2499661	32G03	56.35	CDC	Active	2017-08-11	2021-08-10	Minière Osisko Inc.
1784	2499684	32G04	56.43	CDC	Active	2017-08-11	2021-08-10	Minière Osisko Inc.
1785	2505919	32G03	56.39	CDC	Active	2017-11-21	2021-11-20	Minière Osisko Inc.
1786	2505921	32G03	56.4	CDC	Active	2017-11-21	2021-11-20	Minière Osisko Inc.
1787	2505922	32G03	56.39	CDC	Active	2017-11-21	2021-11-20	Minière Osisko Inc.
1788	2514697	32G03	56.41	CDC	Active	2018-03-15	2022-03-14	Minière Osisko Inc.
1789	2518170	32G03	56.36	CDC	Active	2018-05-18	2020-05-17	Minière Osisko Inc.
1790	2518171	32G03	56.35	CDC	Active	2018-05-18	2020-05-17	Minière Osisko Inc.
1791	2519774	32G04	56.42	CDC	Active	2018-06-18	2020-06-17	Minière Osisko Inc.
1792	2520781	32G03	56.34	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1793	2520782	32G03	56.33	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1794	2520783	32G03	56.33	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1795	2520784	32G03	56.33	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1796	2520785	32G03	56.33	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1797	2520786	32G03	56.33	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1798	2520787	32G03	56.33	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1799	2520788	32G03	56.33	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1800	2520789	32G03	56.33	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1801	2520790	32G03	56.32	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1802	2520791	32G03	56.32	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1803	2520792	32G03	56.32	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1804	2520793	32G03	56.32	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1805	2520794	32G03	56.32	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1806	2520795	32G03	56.32	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1807	2520796	32G03	56.32	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1808	2520797	32G03	56.32	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1809	2520798	32G03	56.31	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1810	2520799	32G03	56.31	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1811	2520800	32G03	56.31	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1812	2520801	32G03	56.31	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1813	2520802	32G03	56.3	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1814	2520803	32G03	56.3	CDC	Active	2018-07-17	2020-07-16	Minière Osisko Inc.
1815	2528426	32F01	56.36	CDC	Active	2018-12-03	2020-12-02	Minière Osisko Inc.
1816	2528427	32F01	56.36	CDC	Active	2018-12-03	2020-12-02	Minière Osisko Inc.
1817	2528428	32F01	56.36	CDC	Active	2018-12-03	2020-12-02	Minière Osisko Inc.
1818	2528429	32F01	56.35	CDC	Active	2018-12-03	2020-12-02	Minière Osisko Inc.
1819	2528430	32F01	56.35	CDC	Active	2018-12-03	2020-12-02	Minière Osisko Inc.
1820	2528431	32F01	56.35	CDC	Active	2018-12-03	2020-12-02	Minière Osisko Inc.
1821	2528432	32F01	56.35	CDC	Active	2018-12-03	2020-12-02	Minière Osisko Inc.
1822	2528433	32F01	56.35	CDC	Active	2018-12-03	2020-12-02	Minière Osisko Inc.
1823	2528434	32F01	56.34	CDC	Active	2018-12-03	2020-12-02	Minière Osisko Inc.
1824	2528435	32F01	56.34	CDC	Active	2018-12-03	2020-12-02	Minière Osisko Inc.
1825	2528436	32F01	56.34	CDC	Active	2018-12-03	2020-12-02	Minière Osisko Inc.
1826	2528437	32F01	56.34	CDC	Active	2018-12-03	2020-12-02	Minière Osisko Inc.
1827	2543515	32G04	56.34	CDC	Active	2019-09-23	2021-09-22	Minière Osisko Inc.
1828	2543516	32G04	56.33	CDC	Active	2019-09-23	2021-09-22	Minière Osisko Inc.
1829	2543581	32G04	56.4	CDC	Active	2019-09-24	2021-09-23	Minière Osisko Inc.
1830	2369495	32G04	0.09	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
1831	2369494	32G04	0.01	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1832	2369488	32G04	0.01	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
1833	2369502	32G04	3.37	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
1834	2369503	32G04	25.53	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
1835	2369504	32G04	24.83	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
1836	2369505	32G04	15	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
1837	2369506	32G04	56.45	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
1838	2369507	32G04	56.44	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
1839	2369509	32G04	1.77	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
1840	2369510	32G04	4.97	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
1841	2369511	32G04	56.44	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
1842	2369512	32G04	4.98	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.
1843	2387580	32G04	56.45	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1844	2387581	32G04	56.45	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1845	2387582	32G04	56.45	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1846	2387583	32G04	56.45	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1847	2387584	32G04	56.45	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1848	2387585	32G04	56.45	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1849	2387586	32G04	56.45	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1850	2387587	32G04	56.45	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1851	2387588	32G04	56.45	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1852	2387589	32G04	56.44	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1853	2387590	32G04	56.44	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1854	2387591	32G04	56.44	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1855	2387592	32G04	56.44	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1856	2387593	32G04	56.44	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1857	2387594	32G04	56.44	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1858	2387595	32G04	56.44	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1859	2387596	32G04	56.44	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1860	2387597	32G04	56.44	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1861	2387598	32G04	56.44	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1862	2387599	32G04	56.44	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1863	2387600	32G04	56.44	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1864	2387603	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1865	2387604	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1866	2387605	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1867	2387606	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1868	2387607	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1869	2387608	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1870	2387609	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1871	2387610	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1872	2387611	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1873	2387620	32G04	56.42	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1874	2387621	32G04	56.42	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1875	2387622	32G04	56.42	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1876	2387623	32G04	56.42	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1877	2387624	32G04	56.42	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1878	2387625	32G04	56.42	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1879	2387633	32G04	56.42	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1880	2387634	32G04	56.42	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1881	2387650	32G04	56.44	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1882	2387651	32G04	56.44	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1883	2387652	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1884	2387653	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1885	2387656	32G04	56.45	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1886	2387663	32G04	54.9	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1887	2387668	32G04	39.58	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1888	2387669	32G04	56.43	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1889	2387670	32G04	9.54	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1890	2387674	32G04	56.42	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1891	2387676	32G04	39.24	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1892	2387679	32G04	45.34	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1893	2387680	32B13	44.58	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1894	2387683	32G04	56.42	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1895	2387684	32G04	0.65	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1896	2387686	32G04	3.49	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1897	2387688	32G04	40.4	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1898	2387689	32G04	29.34	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1899	2387691	32G04	55.67	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.

Item	Title	NTS	Area (ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1900	2387693	32B13	56.47	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1901	2387694	32G04	6.04	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1902	2387695	32G04	18.77	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1903	2387696	32G04	6.01	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1904	2387697	32G04	53.14	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1905	2387698	32G04	6.32	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1906	2387700	32G04	54.93	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1907	2387705	32G04	6.36	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1908	2387708	32G04	39.41	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1909	2387709	32B13	23.47	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1910	2387710	32G04	5.05	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1911	2387711	32G04	48.5	CDC	Active	2013-07-18	2020-11-10	Minière Osisko Inc.
1912	2431684	32G04	56.45	CDC	Active	2015-07-29	2021-07-28	Minière Osisko Inc.
1913	2369508	32G04	0.37	CDC	Active	2012-12-03	2020-07-12	Minière Osisko Inc.