

InnovExplo Inc. Consultants–Mines–Exploration

> Telephone: 819-874-0447 Facsimile: 819-874-0379 Toll-free: 866-749-8140 Email: info@innovexplo.com Web site: www.innovexplo.com

<u>Montréal Office</u> 859, rue boul. Jean-Paul-Vincent, Suite 201 Longueuil (Québec) J4G 1R3

Val-d'Or Office

560, 3^e Avenue Val-d'Or (Québec) J9P 1S4

TECHNICAL REPORT AND MINERAL RESOURCE ESTIMATE FOR THE WINDFALL LAKE PROJECT, WINDFALL LAKE AND URBAN-BARRY PROPERTIES

Osisko Mining Inc. 155 University Avenue Suite 1440 Toronto, Ontario M5H 3B7

Project Location:

Latitude 49° 2' 60" North and Longitude 75° 39' 36" West

Townships : Bailly, Barry, Belmont, Bressani, Buteux, Carpiquet, Effiat, Kalm, Lacroix, Lespinay, Marceau, Maseres, Picquet, Prevert, Ralleau, Souart, and Urban

Province of Québec, Canada

Prepared by:

Judith St-Laurent, P.Geo. (OGQ No. 1023) Stéphane Faure, P.Geo. (OGQ No. 306) Jorge Torrealba, P.Eng. (APEGNB No. M7957)

> Effective Date: May 14, 2018 Signature Date: June 12, 2018

TABLE OF CONTENTS

TABLE	OF CONTENTS	ii
LIST OF	F FIGURES	vii
LIST OF	- TABLES	x
	IURE PAGE – INNOVEXPLO INC	
SIGNAI	URE PAGE - INNOVEXPLO INC.	14
SIGNAT	IURE PAGE – BBA INC	15
CERTIF	ICATE OF AUTHOR – JUDITH ST-LAURENT, P.GEO	16
CERTIF	ICATE OF AUTHOR – STÉPHANE FAURE, P.GEO	17
CERTIF	ICATE OF AUTHOR – JORGE TORREALBA, P. ENG	18
1. SU	MMARY	19
1.1	Introduction	19
1.2	Property Description, Location and Ownership	19
1.3	Geology, Mineralization and Exploration Model	20
1.4	Status of Exploration and Drilling	21
1.5	Data Verification	21
1.6	Mineral Processing and Metallurgical Testing	22
1.7	Mineral Resource Estimate	23
1.8 1.8	Interpretation and Conclusions 1 Mineral Resource Estimate	
1.8	5	
1.9	Recommendations	25
2. INT	rroduction	27
2.1	Overview	27
2.2	Osisko Mining Inc.	27
2.3	Terms of Reference	27
2.4	Sources of Information	27
2.5	Qualified Persons	28
2.6	Site Visit	29
2.7	Effective Date and Declaration	29
2.8	Abbreviations, Units of Measure and Currencies	29
3. RE	LIANCE ON OTHER EXPERTS	33
3.1	Introduction	33
3.2	Mineral Tenure and Surface Right	33

3.3	Cut-Off Grade Parameters	
3.4	Acknowledgement	
4. PR	OPERTY DESCRIPTION AND LOCATION	34
4.1	Location	
4.2 4.2	Mining Rights in Québec	
4.2		
4.3	Mining Title Status	
4.3	.1 Windfall Lake Property	35
4.3	.2 Urban Barry Property	
4.4	Windfall Lake Property Surface Rights Option Agreement	
4.4 4.4		
4.4		
4.4		
4.4 4.4		
4.5 4.5	, , , , , , , , , , , , , , , , , , , ,	
4.5		
4.5		
4.6	Royalties	45
	.1 Windfall Lake Property Royalties	
	.2 Urban-Barry Property Royalties	
4.7	Constraints and Restrictions	
4.8	Permits and Environmental Liabilities	46
5. AC	CESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURES AND PHYSIOG	RAPHY
48		
5.1	Accessibility	48
5.2	Climate	49
5.3	Local Resources and Infrastructure	
5.3		
5.4	Physiography	51
5.5	Community	
5.5	.1 Human Environment	51
5.5	.2 Information and Public Consultation Process	51
6. HIS	STORY	
6.1	Summary of Historical Work	
6.2	Winfall Lake Property	
6.2 6.2		
6.2	.2 DeMontigny	55
6.2		
6.2 6.2		
6.2		

6.3 Urban-Barry Property (Western, Eastern, Central and Southern Sectors) 58 6.3.1 Previous Work 58 6.3.2 Western Block 60 6.3.3 Central Block 60 6.3.4 Eastern Block 60 6.3.5 Southern Block 61 6.4 Mineral Resource Estimates 61 7. GEOLOGICAL SETTING AND MINERALIZATION 66 7.1 Regional Geology 66 7.2 Local Geology 66 7.3 Windfall Lake Property Geology 71 7.4 Lithological Units in the Windfall Lake Deposit 71 7.4 Jaynotanic Rocks (2697-2701 Ma to Post-Mineralization) 71 7.4 Zaribou Zone 76 7.6.1 Zoribou Zone 76 7.6.2 Geochemical Characterization of the Rock Units 74 7.6 Mineralized Zones 76 7.7.1 Mallard Zone 84 7.7 Drilling Highlights 75 7.8 Coribou Zone 87 7.9 Structural Geolog 93	6.2 6.2 6.2	2.8 Murgor	
7. GEOLOGICAL SETTING AND MINERALIZATION	6.3 6.3 6.3 6.3	Urban-Barry Property (Western, Eastern, Central and Southern Sectors) 3.1 Previous Work 3.2 Western Block 3.3 Central Block 3.4 Eastern Block	58 58 60 60 60 60
7.1 Regional Geology 66 7.2 Local Geology 66 7.3 Windfall Lake Property Geology. 71 7.4 Lithological Units in the Windfall Lake Deposit 71 7.4.1 Synolcanic Rocks (2717 Ma) 71 7.4.2 Late Intrusive Rocks (2697-2701 Ma to Post-Mineralization) 71 7.5 Geochemical Characterization of the Rock Units 74 7.6 Mineralized Zones 76 7.6.1 Zone 27 81 7.6.2 Caribou Zone 84 7.7 Drilling Highlights 85 7.7.1 Mallard Zone 86 7.7.2 Underdog Zone 87 7.7.3 Lynx Zone 89 7.7.4 Zones F-17, F-51 and F-11. 91 7.8 Other Mineralization Styles 92 7.9 Structural Geology 93 8. DEPOSIT TYPE 98 8.1 Intrusion-Related Gold Deposits 98 8.2 Windfall Lake Deposit 100 9.1 2015 102 9.2 20	6.4	Mineral Resource Estimates	61
7.2 Local Geology 66 7.3 Windfall Lake Property Geology. 71 7.4 Lithological Units in the Windfall Lake Deposit 71 7.4.1 Synvolcanic Rocks (2717 Ma) 71 7.4.2 Late Intrusive Rocks (2697-2701 Ma to Post-Mineralization) 71 7.5 Geochemical Characterization of the Rock Units 74 7.6 Mineralized Zones 76 7.6.1 Zone 27 81 7.6.2 Caribou Zone 84 7.7 Drilling Highlights 85 7.7.1 Mallard Zone 86 7.7.2 Underdog Zone 87 7.7.3 Lynx Zone 89 7.7.4 Zones F-17, F-51 and F-11 91 7.8 Other Mineralization Styles 92 7.9 Structural Geology 93 8. DEPOSIT TYPE 98 8.1 Intrusion-Related Gold Deposits 98 8.2 Windfall Lake Deposit 100 9.1 2015 102 9.2 2016 102 9.3 2017	7. GE	OLOGICAL SETTING AND MINERALIZATION	66
7.3 Windfall Lake Property Geology. 71 7.4 Lithological Units in the Windfall Lake Deposit 71 7.4.1 Synvolcanic Rocks (2717 Ma). 71 7.4.2 Late Intrusive Rocks (2697-2701 Ma to Post-Mineralization) 71 7.5 Geochemical Characterization of the Rock Units 74 7.6 Mineralized Zones 76 7.6.1 Zone 27 81 7.6.2 Caribou Zone 84 7.7 Drilling Highlights 85 7.7.1 Mallard Zone 86 7.7.2 Underdog Zone 87 7.7.3 Lynx Zone 89 7.7.4 Zones F-17, F-51 and F-11 91 7.8 Other Mineralization Styles 92 7.9 Structural Geology 93 8.1 Intrusion-Related Gold Deposits 98 8.2 Windfall Lake Deposit 100 9.1 2015 102 9.2 2016 102 9.3 2017 103 10.1 Overview 105 10.2 Drilling Methods. <td>7.1</td> <td>Regional Geology</td> <td></td>	7.1	Regional Geology	
7.4 Lithological Units in the Windfall Lake Deposit 71 7.4.1 Synvolcanic Rocks (2717 Ma). 71 7.4.2 Late Intrusive Rocks (2697-2701 Ma to Post-Mineralization) 71 7.5 Geochemical Characterization of the Rock Units 74 7.6 Mineralized Zones 76 7.6.1 Zone 27 81 7.6.2 Caribou Zone 84 7.7 Drilling Highlights 85 7.7.1 Mallard Zone 86 7.7.2 Underdog Zone 87 7.7.3 Lynx Zone 89 7.7.4 Zones F-17, F-51 and F-11 91 7.8 Other Mineralization Styles 92 7.9 Structural Geology 93 8.1 Intrusion-Related Gold Deposits 98 8.2 Windfall Lake Deposit 100 9.1 2015 102 9.2 2016 102 9.3 2017 103 10.1 Overview 105 10.2 Drilling Methods. 110 10.3 Field Procedures	7.2	Local Geology	
7.4.1 Synvolcanic Rocks (2717 Ma)	7.3	Windfall Lake Property Geology	71
7.5 Geochemical Characterization of the Rock Units	7.4	1 Synvolcanic Rocks (2717 Ma)	71
7.6 Mineralized Zones. 76 7.6.1 Zone 27 81 7.6.2 Caribou Zone. 84 7.7 Drilling Highlights 85 7.7.1 Mallard Zone 86 7.7.2 Underdog Zone 87 7.7.3 Lynx Zone 89 7.7.4 Zones F-17, F-51 and F-11 91 7.8 Other Mineralization Styles 92 7.9 Structural Geology 93 8. DEPOSIT TYPE 98 8.1 Intrusion-Related Gold Deposits 98 8.2 Windfall Lake Deposit 100 9. EXPLORATION 102 9.1 2015 102 9.2 2016 102 9.3 2017 103 10. DRILLING 105 10.1 Overview 105 10.2 Drilling Methods 110 10.3 Field Procedures 110 10.4 Geological Logging 111			
7.6.1 Zone 27 81 7.6.2 Caribou Zone 84 7.7 Drilling Highlights 85 7.7.1 Mallard Zone 86 7.7.2 Underdog Zone 87 7.7.3 Lynx Zone 89 7.7.4 Zones F-17, F-51 and F-11 91 7.8 Other Mineralization Styles 92 7.9 Structural Geology 93 8. DEPOSIT TYPE 98 8.1 Intrusion-Related Gold Deposits 98 8.2 Windfall Lake Deposit 100 9. EXPLORATION 102 9.1 2015 102 9.2 2016 102 9.3 2017 103 10. DRILLING 105 10.1 Overview 105 10.2 Drilling Methods 110 10.3 Field Procedures 110 10.4 Geological Logging 1111			
7.7 Drilling Highlights 85 7.7.1 Mallard Zone 86 7.7.2 Underdog Zone 87 7.7.3 Lynx Zone 89 7.7.4 Zones F-17, F-51 and F-11 91 7.8 Other Mineralization Styles 92 7.9 Structural Geology 93 8. DEPOSIT TYPE 98 8.1 Intrusion-Related Gold Deposits 98 8.2 Windfall Lake Deposit 100 9. EXPLORATION 102 9.1 2015 102 9.2 2016 102 9.3 2017 103 10. DRILLING 105 10.1 Overview 105 10.2 Drilling Methods 110 10.3 Field Procedures 110 10.4 Geological Logging 111	7.6	6.1 Zone 27	81
7.7.1 Maliard Zone 86 7.7.2 Underdog Zone 87 7.7.3 Lynx Zone 89 7.7.4 Zones F-17, F-51 and F-11 91 7.8 Other Mineralization Styles 92 7.9 Structural Geology 93 8. DEPOSIT TYPE 98 8.1 Intrusion-Related Gold Deposits 98 8.2 Windfall Lake Deposit 100 9. EXPLORATION 102 9.1 2015 102 9.2 2016 102 9.3 2017 103 10. DRILLING 105 10.2 Drilling Methods 110 10.3 Field Procedures 110 10.4 Geological Logging 111			
7.7.2 Underdog Zone 87 7.7.3 Lynx Zone 89 7.7.4 Zones F-17, F-51 and F-11 91 7.8 Other Mineralization Styles 92 7.9 Structural Geology 93 8. DEPOSIT TYPE 98 8.1 Intrusion-Related Gold Deposits 98 8.2 Windfall Lake Deposit 100 9. EXPLORATION 102 9.1 2015 102 9.2 2016 102 9.3 2017 103 10. DRILLING 105 10.2 Drilling Methods. 110 10.3 Field Procedures 110 10.4 Geological Logging 111			
7.7.4 Zónes F-17, F-51 and F-11 91 7.8 Other Mineralization Styles 92 7.9 Structural Geology 93 8. DEPOSIT TYPE 98 8.1 Intrusion-Related Gold Deposits 98 8.2 Windfall Lake Deposit 100 9. EXPLORATION 102 9.1 2015 102 9.2 2016 102 9.3 2017 103 10. DRILLING 105 10.1 Overview 105 10.2 Drilling Methods 110 10.3 Field Procedures 110 10.4 Geological Logging 111	7.7	2 Underdog Zone	
7.8 Other Mineralization Styles 92 7.9 Structural Geology 93 8. DEPOSIT TYPE 98 8.1 Intrusion-Related Gold Deposits 98 8.2 Windfall Lake Deposit 100 9. EXPLORATION 102 9.1 2015 102 9.2 2016 102 9.3 2017 103 10. DRILLING 105 10.1 Overview 105 10.2 Drilling Methods 110 10.3 Field Procedures 110 10.4 Geological Logging 111			
7.9 Structural Geology 93 8. DEPOSIT TYPE 98 8.1 Intrusion-Related Gold Deposits 98 8.2 Windfall Lake Deposit 100 9. EXPLORATION 102 9.1 2015 102 9.2 2016 102 9.3 2017 103 10. DRILLING 105 10.2 Drilling Methods 110 10.3 Field Procedures 110 10.4 Geological Logging 111			
8. DEPOSIT TYPE 98 8.1 Intrusion-Related Gold Deposits 98 8.2 Windfall Lake Deposit 100 9. EXPLORATION 102 9.1 2015 102 9.2 2016 102 9.3 2017 103 10. DRILLING 105 10.1 Overview 105 10.2 Drilling Methods 110 10.3 Field Procedures 110 10.4 Geological Logging 111		-	
8.1 Intrusion-Related Gold Deposits 98 8.2 Windfall Lake Deposit 100 9. EXPLORATION 102 9.1 2015 102 9.2 2016 102 9.3 2017 103 10. DRILLING 105 10.1 Overview 105 10.2 Drilling Methods 110 10.3 Field Procedures 110 10.4 Geological Logging 111			
8.2 Windfall Lake Deposit 100 9. EXPLORATION 102 9.1 2015 102 9.2 2016 102 9.3 2017 103 10. DRILLING 105 10.1 Overview 105 10.2 Drilling Methods 110 10.3 Field Procedures 110 10.4 Geological Logging 111			
9. EXPLORATION 102 9.1 2015 102 9.2 2016 102 9.3 2017 103 10. DRILLING 105 10.1 Overview 105 10.2 Drilling Methods 110 10.3 Field Procedures 110 10.4 Geological Logging 111			
9.1 2015 102 9.2 2016 102 9.3 2017 103 10. DRILLING 105 10.1 Overview 105 10.2 Drilling Methods 110 10.3 Field Procedures 110 10.4 Geological Logging 111	8.2	Windfall Lake Deposit	
9.2 2016 102 9.3 2017 103 10. DRILLING 105 10.1 Overview 105 10.2 Drilling Methods 110 10.3 Field Procedures 110 10.4 Geological Logging 111	9. EX	PLORATION	
9.3 2017 103 10. DRILLING 105 10.1 Overview 105 10.2 Drilling Methods 110 10.3 Field Procedures 110 10.4 Geological Logging 111	9.1	2015	
10. DRILLING 105 10.1 Overview 105 10.2 Drilling Methods 110 10.3 Field Procedures 110 10.4 Geological Logging 111	9.2	2016	
10.1 Overview 105 10.2 Drilling Methods 110 10.3 Field Procedures 110 10.4 Geological Logging 111	9.3	2017	
10.1 Overview 105 10.2 Drilling Methods 110 10.3 Field Procedures 110 10.4 Geological Logging 111	10. I		
10.2 Drilling Methods			
10.3 Field Procedures			
10.4 Geological Logging		0	
	10.5		

10.6	Collar Surveys	.11	1
10.7	Drill Hole Validation	. 112	2
10.7	55 5		
10.7	0		
10.7			
10.7 10.7			
10.8	•••••		
10.8 10.8			
10.8			
10.8			
10.8			
10.8			
10.8			
10.8	3.9 QA/QC Samples	. 118	8
10.9	Specific Gravity		
10.9			
10.9			
10.9			
10.9			
10.10	Magnetism	. 119	9
10.11	Drill Spacing	. 119	9
10.12	Drilling (Urban-Barry Greenstone Belt)	. 12	0
44 0		40	
	AMPLE PREPARATION, ANALYSES AND SECURITY		
11. S 11.1	Laboratories Accreditation and Certification	. 124	4
		. 124	4
11.1	Laboratories Accreditation and Certification	. 124 . 124	4 4
11.1 11.2	Laboratories Accreditation and Certification Historical Sampling	. 124 . 124 . 124	4 4 4
11.1 11.2 11.3	Laboratories Accreditation and Certification Historical Sampling Osisko Core Handling, Sampling, and Security Litho-geochemical Samples Procedure	. 124 . 124 . 124 . 12	4 4 7
11.1 11.2 11.3 11.4 11.5 11.5	Laboratories Accreditation and Certification Historical Sampling Osisko Core Handling, Sampling, and Security Litho-geochemical Samples Procedure Analytical Methods (ALS and Bureau Veritas) 5.1 Samples for Gold Analysis	. 124 . 124 . 124 . 125 . 125	4 4 7 8
11.1 11.2 11.3 11.4 11.5 11.5 11.5 11.5	Laboratories Accreditation and Certification Historical Sampling Osisko Core Handling, Sampling, and Security Litho-geochemical Samples Procedure Analytical Methods (ALS and Bureau Veritas) 5.1 Samples for Gold Analysis 5.2 Multi-elements Analysis	. 124 . 124 . 124 . 125 . 125 . 125 . 125	4 4 7 8 8 9
11.1 11.2 11.3 11.4 11.5 11.5	Laboratories Accreditation and Certification Historical Sampling Osisko Core Handling, Sampling, and Security Litho-geochemical Samples Procedure Analytical Methods (ALS and Bureau Veritas) 5.1 Samples for Gold Analysis 5.2 Multi-elements Analysis	. 124 . 124 . 124 . 125 . 125 . 125 . 125	4 4 7 8 8 9
11.1 11.2 11.3 11.4 11.5 11.5 11.5 11.5	Laboratories Accreditation and Certification Historical Sampling Osisko Core Handling, Sampling, and Security Litho-geochemical Samples Procedure Analytical Methods (ALS and Bureau Veritas) 5.1 Samples for Gold Analysis 5.2 Multi-elements Analysis	. 124 . 124 . 124 . 125 . 126 . 126 . 129 . 129	4 4 7 8 8 9 9
11.1 11.2 11.3 11.4 11.5 11.5 11.5 11.5 11.6 11.6	Laboratories Accreditation and Certification Historical Sampling Osisko Core Handling, Sampling, and Security Litho-geochemical Samples Procedure Analytical Methods (ALS and Bureau Veritas) 5.1 Samples for Gold Analysis 5.2 Multi-elements Analysis 5.3 Litho-geochemical Samples Quality Assurance and Quality Control (QA/QC) Programs 5.1 Field Assay Standards (Certified Reference Materials and Blanks)	. 124 . 124 . 124 . 125 . 125 . 125 . 125 . 125 . 136	4 4 7 8 9 9 0
11.1 11.2 11.3 11.4 11.5 11.5 11.5 11.5 11.6 11.6 11.6	Laboratories Accreditation and Certification Historical Sampling Osisko Core Handling, Sampling, and Security Litho-geochemical Samples Procedure Analytical Methods (ALS and Bureau Veritas). Analytical Methods (ALS and Bureau Veritas). Multi-elements Analysis Litho-geochemical Samples Quality Assurance and Quality Control (QA/QC) Programs Litho-geochemical Samples Litho-geochemical Samples	. 124 . 124 . 124 . 125 . 125 . 125 . 125 . 125 . 130 . 130 . 14	4 4 7 8 8 9 9 0 7
11.1 11.2 11.3 11.4 11.5 11.5 11.5 11.5 11.6 11.6	Laboratories Accreditation and Certification Historical Sampling Osisko Core Handling, Sampling, and Security Litho-geochemical Samples Procedure Analytical Methods (ALS and Bureau Veritas). Analytical Methods (ALS and Bureau Veritas). Samples for Gold Analysis Multi-elements Analysis Litho-geochemical Samples Uuality Assurance and Quality Control (QA/QC) Programs Litho-geochemical Samples Laboratory Quality Assurance and Quality Control (QA/QC). Final Gold Value	. 124 . 124 . 124 . 125 . 126 . 126 . 126 . 129 . 130 . 141 . 145	4 4 7 8 8 9 9 0 0 7 9
11.1 11.2 11.3 11.4 11.5 11.5 11.5 11.5 11.6 11.6 11.6	Laboratories Accreditation and Certification Historical Sampling Osisko Core Handling, Sampling, and Security Litho-geochemical Samples Procedure Analytical Methods (ALS and Bureau Veritas). Analytical Methods (ALS and Bureau Veritas). Multi-elements Analysis Litho-geochemical Samples Quality Assurance and Quality Control (QA/QC) Programs Litho-geochemical Samples Litho-geochemical Samples	. 124 . 124 . 124 . 125 . 126 . 126 . 126 . 129 . 130 . 141 . 145	4 4 7 8 8 9 9 0 0 7 9
11.1 11.2 11.3 11.4 11.5 11.5 11.5 11.6 11.6 11.6 11.6 11.6	Laboratories Accreditation and Certification Historical Sampling Osisko Core Handling, Sampling, and Security Litho-geochemical Samples Procedure Analytical Methods (ALS and Bureau Veritas). Analytical Methods (ALS and Bureau Veritas). Samples for Gold Analysis Multi-elements Analysis Litho-geochemical Samples Uuality Assurance and Quality Control (QA/QC) Programs Litho-geochemical Samples Laboratory Quality Assurance and Quality Control (QA/QC). Final Gold Value	. 124 . 124 . 126 . 126 . 126 . 126 . 126 . 126 . 126 . 126 . 136 . 147 . 144 . 144	4 4 7 8 8 9 9 0 0 7 9 9
11.1 11.2 11.3 11.4 11.5 11.5 11.5 11.6 11.6 11.6 11.6 11.6	Laboratories Accreditation and Certification Historical Sampling Osisko Core Handling, Sampling, and Security Litho-geochemical Samples Procedure Analytical Methods (ALS and Bureau Veritas). Analytical Methods (ALS and Bureau Veritas). Samples for Gold Analysis Multi-elements Analysis Litho-geochemical Samples Quality Assurance and Quality Control (QA/QC) Programs Laboratory Quality Assurance and Quality Control (QA/QC). Laboratory Quality Assurance and Quality Control (QA/QC). Final Gold Value. InnovExplo's Comments and Recommendations	. 124 . 124 . 124 . 125 . 126 . 126 . 126 . 126 . 130 . 130 . 141 . 145 . 145	4 4 7 8 8 9 9 0 0 7 9 9 1
11.1 11.2 11.3 11.4 11.5 11.5 11.5 11.6 11.6 11.6 11.6 11.7 12. D	Laboratories Accreditation and Certification	. 124 . 124 . 124 . 126 . 126 . 126 . 126 . 126 . 126 . 130 . 130 . 144 . 144 . 144 . 145 . 15	4 4 7 8 8 9 9 0 0 7 9 9 1
11.1 11.2 11.3 11.4 11.5 11.5 11.5 11.6 11.6 11.6 11.6 11.7 12. D 12.1	Laboratories Accreditation and Certification Historical Sampling Osisko Core Handling, Sampling, and Security Litho-geochemical Samples Procedure Analytical Methods (ALS and Bureau Veritas) 1 Samples for Gold Analysis 2 Multi-elements Analysis 3 Litho-geochemical Samples Quality Assurance and Quality Control (QA/QC) Programs Quality Assurance and Quality Control (QA/QC) Programs 1 Field Assay Standards (Certified Reference Materials and Blanks) 2 Laboratory Quality Assurance and Quality Control (QA/QC). 3 Final Gold Value InnovExplo's Comments and Recommendations ATA VERIFICATION	. 124 . 124 . 126 . 126 . 126 . 126 . 126 . 126 . 130 . 130 . 131 . 131 . 131 . 135 . 155	4 4 7 8 8 9 9 0 0 7 9 1 1
11.1 11.2 11.3 11.4 11.5 11.5 11.5 11.6 11.6 11.6 11.6 11.7 12. D 12.1 12.2	Laboratories Accreditation and Certification	. 124 . 124 . 126 . 126 . 126 . 126 . 126 . 126 . 126 . 130 . 149 . 131 . 149 . 149 . 157 . 157 . 157	4 4 7 8 8 9 9 0 0 7 9 9 1 1 1 2

12.5 Down Hole Survey 12.5.1 Assays	
12.6 Mined-out Voids	
12.7 Independent Resampling	
12.8 Conclusion	
13. MINERAL PROCESSING AND METALLURGICAL TESTING	
13.1 Windfall Testwork	
13.1.1 Sample Selection and Compositing	
13.1.2 Composite Characterization 13.1.3 Comminution Testwork	
13.1.4 Gravity Recovery	
13.1.5 Recovery Options with Gravity	
13.1.6 Gold Recovery without Gravity	
13.1.7 Overall Gold Recovery	
13.2 Thickening, Rheology and Filtration Testwork	177
13.2.1 Thickening	
13.2.2 Rheology	
13.2.3 Filtration	
14. MINERAL RESOURCE ESTIMATE	
14.1 Methodology	
14.2 Drill Hole Database	
14.3 Geological Model	
14.4 Interpretation of Mineralized Zones	
14.5 Voids Model	
14.6 Compositing and High-grade Capping	
14.6.1 Compositing	
14.6.2 High-grade Capping	
14.7 Density	
14.8 Block Model	
14.9 Rock Coding	
14.10 Variography and Search Ellipsoids	
14.10.1 Variography	
14.10.2 Search Ellipsoids	
14.11 Grade Interpolation	
14.12 Block Model Validation	
14.12.1 Visual Validation	
14.12.2 Statistical Validation	
14.13 Cut-off Parameters	
14.14 Mineral Resource Classification	218
14.14.1 Mineral Resource Classification Definition	
14.14.2 Mineral Resource Classification for the Windfall Lake Project	
14.15 Mineral Resource Estimate	

15.	MINERAL RESERVE ESTIMATES	229
16.	MINING METHODS	229
17.	RECOVERY METHODS	229
18.	PROJECT INFRASTRUCTURE	229
19.	MARKET STUDIES AND CONTRACTS	229
20.	ENVIRONMENTAL STUDIES, PERMITTING, AND SOCIAL OR COMMUNITY IMPACT	229
21.	CAPITAL AND OPERATING COSTS	229
22.	ECONOMIC ANALYSIS	229
23.	ADJACENT PROPERTIES	230
23.1	Gladiator Gold Deposit – Bonterra Resources	230
23.2	Barry Gold Deposit – Métanor Resources Inc.	230
23.3	Lac Rouleau – Beaufield Resources Inc	230
24.	OTHER RELEVANT DATA AND INFORMATION	232
25.	INTERPRETATION AND CONCLUSIONS	233
25. 25.1		
	Data Verification	233
25.1	Data Verification 2018 Windfall Mineral Resource Estimate	233 233
25.1 25.2	Data Verification 2018 Windfall Mineral Resource Estimate Metallurgical Testwork	233 233 234
25.1 25.2 25.3	Data Verification 2018 Windfall Mineral Resource Estimate Metallurgical Testwork Process Flowsheet	233 233 234 235
25.1 25.2 25.3 25.4	Data Verification 2018 Windfall Mineral Resource Estimate Metallurgical Testwork Process Flowsheet	233 233 234 235 235
25.1 25.2 25.3 25.4 25.5	Data Verification 2018 Windfall Mineral Resource Estimate Metallurgical Testwork Process Flowsheet Risk and Opportunities	233 233 234 235 235 237
25.1 25.2 25.3 25.4 25.5 26. 27. АРРЕІ	Data Verification 2018 Windfall Mineral Resource Estimate Metallurgical Testwork Process Flowsheet Risk and Opportunities RECOMMENDATIONS	233 233 234 235 235 237 240 STIM
25.1 25.2 25.3 25.4 25.5 26. 27. APPEI (April	Data Verification 2018 Windfall Mineral Resource Estimate Metallurgical Testwork Process Flowsheet Risk and Opportunities RECOMMENDATIONS REFERENCES NDIX I - List of Windfall Lake and Urban-Barry properties mining titles according to GES	233 233 234 235 235 235 237 240 STIM 248
25.1 25.2 25.3 25.4 25.5 26. 27. APPEI (April Curren APPEI	Data Verification 2018 Windfall Mineral Resource Estimate Metallurgical Testwork Process Flowsheet Risk and Opportunities RECOMMENDATIONS REFERENCES NDIX I - List of Windfall Lake and Urban-Barry properties mining titles according to GES 9, 2018) NDIX II - Exploration reports for work done partially or entirely within the bounds of the	233 233 234 235 235 235 237 240 STIM 248 305 Dre

LIST OF FIGURES

-	Land tenure plan showing the various original agreements on the Windfall Lake property
	Net Smelter Royalty Agreements of the Windfall Lake property
Figure 5-1:	Map of the Windfall Lake property area showing access routes
	Aerial photograph showing the Windfall Lake camp and typical physiography of the area
Figure 6-1:	Exploration history in the Urban-Barry greenstone belt outside of the Windfall Lake deposit area subdivided into four sectors: Eastern, Southern, Central, and Western areas
Figure 7-1:	Generalized geology of the Archean Abitibi sub province and the location of the Urban- Barry greenstone belt and the Windfall Lake deposit. Modified from Daigneault et al. (2004)
Figure 7-2:	Regional geologic setting of the Urban-Barry greenstone belt and the location of the Windfall claim boundary (light grey) Modified after Bandyayera (2002)69
Figure 7-3:	Regional magnetic map of the Urban-Barry greenstone belt and the location of U-Pb ages (yellow, orange, and green circles)70
Figure 7-4:	Core pictures of the three main types of porphyry dikes
	Magmatic affinity of Windfall rocks on a Zr vs. Y diagram (units are in ppm)
	Discrimination of rock units on a TiO ₂ vs. Zr diagram with Nb values in coloured dots
Figure 7-7:	Topographic map with surface projection of the Caribou (blue), Zone 27 (yellow),
0	Mallard (purple), Underdog (green), Lynx zones (right), F-11, F-17, F-51 zones (light
	yellow), and barren Red Dog intrusion (dark grey)78
Figure 7-8:	Interpreted surface geology of the Windfall Lake gold deposit with logged mineralized
	zones and lithologies projected to surface illustrating the spatial relationship between
	syn-mineral I1P dikes (orange) and gold mineralization (red). Refer to Figure 7-9 and
	Figure 7-14 for vertical cross-sections (A - B "Main zone") and (A'- B' "Lynx zone").
Figure 7-9:	Simplified NW-SE vertical cross-section of the geology of the Main zone of the
	Windfall Lake deposit along grid line 2500E (A-B in Figure 7-8), showing the spatial
	setting and geometry of mineralized zones shown in red (Caribou/Wolf, Zone 27,
E :	Underdog)
	: Leapfrog 3D modeling illustrating idealized vertical cross-sections (looking North) of the geometry of the mineralized zones plunging 30° to the NE (Caribou, Zone 27,
	Underdog, and Lynx zones). The Mallard and Bobcat zones are indicated by the
	purple and dark blue arrows, respectively. Exploration is open at depths for all zones.
Linuna 7 11	The Underdog zone is also open up-plunge for exploration
Figure 7-11	: Typical mineralization and associated alteration styles in Zone 27 of the Windfall Lake deposit
Eigure 7.12	2: Typical mineralization and alteration style in the Caribou zone of the Windfall Lake
rigule /-12	deposit
Figure 7-13	3: Drill hole OSK-W-17-821-W1. Strong sericite with localized zones of strong silica
i igui e i i e	alteration coupled with pyrite-gold mineralization within a syn-mineral quartz
	porphyry dike (I1P) in the Underdog mineralized zone. The average gold assays
	from 1,219.4-1,220.1 m (marked by solid yellow arrows) is 13.75 g/t gold (cut to
	100 g/t)
Figure 7-14	Simplified northwest-southeast vertical cross-section of the geology of the Lynx zone
	of the Windfall Lake deposit along grid line 3550E (A'-B' in Figure 7-8), showing the
	spatial setting and geometry of mineralized zones shown in red

Figure 7-15: Typical mineralization and associated alteration styles in the Lynx zone of the Windfall Lake deposit
Figure 7-16: Other mineralization types and associated alteration styles present in the Windfall Lake deposit
Figure 7-17: Stereographic projection of the schistosity measured in oriented DDH core within volcanic rocks by zones
Figure 7-18: Stereographic projection of pyrite stringers (PYSTR) proximal to mineralized envelopes from Zone 27, Caribou, Wolf and Lynx along with the interpretation95
Figure 7-19: Stereographic projection of vein orientation data
Figure 8-1: Schematic geological model for intrusion-related gold systems at Windfall showing lateral and vertical mineralogical zonations
Figure 10-1: Windfall Lake property map showing drill holes completed from 2015 to 2018 by Oban Mineral Corporation and Osisko Mining Inc
Figure 10-2: Representative geological cross-section showing the distribution of drill hole spacing and orientation and significant assay results in the Lynx zone (section 3425E)108
Figure 10-3: Representative geological cross-section showing the distribution of drill hole spacing and orientation and significant assay results in the Main zone (section 2700E)109
Figure 10-4: Location of the main areas of the 2016-2017 Urban-Barry project drilling campaign, Urban-Barry and Windfall properties
Figure 11-1. Time series plot for blank samples assayed by ALS (AA24 method). Detection limits set at 0.05 g/t Au (10x detection limit)
Figure 11-2. Time series plot for blank samples assayed by ALS (AA26 method). Detection limits set at 0.1 g/t Au (10x detection limit)
Figure 11-3: Time series plot for blank samples assayed by BV (FA450 method)134
Figure 11-4: Time series plot for blank samples assayed by ALS (SCR24 method)134
Figure 11-5: Original blank results for AA26 method with statistics Detection limits set at 0.1 g/t Au (10x detection limit)
Figure 11-6: Blank first pass re-assay results for AA26 method with statistics Detection limits set at 0.1 g/t Au (10x detection limit)
Figure 11-7: Blank second pass re-assay results for AA26 method with statistics Detection limits set at 0.1 g/t Au (10x detection limit)
Figure 11-8: Results of standard OREAS 201 using AA24 finish143
Figure 11-9: Post 2014 MRE laboratory pulp duplicates for gold. Values < 0.05 ppm and outliers are removed from trend analysis
Figure 11-10: Lab (GRA08b) and internal specific gravity (SG) measurement correlation (Eagle Hill and Osisko)
Figure 11-11: ALS pulp duplicates
Figure 11-12: Bureau Veritas pulp duplicates (Method FA450)149
Figure 12-1: A), B) Photographs of the interior of the core logging facility; C) Photograph of the
roofed core racks at the core storage facility
Figure 12-2: A) Photograph of boxes containing pulps; B) Boxes containing standards used during
the drilling programs; C) Commercial crushed stones used as blank material during
the drilling programs
Figure 12-3: A) Photograph showing the GPSMAP 60CSx used to verify the location of a drill
collar during the site visit – Hole OBM-16-597. B) Photograph showing one of the
metal identification labels used for most drill hole collars on the Windfall Lake Project
- Hole OBM-16-597
Figure 12-4: Photographs of core resampled: A) InnovExplo sample tag – 057002; B) original core: drill hole EAG-10-23
Figure 12-5: A) Linear graph comparing original to check assays (28 samples) from the resampling program; B) Close-up showing assays under 15 g/t Au158

Figure 13-1: Plan view of comminution samples holes locations.	161
Figure 13-2: Looking N050 view of comminution samples holes locations	
Figure 13-3: Plan view of recovery samples holes locations	
Figure 13-4: Looking N050 view of recovery samples holes locations	
Figure 13-5: Flotation concentrate signature plot	
Figure 13-6: Rougher weight recovery vs. %S in feed	
Figure 13-7: Rougher flotation kinetics	
Figure 13-8: Rougher weight recovery vs. %S in feed	173
Figure 13-9: Average kinetic Au recovery for Zone 27 and Caribou variability flotation tests	
Figure 13-10: Gold recovery from CIL vs. cyanidation without carbon (at 72 hours)	175
Figure 13-11: Leach kinetics for Zone 27 and Caribou CIL	176
Figure 13-12: Yield stress vs slurry density for combined reground pyrite concentrate and flot	ation
tailings	
Figure 14-1: DDH in the Windfall Lake database used for the resource estimate	183
Figure 14-2: Mineralized domains	185
Figure 14-3: Unmineralized late dikes	
Figure 14-4: Exploration ramp intersecting F Zones and Caribou mineralization corridors	
Figure 14-5: Example of four-step gold grade capping on composites from the major zones in	
area using a probability plot of grade distribution	
Figure 14-6: Example of four-step gold grade capping on composites from major zones for	
area using a probability plot of grade distribution	
Figure 14-7: Example of four-step gold grade capping on composites (group of zones inclu	
high grades) for Underdog area using a probability plot of grade distribution	
Figure 14-8: Example of four-step gold grade capping on composites from all zones for F Z	
area using a probability plot of grade distribution	
Figure 14-9: Bounding box of the block models	
Figure 14-10: Continuity models for Caribou, Zone 27, Lynx and Underdog	
Figure 14-11: Seach ellipsoid used for the first interpolation pass for the Zone 27 Corridor (2	
102)	
Figure 14-12: Gold grade distribution for the mineralized Zone 310 in Lynx corridor	
Figure 14-13: Gold grade distribution for the mineralized Zone 402 in Underdog corridor	
Figure 14-14: Cross-section (slicing at 155 deg) swath plots by mineralization corridor	
Figure 14-15: Example of resource classification for blocks in Zone 101 in Zone 27 corridor.	
Figure 14-16: Indicated and inferred resources at the official UCoG in the Main Zone cor	
Figure 14-17: Indicated and inferred resources at the official UCoG in the Lynx Corridor	
Figure 14-18: Indicated and inferred resources at the official UCoG in the Underdog Corrido	
Figure 14-19: Indicated and inferred resources at the official UCoG in the F Zones corridor.	
Figure 23-1: Properties and mineralization in the vicinity of the Windfall Lake and Urban-E	
properties as of May 2018	231

LIST OF TABLES

Table 1-1: Overall gold recovery with gravity and CIL	22
Table 1-2: Windfall Lake project Indicated and Inferred mineral resources by area	
UCoG)	24
Table 2-1: List of Abbreviations	30
Table 2-2: Conversion Factors for Measurements	32
Table 4-1: Mineral tenure summary of the Windfall Lake project (April 9, 2018)	36
Table 4-2: Mineral tenure summary of the Urban-Barry Project (April 9, 2018)	39

Table 6-1: Historical exploration work in the Urban-Barry area	54
Table 6-2: November 2011 MRE ⁽¹⁾ provided by SRK for the Windfall Lake property	63
Table 6-3: July 2012 MRE ⁽¹⁾ provided by SRK for the Windfall Lake property	63
Table 6-4: March 2014 MRE ⁽¹⁾ provided by SRK for the Windfall Lake property	64
Table 6-5: November 2014 MRE ⁽¹⁾ provided by SRK for the Windfall Lake property in the F	ΡEΑ
Report of Tetra Tech in April 2015	
Table 7-1: Summary of geochemical characteristics	
Table 7-2: Drilling highlights from Zone 27	
Table 7-3: Drilling highlights from the Caribou zone	
Table 7-4: Drilling highlights from the Mallard zone	
Table 7-5: Drilling highlights from the Underdog zone	
Table 7-6: Drilling highlights from the Lynx zone	
Table 9-1: Summary of exploration work performed at the Windfall Lake deposit and in the Urb	ban-
Barry Property	104
Table 10-1: Drill hole summary and number of assay and whole-rock geochemistry same	
delivered from 2015 to March 2, 2018.	105
Table 10-2: Validation rules applied to geological tables with DH Logger during data input in	
local database	
Table 10-3: Validation rules applied to technical tables with DH Logger during input in the lo	
database	
Table 10-4: Validation rules applied to sample tables with DH Logger during input in the lo	
database	
Table 10-5: Details of drill hole collars with their associated area, Urban-Barry drilling progr	
(2016-2017)	
Table 11-1: Analytical methods used by Osisko Mining Inc.	
Table 11-2: Samples submitted to ALS for analysis along with routine drill core samples (
2014 to March 2018)	
Table 11-3: Current sample QA/QC statuses in DH Logger	
Table 11-4: Blanks submitted for analysis along with routine drill core samples (July 2014	
March 2018)	
Table 11-5: Certified standards values, 95% confidence and tolerance limits for gold refere	
material (ppm) with fire assay (July 2014 to March 2018)	
Table 11-6: Summary of CRMs used from July 2014 to March 2018 and their attributes	
Table 11-7: Summary statistics between specific gravity GRA08b and electronic densing	
methods (n=1173)	
Table 11-8: ALS analytical quality control – Reference materials, blanks, and duplicates	140
Table 11-9: Bureau Veritas analytical quality control – Reference materials, blanks, and duplicates	and
duplicates	
Table 11-10: Gold method priority ranking	1/0
Table 12-1: Gold results from the core resampling program, Windfall Lake project	
Table 13-1: Windfall test plan	
Table 13-1: Windrain test plan. Table 13-2: Sample variability (Au grade, location, rock type, ore zone)	
Table 13-3: Metallurgical testwork composite head assays	100
Table 13-4: Summary of average SMC and Bond comminution test results per zone	
Table 13-5: Gravity test results	
Table 13-6: Bulk gravity results Table 13-7: Flotation test results	
Table 13-7: Flotation test results	
Table 13-8: Leaching test conditions Table 13-9: Whole ore leach test results	
Table 13-10: Flotation concentrate leach test results	
Table 13-11: Flotation tailings leach test results	172

Table 13-12: Average flotation test results	172
Table 13-13: Leaching test conditions	
Table 13-14: Whole ore leach test results	175
Table 13-15: Flotation concentrate leach test results	176
Table 13-16: Flotation tailings leach test results (without gravity)	177
Table 13-17: Overall gold recovery with gravity and CIL	
Table 13-18: Static thickening results	
Table 13-19: Dynamic thickening results	
Table 13-20: Recommended thickener design parameters	
Table 14-1: Statistics on raw assays presented by zones - Zone 27 (Main area)	
Table 14-2: Statistics on raw assays presented by zones – Caribou (Main area)	
Table 14-3: Statistics on raw assays presented by zones – Mallard (Main area)	
Table 14-4: Statistics on raw assays presented by zones – Lynx	
Table 14-5: Statistics on raw assays presented by zones - Underdog	
Table 14-6: Statistics on raw assays presented by zones – F Zones	
Table 14-7: Summary statistics for the capping on composites by zone - Zone 27 (Main	area)
Table 14-8: Summary statistics for the capping on composites by zone – Caribou (Main	area)
Table 14-9: Summary statistics for the capping on composites by zone – Lynx	195
Table 14-10: Summary statistics for the capping on composites by zone - Underdog	
Table 14-11: Summary statistics for the capping on composites by zone - Mallard (Main	,
Table 14-12: Summary statistics for the capping on composites by zone - F Zones	198
Table 14-13: Specific gravity compilation for lithologies used for the density model in Main	area
(Zone 27, Caribou, Mallard)	199
Table 14-14: Specific gravity compilation for lithologies used for the density model in Lynx	
Table 14-15: Specific gravity compilation for lithologies used for the density model in Under area	erdog 200
Table 14-16: Specific gravity compilation for lithologies used for the density model in F Z area	
Table 14-17: Block model properties – Main (Zone 27, Caribou, Mallard)	201
Table 14-18: Block model properties – Lynx	
Table 14-19: Block model properties – Underdog	
Table 14-20: Block model properties – F Zones	201
Table 14-21: Main area (Zone 27, Caribou, Mallard) block model and associated solids	202
Table 14-22: Lynx area block model and associated solids	
Table 14-23: Underdog area block model and associated solids	
Table 14-24: F Zones area block model and associated solids	
Table 14-25: Variogram model parameters for each area	208
Table 14-26: Search ellipsoid ranges by interpolation pass	
Table 14-27: Search ellipsoid orientation for Zone 27 (Main area)	
Table 14-28: Search ellipsoid orientation for Caribou (Main area)	
Table 14-29: Search ellipsoid orientation for Mallard (Main area)	
Table 14-30: Search ellipsoid orientation for Lynx	
Table 14-31: Search ellipsoid orientation for Underdog	
Table 14-32: Search ellipsoid orientation for F Zones	
Table 14-33: Composite search specifications	
Table 14-34: Comparison of the block and composite mean grades at a zero cut-off grad	
blocks of all resource classes	215

Table 14-35: Parameters used to estimate the UCoG for the 2018 MRE	218
Table 14-36: Main criteria for resource classification	220
Table 14-37: Windfall Lake project Indicated and Inferred mineral resources by are	a (3.0 g/t Au
UCoG)	
Table 14-38: Windfall Lake project Indicated and Inferred mineral resource sensitivit	y table222
Table 14-39: 2018 MRE comparison to 2015 PEA for the Windfall Lake project	
Table 25-1: Risks for the Windfall Lake Project	235
Table 25-2: Opportunities for the Windfall Lake Project	236
Table 26-1: Estimated costs for the recommended work program	238

SIGNATURE PAGE - INNOVEXPLO INC.

TECHNICAL REPORT AND MINERAL RESOURCE ESTIMATE FOR THE WINDFALL LAKE PROJECT, WINDFALL LAKE AND URBAN-BARRY PROPERTIES

Project Location Latitude 49° 2' 60" North and Longitude 75° 39' 36" West Province of Québec, Canada

> Prepared for Osisko Mining Inc. 155 University Avenue, Suite 1440 Toronto, Ontario, Canada M5H 3B7

(Orígínal sígned and sealed) Judith St-Laurent, P.Geo., B.Sc. InnovExplo Inc. Longueuil (Québec) Signed at Longueuil on June 12, 2018

(Orígínal sígned and sealed) Stéphane Faure, P.Geo., Ph.D. InnovExplo Inc. Longueuil (Québec) Signed at Longueuil on June 12, 2018

SIGNATURE PAGE – BBA INC.

TECHNICAL REPORT AND MINERAL RESOURCE ESTIMATE FOR THE WINDFALL LAKE PROJECT, WINDFALL LAKE AND URBAN-BARRY PROPERTIES

Project Location Latitude 49° 2' 60" North and Longitude 75° 39' 36" West Province of Québec, Canada

> Prepared for Osisko Mining Inc. 155 University Avenue, Suite 1440 Toronto, Ontario, Canada M5H 3B7

(Original signed and sealed) Jorge Torrealba, P.Eng., Ph.D. BBA Inc. Montreal (Québec) Signed at Montreal on June 12, 2018

CERTIFICATE OF AUTHOR – JUDITH ST-LAURENT, P.GEO.

I, Judith St-Laurent, P.Geo., B.Sc. (OGQ No. 1023), do hereby certify that:

- 1. I am employed as a geologist by and carried out this assignment for InnovExplo Inc. Consulting Firm in Mines and Exploration, located at 859 Boul. Jean-Paul-Vincent, Suite 201, Longueuil, Québec, Canada, J4G 1R3.
- 2. I graduated with a Bachelor of Geology degree from Université du Québec à Montréal (Montréal, Québec) in 2005.
- 3. I am a member in good standing of the Ordre des Géologues du Québec (OGQ licence No. 1023).
- 4. I have worked as a geologist for a total of twelve (12) years since graduating from university in 2005. My expertise in mineral exploration and mining has been acquired with Falconbride Ltd. in Northern Quebec, with Cambior Inc. and lamgold Inc. in Suriname South America at the Rosebel Gold Mines N.V. and with numerous other exploration and mining companies through G Mining Services Inc. in Canada. I have been a consulting geologist for InnovExplo Inc. since March 2017.
- 5. I have read the definition of "qualified person" set out in National Instrument 43 101/Regulation 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- I am the author of items 14, 15, 16, 17, 18, 19, 20, 21, 22 and 24, and co-author of items 1, 2, 3, 12, 25, 26 and 27 of the report titled "TECHNICAL REPORT AND MINERAL RESOURCE ESTIMATE – WINDFALL LAKE PROJECT, WINDFALL LAKE AND URBAN-BARRY PROPERTIES", with an effective date of May 14, 2018 and a signature date of June 12, 2018, prepared for Osisko Mining Inc.
- 7. I have not had prior involvement with the property that is the subject of the Technical Report.
- 8. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.
- 9. I am independent of the issuer applying all the tests in section 1.5 of NI 43-101.
- 10. I have read NI 43-101 and Form 43-101F1, and the items of the Technical Report for which I am responsible have been prepared in accordance with that instrument and form.

Signed this 12th day of June 2018.

(Original signed and sealed)

Judith St-Laurent, P.Geo., B.Sc. InnovExplo Inc. judith.stlaurent@innovexplo.com

CERTIFICATE OF AUTHOR – STÉPHANE FAURE, P.GEO.

I, Stéphane Faure, P.Geo., PhD (OGQ No. 306, APGO No. 2662, NAPEG No. L3536), do hereby certify that:

- 1. I am employed as a geologist by and carried out this assignment for InnovExplo Inc. Consultant, Mines and Exploration, located at 859 Boul. Jean-Paul-Vincent, Suite 201, Longueuil, Québec, Canada, J4G 1R3.
- I graduated with a Bachelor of Geology degree from Université du Québec à Montréal (Montréal, Québec) in 1987. In addition, I obtained a Master degree in Earth Sciences from Université du Québec à Montréal in 1990 and a Ph.D. degree in Geology from the Institut National de la Recherche Scientifique (city of Québec, Québec) in 1995.
- I am a member in good standing of the Ordre des Géologues du Québec (OGQ licence No. 306), the Association of Professional Geoscientists of Ontario (APGO licence No. 2662), and the Professional Engineers and Professional Geoscientists, Northwest Territories and Nunavut (NAPEG licence No. L3536). I am a member of the Society of Economic Geologists.
- 4. I have worked as a geologist for a total of twenty-three (23) years since graduating in 1995. I acquired my expertise in precious and base metals mineral exploration with Inmet Mining in Central America and South America, Cambior Inc. in Canada and numerous exploration companies through the Research Consortium in Mineral Exploration (CONSOREM). I have been a geological consultant for InnovExplo Inc. since January 2016 and I currently hold the Geoscience Expert position.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101/Regulation 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- I am the author of items 4, 5, 6, 7, 8, 9, 10, 11, and 23 and co-author of items 1, 2, 3, 12, 25, 26 and 27 of the report titled "TECHNICAL REPORT AND MINERAL RESOURCE ESTIMATE WINDFALL LAKE PROJECT, WINDFALL LAKE AND URBAN-BARRY PROPERTIES", with an effective date of May 14, 2018 and a signature date of June 12, 2018, prepared for Osisko Mining Inc.
- 7. I have not had prior involvement with the property that is the subject of the Technical Report.
- 8. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading
- 9. I am independent of the issuer applying all the tests in section 1.5 of NI 43-101.
- 10. I have read NI 43-101 and Form 43-101F1, and the items of the Technical Report for which I am responsible have been prepared in accordance with that instrument and form.

Signed this 12th day of June 2018.

<u>(Orígínal sígned and sealed)</u> Stéphane Faure, P.Geo., PhD InnovExplo Inc.

stephane.faure@innovexplo.com

CERTIFICATE OF AUTHOR – JORGE TORREALBA, P. ENG.

I, Jorge Torrealba, P.Eng., Ph.D. (APEGNB No. M7957), do hereby certify that:

- 1. I am employed as an engineer by and carried out this assignment for BBA Inc. Consulting Firm in Engineering, located at 2020 Boul. Robert-Bourassa, Suite 300, Montréal, Québec, Canada, H3A 2A5.
- I graduated with a B.Eng. and M.Sc. in Metallurgy from Santiago de Chile University (Santiago, Chile) in 1998. I obtained a Ph.D. degree in Metallurgy from McGill University (Montreal, Quebec) in 2005.
- 3. I am a member in good standing of the Association of Professional Engineers and Geoscientists of New Brunswick (APEGNB licence No. M7957) and a member of the Canadian Institute of Mining Metallurgy and Petroleum.
- 4. I have worked as an engineer for a total of nineteen (19) years since graduating from University in 1998. My expertise in Mineral processing has been acquired with Santiago de Chile University in Chile, with Chile University in Chile, with McGill University in Quebec. I have been a consulting process engineer for BBA Inc. since February 2005.
- 5. I have read the definition of "qualified person" set out in National Instrument 43 101/Regulation 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- I am the author of items 13 and co-author of items 1, 25 and 26 of the report titled "TECHNICAL REPORT AND MINERAL RESOURCE ESTIMATE – WINDFALL LAKE PROJECT, WINDFALL LAKE AND URBAN-BARRY PROPERTIES", with an effective date of May 14, 2018 and a signature date of June 12, 2018, prepared for Osisko Mining Inc.
- 7. I have not had prior involvement with the property that is the subject of the Technical Report.
- 8. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.
- 9. I have read NI 43-101 and Form 43-101F1, and the items of the Technical Report for which I am responsible have been prepared in accordance with that instrument and form.

Signed this 12th day of June 2018.

(Original signed and sealed) Jorge Torrealba, P.Eng., Ph.D. BBA Inc. jorge.torrealba@bba.ca

1. SUMMARY

1.1 Introduction

In February 2017, InnovExplo Inc. ("InnovExplo") was contracted by Mathieu Savard, Vice President Exploration Québec of Osisko Mining Inc. ("Osisko" or the "issuer"), to prepare a new mineral resource estimate (the "2018 MRE") for the Windfall Lake Project (the "Project") and a supporting Technical Report on the Windfall Lake and Urban-Barry properties (the "Properties") in compliance with National Instrument 43 101 ("NI 43 101") and Form 43-101F1.

The Windfall Lake and Urban-Barry properties are situated in the province of Québec, Canada. Osisko is a mineral exploration company focused on the acquisition, exploration, and development of precious metal resource properties in Canada. The TSX symbol is OSK and the headquarter is located in Toronto, Ontario. InnovExplo is an independent mining and exploration consulting firm based in Val-d'Or, Québec.

This Technical Report provides a relevant update on the Urban-Barry Property and an updated resource estimate for the Windfall Lake Project. The previous technical report was completed in June 2015 (Tetra Tech, 2015). The current Technical Report reviews the historical work on the Property and all data obtained since the completion of the 2015 report. InnovExplo also consulted other sources of information, primarily government databases, for assessment reports and the status of mining titles.

This Technical Report was prepared by Stéphane Faure, P.Geo. and Judith St-Laurent, P.Geo., geologists of InnovExplo, and by Jorge Torrealba, P.Eng., engineer from BBA.

The authors believe the information used to prepare the Technical Report and to formulate its conclusions and recommendations is valid and appropriate considering the status of the project and the purpose for which the report is prepared. The technical data are considered appropriate for producing a resource estimate on the Windfall Lake Project.

The authors, by virtue of their technical review of the Project's exploration potential, affirm that the work program and recommendations presented in the report are in accordance with NI 43 101 and CIM Definition Standards for Mineral Resources and Mineral Reserves ("CIM Definition Standards").

1.2 Property Description, Location and Ownership

The Windfall Lake and Urban-Barry properties are situated in the province of Québec, Canada, approximately 700 km north-northwest of Montréal and 200 km northeast of Val-d'Or. The Windfall Lake project lies approximately 115 km east of the town of Lebel-sur-Quévillon.

The Windfall Lake property is 100% owned by Eagle Hill Exploration Corp. which is a 100% subsidiary of Osisko Mining Inc. On April 9, 2018, the Property consisted of 285 individual claims covering an aggregate area of 12,467 ha. The actual Property was consolidated from several agreements concluded with previous owners. The main claim blocks inherited from the original agreement are: The Windfall Lake-Noront Option (including the Windfall, Alcane, and South blocks), 29 Claims Expansion, 184

Claims Expansion, Rousseau Property, Windfall 2010, Windfall 2012, and Carat Claim. Following a series of transactions during the first half of 2014, Eagle Hill Exploration Corp. (Osisko Mining Inc.) now holds a 100% interest on all the claim blocks of the Property, barring various NSRs. The mineral resources discussed herein are located within the Alcane Block of the Windfall Lake option and the 29 Claims Expansion claim blocks.

The Urban-Barry property is 100% owned by Osisko Mining Inc. On April 9, 2018, the property comprises 1,997 individual claims covering an aggregate area of approximately 110,748 ha. The actual property is mostly constituted by claims that were acquired at different periods from 2015 to 2017, and are subject to various NSRs.

The Windfall Lake property and the northern half of the Urban-Barry property are in the Eeyou Istchee James Bay territory. Osisko Mining and his 100% subsidiary Eagle Hill Exploration Corp. have obtained all necessary permits and certifications from government agencies to allow for surface drilling, exploration and bulk sampling on the Windfall Lake property. The Windfall Lake area is serviced by a complete network of well-maintained logging roads, and several infrastructure components are present at the Windfall including an exploration camp with capacity for 300 people. Full infrastructure and an experienced mining workforce are available in Lebel-sur-Quévillon and a number of well-established nearby mining towns, such as Val-d'Or, Rouyn-Noranda, La Sarre, Matagami and Chibougamau.

1.3 Geology, Mineralization and Exploration Model

The Windfall Lake and Urban-Barry properties occur within the Urban-Barry greenstone belt in the Northern Volcanic Zone of the Abitibi geological sub province. The Urban-Barry greenstone belt contains mafic to felsic volcanic rock units and is cross-cut by several east-trending and east-northeast trending shear zones that delineate major structural domains. The Windfall Lake property is located in the central part of the Urban-Barry Belt and is comprised between the Urban and Barry deformation zones. The Masère and the Milner northeast trending shear zones traverse the property and are truncated by the east-west trending Urban deformation zone. The Urban-Barry belt is informally divided into the Facteau, the Chanceux, the Macho and the Urban formations. The Windfall Lake deposit is hosted within the Windfall Member of the Macho Formation, which primarily consists of felsic and intermediate volcanic rocks including tuff and lava units. In the Windfall Lake deposit area, the stratigraphy trends northeast and dips moderately towards the southeast. Volcanic rocks are intruded by a series of younger quartz-feldspar porphyry dikes, commonly referred to quartz-feldspar porphyry "QFP" dikes.

At Windfall Lake deposit, the main gold event is temporally and spatially constrained by the emplacement of the quartz porphyry dikes. The best gold mineralization is contained in narrow high-grade gold zones and stockworks at the dikes contacts with host volcanic rocks. Mineralization consists of pyrite-rich and silica > sericitecarbonate-tourmaline (and some base metals) mineral association that is zoned outward into erratic to low gold grade sericite > silica-carbonate-tourmaline halos, which in turn pass into an outer barren chlorite > sericite-rutile zone. The mineralization is currently known for a vertical extent of approximately 1,200 m, separated in three zones; Main (Zone 27, Caribou, and Mallard), Underdog, and Lynx zones.

The Windfall Lake deposit most likely represents an Archean intrusion-related hydrothermal gold system. However, not refuting the existence and influence of structural features, the porphyry intrusions in the Windfall Lake area are likely the source and a major factor controlling the occurrence of gold mineralization.

1.4 Status of Exploration and Drilling

The Windfall Lake property is at an advance stage exploration; however, the vast Urban-Barry property is at an early stage of exploration.

The properties areas have seen a great deal of historical exploration work spanning from 1943 to 2009, with no historical resources estimates or production for that period. The Windfall property area saw renewed exploration thrust from 2009 to 2014 by Eagle Hill Exploration, producing three MRE and a PEA on the property. The later MRE for the Windfall project dated November 2014 and updated in the 2015 PEA states 2,762,000 tonnes with an average grade of 8.42 g/t Au for 748,000 ounces of gold in the Indicated category, and 3,512,000 tonnes with an average grade of 7.62 g/t Au for 860,000 ounces of gold in the Inferred category at a cut-off grade of 3.0 g/t Au.

In August 2015, Osisko Mining Inc. (formerly Oban Mining Corp) completed the acquisition of Windfall Lake and by 2017 consolidated the Urban-Barry property. Since 2015 to present, Osisko Mining Inc. has overseen the exploration on the properties. Several campaigns of prospecting, till sampling and geophysical surveys have taken place in the Windfall and Urban-Barry properties since 2015.

For the 2016-2017 period, 93 drill holes for a total of 37,867.5m were done on different prospects outside the Windfall Lake deposit footprint in the Urban-Barry property (E1, E2, E7, Fox, Fold Hinge, Bobtar, NE Windfall).

For the period of October 20, 2015, to March 2, 2018, Osisko Mining Inc. performed 1,134 drill holes for a total of 535,614m of drilling on the Windfall Lake deposit. The drilling program was designed to better define the mineralized zones, with high priority on expanding the Lynx deposit and better define the Underdog mineral zone.

InnovExplo did not conduct any drilling on the property, but reviewed the field procedures and analytical quality control measures used by Osisko Mining Inc. The field procedures and data sets examined by InnovExplo follow generally accepted industry standards and do not present evidence of obvious analytical bias.

1.5 Data Verification

InnovExplo's data verification included two site visits to the Windfall Lake Project. Stéphane Faure visited the core logging facilities in March 2017 and examined the lithologies, mineralization and structural features on selected core intervals. In July 2017, Judith St-Laurent visited the core logging and storage facilities, and examined selected drill collars in the field. The July site visit also included a review and independent resampling of selected core intervals as well as a review of assays, the

QA/QC program, downhole survey methodologies, and the descriptions of lithologies, alteration and structures.

InnovExplo proceeded to the verification of approximately 5% of the database including but not limited to: cross-check routines between original historical logs and drill hole database, comparison of the survey data on original certificates provided by the surveyor companies, and comparison of assay results on original certificates provided by the laboratories.

The authors are of the opinion that InnovExplo's data verification, from site visits to subsequent data validation, demonstrates the validity of the Windfall Lake Project database.

1.6 Mineral Processing and Metallurgical Testing

The metallurgical test program for the Windfall Lake Project Preliminary Economic Assessment ("PEA") started in June 2017 under the supervision of BBA in collaboration with Osisko.

A preliminary metallurgical testwork program was undertaken on samples prepared from drill holes obtained from the Windfall Lake deposit on three zones: Caribou, Zone 27 and Lynx. No tests have been performed on zones in Underdog, Mallard or F Zones. The testwork consisted of chemical characterization, a preliminary evaluation of comminution characteristics, a series of gravity, flotation and leaching tests as well as preliminary rheology tests. Using the results available to beginning of May 2018, recovery values for gold were determined for the evaluation of resource estimate.

The overall gold recoveries for the testwork for a flowsheet including gravity and CIL are presented in Table 13-17 for all three zones. No testwork was performed on the Underdog zone; however, based on mineralization similarities between the Caribou and the Zone 27 and Underdog zones, the average Au and Ag recovery of Caribou and Zone 27 was assigned to Underdog. No recovery values were assigned to zones Mallard or F Zones due to the small proportion of those ores in the deposit (see Table 1-1).

Based on the testwork results, overall Au recovery from 90.0% to 93.8% can be achieved depending on the relative proportion of the zones that will feed the beneficiation plant.

	Gravity		Gravity ta	Overall Au	
Composite	Au distribution (%)	ILR Au recovery (%)	Au distribution (%)	Au recovery (%)	recovery (%)
Zone 27	19.8	99.0	80.2	90.9	92.5
Caribou	9.6	99.0	90.4	90.0	90.9
Lynx	22.4	99.0	77.6	92.3	93.8
Underdog	-	99.0	85.3	90.5	91.7

Table 1-1: Overall gold recovery with gravity and CIL

1.7 Mineral Resource Estimate

The mineral resource estimate (the "2018 MRE") for the Windfall Lake Project was prepared by Judith St Laurent, P Geo. (OGQ #1023) using all available information. The estimate follows CIM Definition Standards.

The 2018 resource database contains 1,718 surface drill holes in the resource area, including 812 additional diamond drill holes drilled by Osisko since the database close-out date of the 2015 PEA (Tetra Tech, 2015). The database close-out date for the 2018 MRE was March 5, 2018.

The 2018 MRE reflects grade model changes from a broad mineralized domain approach to better defined, higher grade, vertical sub-domains to capture the nature of the gold bearing zones which follow the intrusive porphyry contacts. Newly defined mineralization corridors are also reported in the 2018 MRE, namely Lynx and Underdog areas. Changes were made to the approaches and assumptions published by the previous owners in 2015, most notably to the mineralized domain interpretation, the capping assumptions, the grade interpolation strategy, and the inclusion of post-mineralization barren dike units. In addition, the gold price, project costs and exchange rate assumptions were revised to reflect 2018 market conditions.

Based on data density, search ellipse criteria, drill hole density and interpolation parameters, the Indicated mineral resource for the Windfall Lake Project is estimated at 2,382,000 tonnes with an average grade of 7.85 g/t Au for 601,000 ounces of gold and the Inferred mineral resource is estimated at 10,605,000 tonnes with an average grade of 6.70 g/t Au for 2,284,000 ounces of gold, using a 3.00 g/t Au lower cut-off grade (Table 1-2).

	Windfall Lake project (cut-off grade 3.0 g/t Au)					
Mineralization	Indicated resources			Inferred resources		
corridor	Tonnes (000 t)	Grade (g/t Au)	Ounces Au (000 oz)	Tonnes (000 t)	Grade (g/t Au)	Ounces Au (000 oz)
Lynx	1,254	7.51	303	2,257	7.48	543
Zone 27	628	8.69	175	852	7.28	199
Caribou	318	7.12	73	2,767	5.80	516
Underdog	147	9.00	43	4,380	6.77	953
Mallard	-	-	-	145	7.13	33
F Zones	34	6.58	7	204	5.82	38
Total	2,382	7.85	601	10,605	6.70	2,284

Table 1-2: Windfall Lake project Indicated and Inferred mineral resources by area (3.0 g/t Au UCoG)

Mineral Resource Estimate notes:

- . The QP of the 2018 MRE, as defined by NI 43-101, is Judith St-Laurent, P. Geo, of InnovExplo Inc. The effective date of the estimate is May 14, 2018.
- 2. The Windfall mineral resource estimate is compliant with CIM standards and guidelines for reporting mineral resources and reserves.
- 3. Resources are presented undiluted and in situ and are considered to have reasonable prospects for economic extraction.
- 4. The mineral resource estimate encompasses a total of 124 tabular, subvertical gold-bearing domains each defined by individual wireframes with a minimum true thickness of 2.0 m.
- 5. Samples were composited within the mineralization domains into 2.0 m length composites. A value of zero grade was applied in cases of core not assayed.
- 6. High grade capping was done on composite data, and established using a statistical analysis on a per-zone basis for gold. Capping varied from 15 g/t Au to 75 g/t Au and was applied using a four-step capping strategy where capping values decreased as interpolation distances increased.
- 7. Density values were applied on the following lithological basis (t/m3): mafic volcanic host rocks varied from 2.78 to 2.86; felsic volcanic host rocks varied from 2.76 to 2.77; porphyries varied from 2.70 to 2.83.
- 8. Ordinary Kriging (OK) based interpolation was used for the estimation of all zones of the Windfall Lake project except for the Underdog zone where an Inverse Distance Squared (ID²) interpolation was preferred due to the larger drill spacing and smaller density of drill holes informing the mineralization wireframes. All estimates are based on a block dimension of 5 m NE, 2 m NW and 5 m height and estimation parameters determined by variography.
- 9. Estimates use metric units (metres, tonnes and g/t). Metal contents are presented in troy ounces (metric tonne x grade / 31.10348).
- 10. InnovExplo is not aware of any known environmental, permitting, legal, title-related, taxation, socio-political or marketing issues, or any other relevant issue not reported in the technical report, that could materially affect the mineral resource estimate.
- 11. These mineral resources are not mineral reserves as they do not have demonstrated economic viability. The quantity and grade of reported Inferred resources in this mineral resource estimate are uncertain in nature and there has been insufficient exploration to define these Inferred resources as Indicated or Measured, and it is uncertain if further exploration will result in upgrading them to these categories.
- 12. The number of metric tons and ounces was rounded to the nearest unit. Any discrepancies in the totals are due to rounding effects; rounding followed the recommendations in Form 43 101F1.

1.8 Interpretation and Conclusions

InnovExplo's mandate was to produce a mineral resource estimate for the Windfall Lake project and a supporting NI 43 101 Technical Report.

The metallurgical test program for the Windfall Lake Project PEA started in June 2017 under the supervision of BBA in collaboration with Osisko.

1.8.1 Mineral Resource Estimate

After completing the 2018 MRE and a detailed review of all pertinent information, InnovExplo concludes the following:

- Geological and grade continuity have been demonstrated for 124 gold-bearing zones in the Windfall Lake project;
- For an underground mining scenario, using a lower cut-off grade of 3.00 g/t Au, it is estimated that the Project contains 601,000 ounces of gold at an average of 7.85 g/t Au in the Indicated category and 2,284,000 ounces of gold at an average of 6.70 g/t Au in the Inferred category.
- It is likely that additional diamond drilling would upgrade some of the Inferred resources to Indicated resources.

1.8.2 Metallurgical Testwork and Process Flowsheet

Metallurgical testwork was conducted using material from various zones within the Windfall ore body including: Zone 27, Caribou and Lynx. Representative samples were selected considering different rock types, precious metal grades and special location (depth) within the orebody. The projected metallurgical recovery was established using the results of gravity recovery testwork followed by leaching testwork (CIL) on a composite from the Caribou, Zone 27 and Lynx ore bodies. Limited testwork was performed on Lynx ore due to sample availability. No testwork was performed on the Underdog, Mallard and F zones; however, based on mineralization similarities between the Caribou and Underdog zones, the average Au and Ag recovery of Caribou and Zone 27 was assigned to Underdog. No recovery values were assigned to zones Mallard or F Zones due to the small proportion of those ores in the deposit (see Table 1-1) Additional metallurgical recovery testwork will be conducted on Lynx and Underdog material. Additional grindability indices will be measured for Underdog.

Based on the testwork conducted, the process flowsheet consists of primary crushing, followed by a grinding circuit consisting of a SAG mill (in open circuit) and ball mill (in close circuit with cyclones). A gravity circuit followed by intensive leaching recovers coarse gold from the cyclone underflow, while the cyclone overflow is treated in a carbon-in-leach ("CIL") circuit. Gold is recovered in an ADR circuit followed by EW cells.

1.9 Recommendations

Based on the results of the 2018 MRE, InnovExplo recommends that the Windfall Lake project be advanced to the next phase, which would be a preliminary economic assessment. In parallel with the PEA, more work is warranted. Additional exploration/delineation drilling and further geological and structural interpretation are recommended to gain a better understanding of the deposit. Following a positive phase 1 and 2, and in the light of a positive PEA, a pre-feasability would then be recommended.

In Phase 1, InnovExplo and BBA recommend addressing the following technical aspects of the Project:

• Refinement of the litho-structural interpretation

- Conversion drilling on the Windfall Lake project
- Exploration drilling
- Metallurgical testing

Additional metallurgical testwork is recommended on mineralized ore from the Windfall Lake gold deposit. The testwork program should include a gold mineralization study and characterization tests including: head analysis, comminution and metallurgical tests (gravity separation followed by cyanidation of mineralized ore). Additionally, rheological tests should be performed based on the selected flowsheet and target particle size. It is recommended that the testwork is conducted on representative composite samples from Zone 27, Caribou, Lynx and Underdog.

In Phase 2, InnovExplo recommends addressing the following technical aspects of the Project (contingent upon the success of Phase 1):

- Bulk sampling for Lynx and Underdog
- Update of the litho-structural and mineralization models on the Windfall Lake project
- NI 43-101 MRE update on the Windfall Lake project

InnovExplo and BBA have prepared a cost estimate for the recommended two-phase work program. Expenditures for Phase 1 are estimated at C\$40,200,000 (incl. 15% for contingencies). The estimation includes a C\$200,000 allowance for metallurgical testwork program. The estimated cost for Phase 2 is approximately C\$31,000,000 (including 15% for contingencies). The grand total is C\$71,200,000 (including 15% for contingencies). Phase 2 is contingent upon the success of Phase 1.

InnovExplo and BBA are of the opinion that the recommended work program and proposed expenditures are appropriate and well thought out. InnovExplo and BBA believe that the proposed budget reasonably reflects the type and scope of the contemplated activities.

2. INTRODUCTION

2.1 Overview

InnovExplo Inc. ("InnovExplo") was commissioned by Osisko Mining Inc. ("Osisko" or the "issuer") to prepare a mineral resource estimate (the "2018 MRE") on the Windfall Lake Project (the "Project") and a supporting Technical Report in accordance with Canadian Securities Administrators' National Instrument 43-101 Respecting Standards of Disclosure for Mineral Projects ("NI 43 101") and its related Form-43-101F1. The mandate was assigned by Mathieu Savard, Vice President Exploration Québec of Osisko.

The mineral resource estimate has an effective date of May 14th, 2018. InnovExplo is an independent mining and exploration consulting firm based in Val-d'Or (Québec).

The metallurgical test program for the Windfall Lake Project started in June 2017 under the supervision of BBA in collaboration with Osisko.

The Windfall Lake Project is located in the province of Québec, Canada, approximately 400 km north-northwest of Montréal, 200 km northeast of Val-d'Or and 115 km east of the town of Lebel-sur-Quévillon.

2.2 Osisko Mining Inc.

This report is addressed to Osisko Mining Inc. Osisko trades on the Toronto Stock Exchange (TSX) under symbol OSK. It is a mineral exploration company based in Toronto and focused on the acquisition, exploration, and development of precious metal resource properties in Canada. The corporate headquarter of the issuer is located in Toronto at 155 University Avenue, Suite 1440, Toronto, ON M5H 3B7.

2.3 Terms of Reference

The report comprises the Windfall Lake Project and the Windfall Lake and Urban-Barry properties which are situated in the province of Québec, Canada, approximately 700 km north-northwest of Montréal and 200 km northeast of Val-d'Or.

The Windfall Lake Property is 100% owned by Eagle Hill Exploration Corp. which is a 100% subsidiary of Osisko Mining Inc. On April 9, 2018, the Property consisted of 285 individual claims covering an aggregate area of 12,467 ha.

The Urban-Barry property is 100% owned by Osisko Mining Inc. On April 9, 2018, the property comprises 1,997 individual claims covering an aggregate area of approximately 110,748 ha.

This Technical Report was prepared by InnovExplo for the purpose of providing a mineral resource estimate for the Windfall Lake project, including the following mineralization corridors: Zone 27, Caribou, Lynx, Underdog and F Zones.

2.4 Sources of Information

InnovExplo conducted a review and appraisal of the information used to prepare the Technical Report, including the conclusions and recommendations. This report is based primarily on information provided by Osisko over the course of InnovExplo's

mandate and information collected by authors Stéphane Faure and Judith St-Laurent during site visits in March and July 2017, respectively. InnovExplo has no reason to doubt the reliability of the information provided by Osisko. Other information was obtained from the public domain.

InnovExplo believes the information used to prepare this Technical Report is valid and appropriate considering the status of the Project and the purpose of the Technical Report. By virtue of the authors' technical review of the Project, InnovExplo affirms that the work program and recommendations presented herein are in accordance with NI 43-101 requirements and follow CIM Standards on Mineral Resources and Reserves – Definitions and Guidelines ("CIM Definition Standards").

This technical report is based on the following sources of information:

- Discussions with Osisko personnel;
- Inspection of the Windfall Lake project site, including drill core and facilities;
- Review of exploration data collected by Osisko including geological interpretation and 3D model;
- Agreements, technical data and internal technical supplied by the issuer (or its agents);
- Mining titles and their status on the GESTIM Online website database (Québec government's online claim management system);
- Québec government's online spatial reference geomining information system SIGEOM (Système d'information géominière);
- Additional information from public domain sources (SEDAR, etc.)

The authors have sourced the information for this Technical Report from the collection of reports listed in Item 27.

None of the QPs involved in this Technical Report have, or have previously had, any material interest in the issuer or its related entities. The relationship with the issuer is solely a professional association between the issuer and the independent consultants. This Technical Report was prepared in return for fees based upon agreed commercial rates, and the payment of these fees is in no way contingent on the results of the Technical Report.

2.5 Qualified Persons

The 2018 MRE was prepared by authors Stéphane Faure, P.Geo. and Judith St-Laurent, P.Geo from InnovExplo Inc. and by Jorge Torrealba, P.Eng. from BBA Inc. The list below presents the QPs for the Technical Report and the sections for which each QP is responsible for:

- Stéphane Faure, P.Geo. (OGQ No. 306) from InnovExplo:
 - o author of items 4 to 11, and 23;
 - \circ $\,$ co-author of items 1, 2, 3, 25, 26 and 27.
- Judith St-Laurent, P.Geo. (OGQ No. 1023) from InnovExplo:
 - \circ author of items 12 and 14.
 - o co-author of items 1, 2, 3, 25, 26 and 27.
- Jorge Torrealba, P. Eng. (APEGNB No. M7957) from BBA:
 - \circ author of item 13;
 - o co-author of item 1, 25 and 26.

In addition to the principal authors and QPs, the following people were involved in the preparation of the Technical Report:

- Charlotte Athurion, P.Geo. (OGQ No. 1784);
- Christina Thouvenot, Jr. Eng. (OIQ No. 5081048);
- Gustavo Durieux, P.Geo. (OGQ No. 1148)
- Daniel Turgeon, technician (InnovExplo);

2.6 Site Visit

Stéphane Faure and Judith St-Laurent of InnovExplo visited the Windfall Lake Property on March 20 to 22, 2017 and on July 12 to 14, 2017, respectively, as part of the current mandate. They visited the logging and core storage facilities at the Project site and examined drill collars in the field. The visits also included a review of selected core intervals and an independent resampling program, as well as a review of assays, the QA/QC program, downhole surveying methodologies, and the descriptions of lithologies, alteration and structures.

As of the effective date of this report, Jorge Torrealba, P.Eng. (BBA) has not visited the Project site.

2.7 Effective Date and Declaration

The close-out-date of the database is March 5, 2018.

The effective date of the mineral resource statement is May 14, 2018.

2.8 Abbreviations, Units of Measure and Currencies

A list of abbreviations used in this report is provided in Table 2-1. All currency amounts are stated in Canadian Dollars (\$, C\$, CAD), unless otherwise specified. Quantities are stated in metric units, as per standard Canadian and international practice, including tonnes (t) and kilograms (kg) for weight, km (km) or m (m) for distance, ha (ha) for area, and gram per tonne (g/t) for gold grades. Wherever applicable, imperial units have been converted to the International System of Units (SI units) for consistency (

Table 2-2).

Table 2-1: List of Abbreviations

Abbreviation or Symbol	Unit or Term
%	Percent
\$	Canadian dollar
0	Angular degree
°C	Degree Celsius
μm	Micron (micrometre)
43-101	National Instrument 43-101 (Regulation 43-101)
AA	Atomic absorption
Ag	Silver
Ai	Abrasion index
APEGNB	Association of Professional Engineers and Geoscientists of New Brunswick
As	Arsenic
Au	Gold
BWi	Bond ball mill work index
C\$	Canadian dollar
CAD	Canadian dollar
CA	Core angle
CAD:USD	Canadian-American exchange rate
CIL	Carbon-in-leach
CIM	Canadian Institute of Mining, Metallurgy and Petroleum
CIM Definition Standards	CIM Definition Standards for Mineral Resources and Mineral Reserves
CL	Core length
cm	Centimetre
cm ²	Square centimetre
cm ³	Cubic centimetre
CRM	Certified reference materia
Cu	Copper
d	Day (24 hours)
DDH	Diamond drill hole
EM	Electromagnetic
FDC	Fancamp Deformation Corridor
Fe	Iron
FLS	FLSmidth
ft, '	Foot (12 inches)
g	Gram
G	Billion
Ga	Billion years
g/cm ³	Gram per cubic centimetre
GESTIM	Gestion des titres miniers (the MERN's online claim management
	system)
ha	Hectare
ICP-OES	Inductively coupled plasma optical emission spectroscopy
ICP-MS ID ²	Inductively coupled plasma mass spectroscopy
ID ² ID ³	Inverse distance power two
in, "	Inverse distance power three Inch
IP	
k	Induced polarization Thousand (000)
	Kilogram
kg ka/t	Kilogram per metric ton (tonne)
kg/t km	Kilometre
kW	Kilowatt
kWh	Kilowatt-hour
L	Litre
M	Million

Abbreviation or Symbol	Unit or Term
m	Metre
m ²	Square metre
m ³	Cubic metre
m/s	Metre per second
m/s ²	Metre per second squared
m ³ /s	
	Cubic metres per second
Ма	Million years
Mag, MAG	Magnetometer, magnetometric
MERN / MERQ	Ministère de l'Énergie et des Ressources Naturelles du Québec
MEINN / MEING	(Québec's Ministry of Energy and Natural Resources)
mesh	US mesh
	Ministère des Forêts, de la Faune et des Parcs (Québec's Ministry of
MFFP	Forests, Wildlife and Parks)
mm	Millimetre
MRE	Mineral resource estimate
MS	Mass spectrometry
Mt	Million metric tons (tonnes)
n/a	Not available, Not applicable
NAD	North American Datum
NAD 83	North American Datum of 1983
nd	Not determined
NI 43-101	National Instrument 43-101 (Regulation 43-101)
Ni	Nickel
NN	
	Nearest Neighbor
NSR	Net smelter return
NTS	National Topographic System
OGQ	Québec Order of Geologists
OIQ	Québec Order of Engineer
OK	Ordinary kriging
oz	Troy ounce
oz/st, oz/t	Ounce (troy) per short ton
ppb	Parts per billion
	Parts per million
ppm QA/QC, QAQC	Quality assurance/quality control
QP	Qualified person (as defined in National Instrument 43-101)
QPF	Quartz-feldspar porphyry
qz, QZ	Quartz
Regulation 43-101	National Instrument 43-101
RQD	Rock quality designation
RWi	Bond rod mill work index
S	Second
s ²	Second squared
-	Système d'information géominière (the MERN's online spatial
SIGÉOM, SIGEOM	reference geomining information system)
80	
SG	Specific gravity
SMC	SAG mill comminution
t	Metric ton (tonne) (1,000 kg)
TW	True width
U/F	Underflow
USD, US\$	American dollars
UTM	Universal Transverse Mercator coordinate system
VG	Visible gold
VLF	Very low frequency
W	Watt
WOL	Whole ore leach
Zn	Zinc

Table 2-2: Conversion Factors for Measurements

Imperial Unit	Multiplied by	Metric Unit
1 inch	25.4	mm
1 foot	0.3048	m
1 acre	0.405	ha
1 ounce (troy)	31.1035	g
1 pound (avdp)	0.4535	kg
1 ton (short)	0.9072	t
1 ounce (troy) / ton (short)	34.2857	g/t

3. RELIANCE ON OTHER EXPERTS

3.1 Introduction

Although InnovExplo and BBA consulting firms have reviewed the available data, they have only validated a portion of the entire data set. Therefore, InnovExplo and BBA consulting firms have made judgments about the general reliability of the underlying data, and where deemed either inadequate or unreliable, either the data were not used or the procedures modified to account for the lack of confidence in that specific information.

3.2 Mineral Tenure and Surface Right

InnovExplo has not performed an independent verification of land titles and tenures, nor did it verify the legality of any underlying agreements that may exist concerning the permits or other agreements between third parties. InnovExplo relied on information provided by the issuer for mining titles, option agreements, royalty agreements, environmental liabilities and permits. Neither the QPs nor InnovExplo are qualified to express any legal opinion with respect to property titles or current ownership and possible litigation. This disclaimer applies to sections 4.3 to 4.6 of this report.

3.3 Cut-Off Grade Parameters

Patrick Frenette, P.Eng. from InnovExplo supplied the cut-off grade parameters used for the 2018 MRE. This information is used in the reporting of the Mineral Resource Estimate of the Windfall Lake project and is presented in Section 14.13.

3.4 Acknowledgement

InnovExplo would like to acknowledge the support and collaboration provided by Osisko personnel for this assignment. In particular, the contribution of Osisko's geologists, part of the Windfall Lake project team, provided valuable information on the geology of the Project which was greatly appreciated and instrumental to the success of this assignment.

4. PROPERTY DESCRIPTION AND LOCATION

4.1 Location

The Windfall Lake Project is located in the province of Québec, Canada, approximately 400 km north-northwest of Montréal and 200 km northeast of Val-d'Or. The Windfall Lake Project lies approximately 115 km from the town of Lebel-sur-Quévillon. The centre of the Windfall Lake Project is located at approximately 75.66° longitudinal west and 49.05° latitude north (Figure 4-1).

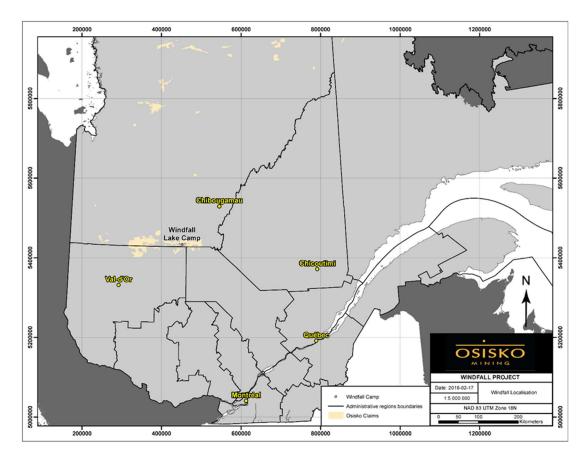


Figure 4-1: Location of the Windfall Lake camp and the Osisko claims (light yellow) in the province of Québec, Canada, with provincial administrative divisions

4.2 Mining Rights in Québec

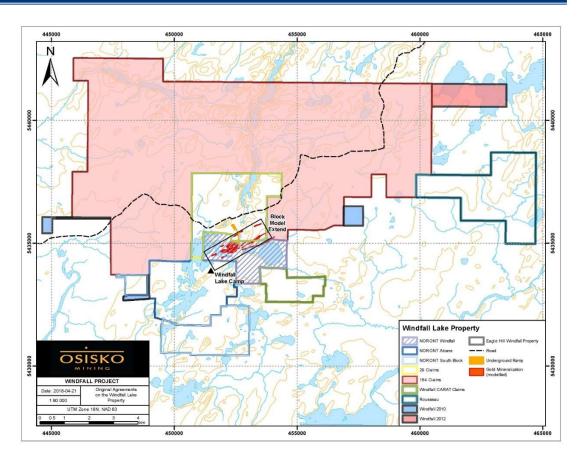
The following discussion on the mining rights in the province of Québec was mostly summarized from Guzun (2012), Gagné and Masson (2013), and from the Act to amend the *Mining Act* (Bill 70; the "Amending Act") assented on December 10, 2013 (National Assembly, 2013).

In the province of Québec, mining is principally regulated by the provincial government. The Ministry of Energy and Natural Resources ("MERN": *Ministère de l'Énergie et des Ressources Naturelles du Québec*) is the provincial agency entrusted with the management of mineral substances in Québec. The ownership and granting of mining titles for mineral substances are primarily governed by the *Mining Act* and

related regulations. In Québec, land surface rights are distinct property from mining rights. Rights in or over mineral substances in Québec form part of the domain of the State (the public domain), subject to limited exceptions for privately owned mineral substances. Mining titles for mineral substances within the public domain are granted and managed by the MERN. The granting of mining rights for privately owned mineral substances is a matter of private negotiations, although certain aspects of the exploration for and mining of such mineral substances are governed by the *Mining Act*.

4.2.1 The Claim

A claim is the only exploration title for mineral substances (other than surface mineral substances, petroleum, natural gas and brine) currently issued in Québec. A claim gives its holder the exclusive right to explore for such mineral substances on the land subject to the claim but does not entitle its holder to extract mineral substances, except for sampling and only in limited quantities. In order to mine mineral substances, the holder of a claim must obtain a mining lease. The electronic map designation is the most common method of acquiring new claims from the MERN whereby an applicant makes an online selection of available pre-mapped claims. In rare territories, claims can be obtained by staking.


4.2.2 The Mining Lease

Mining leases are extraction (production) mining titles that give their holder the exclusive right to mine mineral substances (other than surface mineral substances, petroleum, natural gas and brine). A mining lease is granted to the holder of one or several claims upon proof of the existence of indicators of the presence of a workable.

4.3 Mining Title Status

4.3.1 Windfall Lake Property

The Windfall Lake property is 100% owned by Eagle Hill Exploration Corp. which is a 100% subsidiary of Osisko Mining Inc. The Property is mainly located in the National Topographic System ("NTS") map sheet 32G04 and on the Urban township. On April 9, 2018, the Property consisted of 285 individual claims covering an aggregate area of 12,467 ha. The actual Property was consolidated from several agreements concluded with previous owners and presented in Figure 4-2.

Figure 4-2: Land tenure plan showing the various original agreements on the Windfall Lake property

A summary of the tenure information as extracted from the Québec government GESTIM (Gestion des titres miniers) website (as of the effective date of this technical report) is presented in Table 4-1. A complete listing of the mineral titles is presented in Appendix I. All claims are in good standing, with expiry dates varying between August 2, 2018 and May 3, 2020. Eagle Hill Exploration Corp. (Osisko Mining Inc.) has sufficient work credit to renew all the claims and maintain them in good standing.

Option / Joint venture	Registered owner	No. of claims	Area (ha)	Expiry date (d-m-y)	Mineral resource	Percentage held by Eagle Hill
Windfall Lake-	Earle Hill	6	76.48	22-Jan-20		
Noront Option		50	1,794.54	25-Sep-18	Yes	100%
		2	112.74	10-Jun-19		
The 29 Claims Expansion	Eagle Hill	9	405.50	05-Mar-19	Yes	100%
		13	429.64	10-Mar-19		
184 Claims Expansion Includes the Carat Claims	Eagle Hill	27	1,521.29	10-Jun-19	-	
		13	732.76	24-Sep-19	-	100%
		15	578.85	4-Dec-18	-	

Table 4-1: Mineral tenure summary of the Windfall Lake project (April 9, 2018)

Option / Joint venture	Registered owner	No. of claims	Area (ha)	Expiry date (d-m-y)	Mineral resource	Percentage held by Eagle Hill
		6	338.13	5-Dec-18	-	
		40	2,253.41	10-Dec-18	-	
		43	2222.26	05-Mar-19		
		16	282.82	10-Mar-19	-	
		9	274.06	20-Mar-19	-	
		11	620.11	2-May-20	-	100%
Rousseau	Eagle Hill	7	394.61	3-May-20	-	
Windfall 2010	Eagle Hill	13	148.15	2-Aug-18	-	100%
Windfall 2012	Eagle Hill	5	281.65	14-Aug-18	-	100%
Total		285	12,467	-	-	-

The active underlying royalties affecting the different portions of the Property is presented in Figure 4-3. The boundaries of the claims have not been surveyed legally.

Eagle Hill's rights to the Property arose from several distinct agreements that are discussed in Section 4.4. The main claim blocks inherited from the original agreement are: The Windfall Lake-Noront Option (including the Windfall, Alcane, and South blocks), 29 Claims Expansion, 184 Claims Expansion, Rousseau Property, Windfall 2010, Windfall 2012, and Carat Claim. Following a series of transactions during the first half of 2014, Eagle Hill Exploration Corp. (Osisko Mining Inc.) now holds a 100% interest on all the claim blocks of the Property, barring various NSRs discussed in Section 4.7. The mineral resources discussed herein are located within the Alcane Block of the Windfall Lake option and the 29 Claims Expansion claim blocks, as shown in Figure 4-2.

In March 2013, the Québec government converted all remaining staked claims of the Property into one or more map-designated claims. Unlike the perimeter of a staked claim, which is defined by posts staked in the ground, the map-designated claims perimeter is defined by the geographic coordinates as determined by the Québec government. The basic unit is 30 seconds of latitude in a north-south direction, and 30 seconds of longitude in an east-west direction. Depending on the latitude, the designated claim cells vary from 40 ha to 60 ha in area.

🗱 InnovExplo

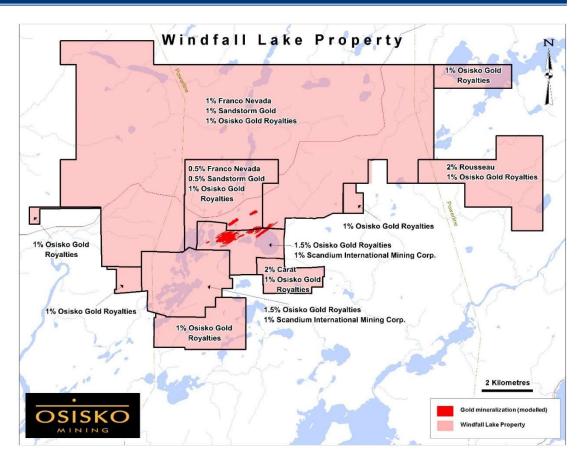
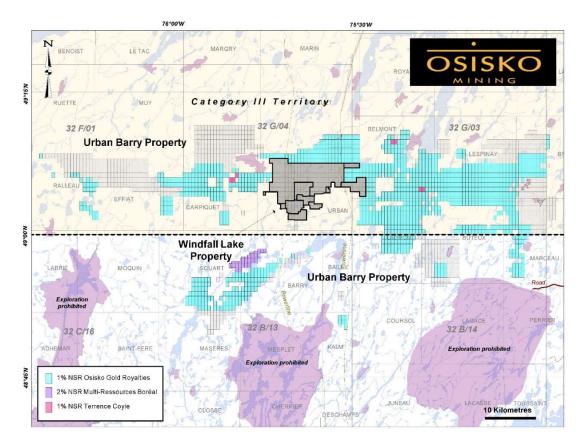


Figure 4-3: Net Smelter Royalty Agreements of the Windfall Lake property

4.3.2 Urban Barry Property


The Urban-Barry property is 100% owned by Osisko Mining Inc. On April 9, 2018, the property comprises 1,997 individual claims covering an aggregate area of approximately 110,748.44 ha. The actual property is mostly constituted by claims that were acquired through designation from GESTIM at different period from 2015 to 2017. Claims acquired from agreement from Mutli-Ressources Boréal and from Terrence Coyle were consolidated within the Urban-Barry party as shown in Figure 4-4. The claims are distributed in 17 townships: Bailly, Barry, Belmont, Bressani, Buteux, Carpiquet, Effiat, Kalm, Lacroix, Lespinay, Marceau, Maseres, Picquet, Prevert, Ralleau, Souart, and Urban. The Property lies on NTS map sheets 32B13, 32C16, 32F01, 32G03, 32G04 and 32G05.

A summary of the tenure information, as extracted from the Québec government GESTIM on April 9, 2018, is presented in Table 4-2. All claims are in good standing, with expiry dates varying between November 24, 2018 and November 20, 2019. A complete listing of the mineral titles is presented in Appendix I. Osisko may not, for strategic or prospectivity reason, renew all of the 1,997 claims of the Urban-Barry property but they are actually all in good standing. Given the size and the scale of the Urban-Barry, Osisko, might, from time to time, abandon or lapse some claims presenting less potential for mineral exploration. On the other hand, Osisko might also acquire a few claims presenting good potential for mineral exploration.

Option/Joint venture	Registered owner	No. of claims	Area (ha)	Expiry date (d-m-y)	Mineral resource	Percentage held by Osisko Mining
		72	4,061.78	24-Nov-18		
		42	2,366.41	25-Nov-18		
		275	15,507.59	30-Nov-18		
Urban Barry Project		115	6,487.63	01-Dec-18		
Initial Claims	Osisko Mining	119	6,707.86	02-Dec-18		
Designation	Winning	360	20,297.08	03-Dec-18		
		226	12,759.86	04-Dec-18		
		60	3,386.66	29-Dec-18		
		1	52.32	21-Jan-19		
		2	112.72	10-May-19		
Terrence Coyle Claim	Osisko	1	56.35	18-May-19		
Acquisition	Mining	2	112.76	20-Aug-19		
		2	112.56	11-Jan-19		
		33	1,861.59	07-Apr-20		
		1	56.38	11-Apr-20		100%
		36	2,026.96	25-Apr-20	No	
		47	2,645.33	25-Apr-18		
		1	43.81	21-Jun-18		
		11	252.67	22-Jun-18		
		4	88.83	21-Jul-18		
		10	564.85	14-Aug-18		
		186	10,481.64	30-Aug-18		
		14	788.09	26-Oct-18		
Urban-Barry Project	Osisko	15	849.63	04-Jan-19		
Additional Claims Designation	Mining	189	10,646.38	08-Jan-19		
Beergnation		12	262.42	19-Jan-19		
		6	223.16	12-Jan-19		
		80	4,521.69	29-Jan-19		
		7	394.53	30-Jan-19		
		10	321.28	15-Mar-19		
		2	113.11	4-May-19		
		6	338.81	23-May-19		
	-	4	226.34	8-Jun-19		
		10	563.75	10-Aug-19		
		3	169.18	20-Nov-19		
Mutli-Ressources Boréal Claim Acquisition	Osisko Mining	33	1286.43	30-Jul-19		100%
Total		1,997	110,748.44	-	-	-

Table 4-2: Mineral tenure summary of the Urban-Barry Project (April 9, 2018)

The active underlying royalties affecting the different portions of the Urban-Barry property are presented in Figure 4-4. The boundaries of the claims have not been surveyed legally. The mineral resources discussed herein are not located within the Urban-Barry property but since some portion of the claims are adjacent to the Windfall Lake property, it was deemed important to report the Urban-Barry status of property as shown on Figure 4-4 and description of the project described in several sections of this report.

Figure 4-4: Claim map of the Windfall Lake (in gray) and Urban-Barry properties (April 9, 2018)

4.4 Windfall Lake Property Surface Rights Option Agreement

Eagle Hill Exploration Corp's (Osisko Mining Inc.) rights to the Property arise from a series of option agreements executed with third parties during 2009, 2010, 2013 and 2014:

- The original Property option agreement with Noront Resources Ltd (Noront) in July 2009;
- The 29 Claims Expansion with Noront, Murgor, and Freewest Resources Canada Ltd. (Freewest) (since acquired by Cliffs) in October 2009;
- The 184 Claims Expansion with Murgor and Cliffs in October 2009;
- The Rousseau joint venture with Murgor on the Rousseau property in March 2010;
- The purchase of Noront's remaining 25% interest in August 2013;
- The purchase of Murgor's and Cliffs' remaining interests in April 2014;

• The purchase of the Duval and the Boudreault royalties in May 2014.

4.4.1 Original Windfall Lake Property Option Agreement with Noront

On July 20, 2009, Eagle Hill entered into an option agreement with Noront, whereby Eagle Hill earned a 75% interest in Noront's interests in 80 claims (156 claims prior to the Québec government conversion) in the Property area, and could earn, at Noront's option, a 100% interest subject to a 2% NSR. The Property included four contiguous blocks (80 claims) covering a total area of 2,757 ha. Noront had a 50% interest in 24 of the claims post-conversion (the 29 Claims Expansion) and a 100% interest in the remaining 56 claims (127 claims prior to conversion) (the Windfall Lake block of claims). Eagle Hill's primary obligations, as outlined in the option agreement, were as follows:

- Complete an equity financing of at least \$1,500,000 on or before October 15, 2009;
- Make an initial consideration payment of \$400,000 upon completion of the above financing and receipt of regulatory approval;
- Incur exploration expenditures on the claims and option payments to earn an interest in the claims as follows:
- \$500,000 in exploration expenditures and a cash payment of Cdn\$200,000 to Noront on or before December 31, 2010 to earn 10% of Noront's interest in the claims;
- \$2,000,000 in additional exploration expenditures on or before December 31, 2011 to earn 51% of Noront's interest in the claims;
- \$2,500,000 in additional exploration expenditures and a cash payment of \$400,000 to Noront on or before December 31, 2012 to earn 75% of Noront's interest in the claims.

Purchase of the 100% Interest from Noront

As of April 20, 2012, Eagle Hill Exploration Corp. had earned the 75% interest in Noront's interest in the Property, after completing the required expenditures and payments. On June 28, 2013, Eagle Hill entered into a binding letter agreement to acquire the remaining 25% ownership, all royalties, and all other interests in the mineral claims of the Property from Noront, by making aggregate cash payments of \$5,000,000 and issuing 25,000,000 freely tradable common shares of Eagle Hill to Noront. The transaction was completed on August 14, 2013, and as a result, Eagle Hill now holds 100% of the Windfall Lake block. A further result was that Eagle Hill held a 75% interest in the 29 Claims Expansion.

The Property, originally owned by Noront, is further divided into three blocks, characterized by different NSR agreements with third parties (Figure 4-3).

The Noront-Windfall block, which contains the mineral resource, is subject to a 0.5% NSR to Osisko Gold Royalties Ltd. and a 1.0% NSR to Scandium International Mining Corp. ("Scandium", formerly EMC Metals). Each 0.5% of Scandium's NSR can be bought back for \$500,000 at any time Eagle Hill choses.

The Noront-Alcane block is subject to a 0.5% NSR to Osisko Gold Royalties, and a 1.0% NSR to Scandium. On May 6, 2014, Eagle Hill bought back the 2% NSR from

Boudreault on the Noront-Alcane block. In addition, each 0.5% of Scandium's NSR can be bought back for \$500,000.

The Noront South block is not subject to any NSR.

4.4.2 Original Windfall Lake Property Expansion with Murgor and Cliffs

On October 8, 2009, Eagle Hill entered into two separate agreements with Murgor and Cliffs to increase its holdings at the Property. Eagle Hill, Murgor, and Cliffs agreed to an amendment to the option agreements on November 23, 2011. The following section describes the details of the option agreements with Murgor and Cliffs.

The 29 Claims Expansion and the 184 Claims Expansion – Murgor and Cliffs

The first of these agreements was an option to acquire the remaining 50% interest in the 29 Claims Expansion block from Murgor and Cliffs. Eagle Hill had acquired the other 50% of these claims through completion of its agreements with Noront. The number of claims was established at 24 claims (for a total of 891 ha), following the consolidation of staked claims into map-designated claims. The terms of the option agreement with Murgor and Cliffs on the 29 Claims Expansion were as follows:

- During the year ended October 31, 2010, Eagle Hill earned an additional 10% interest in the 29 Claims Expansion by issuing 2,500,000 common shares, making a cash payment of \$300,000, incurring \$400,000 in exploration expenditures, and issuing to Murgor and Cliffs a 2% NSR;
- For an additional 15% interest in the 29 Claims Expansion, Eagle Hill had to incur an additional \$1,600,000 in exploration expenditures on or before April 30, 2012;
- For the remaining 25% interest in the 29 Claims Expansion, Eagle Hill had to incur an additional \$2,000,000 of exploration expenditures on or before December 31, 2012.

The second agreement was an option to earn up to 100% interest in an additional 172 claims (184 claims prior to conversion) contiguous to the Property from Murgor and Cliffs (the "Optionors"). In the event that Eagle Hill did not earn more than a 50% interest in these claims, Murgor and Cliffs had the right to re-purchase such interest for \$255,000. In the event that Eagle Hill ultimately earned 100% interest in these claims but did not complete a bankable feasibility study within three years from the date the 100% interest was earned, Murgor and Cliffs had the right to re-purchase the 100% interest in these claims from Eagle Hill for \$1,755,000. The terms of this option agreement were as follows:

- For an initial 20% interest in the claims, Eagle Hill had to:
- Issue 1,000,000 common shares to the Optionors on or before October 31, 2009;
- Pay \$100,000 to the Optionors on or before December 31, 2010;
- Incur \$350,000 of exploration expenditures on or before December 31, 2010.
- For an additional 30% interest in the claims, Eagle Hill had to incur an additional \$500,000 of exploration expenditures on or before April 30, 2012;
- For the remaining 50% interest in the claims, Eagle Hill had to incur an additional \$650,000 of exploration expenditures on or before December 31, 2012

Consolidation of the Windfall Lake Property Extension

On March 13, 2014, Eagle Hill entered into an agreement with Murgor and Cliffs to purchase the remaining interests in the 29 Claims Expansion and the 184 Claims Expansion. In consideration for the remaining interest in the claims, Eagle Hill paid \$250,000 and issued 9,500,000 common shares to each of Murgor and Cliffs.

In addition, Eagle Hill granted a 0.5% NSR for the 29 Claims and a 1% NSR for the 184 Claims to each of Murgor and Cliffs. Eagle Hill retained the right to buy back any of the NSRs at any time prior to first commercial production, by paying \$500,000 to each holder of the NSR.

On April 7, 2014, Murgor sold all its interests in the Property to Gold Royalties Corp. ("Gold Royalties"). The 29 Claims Expansion is subject to a 0.5% NSR to each of Gold Royalties and Cliffs, and the 184 Claims Expansion is subject to a 1% NSR to each of Gold Royalties and Cliffs.

Following the acquisition of Gold Royalties Corp. by Sandstorm Gold Ltd. on April 24, 2015, the 29 Claims Expansion subject to a 0.5% NSR and the 184 Claims Expansion subject to a 1% NSR are therefore owned by Sandstorm Gold Ltd.

In addition, one portion of the 29 Claims Expansion was subject to a 2% NSR to Duval, and another distinct portion of the 29 Claims Expansion was subject to a 2% NSR to Boudreault (Figure 4-3). On May 6, 2014, Eagle Hill acquired the NSRs from Duval and Boudreault by paying \$30,000 and issuing 1,666,667 shares of Eagle Hill to each of the vendors.

In order to finance the acquisition of Cliffs Naturals Resources Inc. subsidiaries (Cliffs Chromite Ontario Inc.) by Noront Resources Ltd. ("Noront") concluded on April 28, 2015, Noront entered into an amended and restated USD25 loan agreement with Franco-Nevada in exchange for 3% NSR over the Black Thor chromite deposit and a 2% royalty over all of Noront's property excluding Eagle's Nest. In addition, Noront received USD3,500,000 in cash consideration as part of the granting of the royalty over the existing Noront property. Considering that Noront acquired Cliffs Chromite Ontario Inc. on March 22, 2015 (amended on April 17, 2015), which owned a 0.5% NSR royalty over 29 Claims Expansion and a 1% NSR over of the 184 Claims Expansion of the Windfall project, and following the subsequent transaction between Noront and Franco-Nevada, the latter is considered to hold a 0.5% NSR Royalty over 29 Claims Expansion and a 1% NSR over of the 184 Claims Expansion. However, both NSRs are subject to buy back.

4.4.3 The Rousseau Property

In May 2010, Eagle Hill entered into a joint venture agreement with Murgor (the "Rousseau Joint Venture") whereby an equal partnership joint venture was formed.

The Rousseau Joint Venture purchased 100% of a group of 18 mineral claims, contiguous to the Property, from another non-related company (9187-1400 QUEBEC INC.) subject to a 2% NSR. Eagle Hill's share of the cost to acquire these claims was \$5,000 and 100,000 common shares.

On August 2, 2011, Eagle Hill entered into an agreement whereby it acquired the remaining 50% of the Rousseau Joint Venture by paying \$5,000 and issuing 200,000 common shares to Murgor. Eagle Hill now holds a 100% interest in the Rousseau Property claims block, subject to the NSR provisions of the original agreement. Eagle Hill has the right to buy back 1% of the royalty for \$1,000,000 and has the right of first refusal to purchase the remaining 1% royalty.

4.4.4 Windfall 2010

In August 2010, Eagle Hill staked 13 mineral claims (7 claims pre-conversion), covering 102.16 ha, to make the Property contiguous. These claims were registered under the name Murgor, as Murgor was operating the exploration activities for Eagle Hill at the time and were subsequently transferred to Eagle Hill. These claims are not subject to NSR provisions.

4.4.5 Windfall 2012

In August 2012, Eagle Hill staked five claims (281.65 ha) in the northeast corner of the Property to cover the extension of a favourable structure in an underexplored sector.

4.4.6 Windfall 2015-2016

Following an agreement between Osisko Gold Royalties Ltd. and Osisko Mining Inc. and pursuant to an investing agreement dated August 25, 2015, Osisko Mining granted, on October 4, 2016, a 1% NSR royalty over every block of the Windfall property and over the Urban-Barry property, as it was standing on the date of transaction, to Osisko Gold Royalties Ltd. in exchange for a \$5,000,000 payment. Following that investment agreement, as long as Osisko Gold Royalties holds Osisko Mining shares equal to at least 10% of the issued and outstanding Osisko Mining shares on a non-dilutes basis, Osisko Gold Royalties will have the right of first refusal over any royalty, stream, forward, off-take, gold loan or other agreement involving the sale of a similar interest in products from properties of Osisko Mining that Osisko Mining proposed to enter into from time to time and from properties owned by third parties that Osisko Mining holds from time to time. Moreover, Osisko Gold Royalties shall have the right, as long as Osisko Gold Royalties holds Osisko Mining shares equal to at least 10% of the issued and outstanding Osisko Mining shares, to cause Osisko Mining to exercise its rights of repurchase over any existing royalty, stream or similar right at the expense of Osisko Gold Royalties for the purpose of assigning or conveying such royalty, stream or similar right to Osisko Gold Royalties. Otherwise, under the same condition, Osisko Gold Royalties shall have the right to purchase from any third party any royalty, stream or similar right held over properties of Osisko Mining by such third party and to cause Osisko Mining to sell, assign or transfer to Osisko Gold Royalties, on such commercially reasonable terms as may be negotiated between arm's length commercial parties, any royalties, streams or similar rights from properties owned by third parties that Osisko Mining may hold from time to time.

4.5 Urban Barry Property Surface Rights Agreements

4.5.1 Urban-Barry Surface Rights Agreement Multi-Ressources Boréal

On February 2, 2016, Osisko acquired 33 claims from Multi-Ressources Boréal (Souart Property) in exchange for the payment of \$200,000, the issuance of 500,000

shares of Oban (formely Osisko Mining) and a 2% NSR with a buyback of 2% for \$2,000,000. Souart property is now a part of the Urban-Barry property.

4.5.2 Urban-Barry Surface Rights Agreement from Terrence Coyle

On January 19, 2017, Osisko Mining acquired 7 claims from Terrence Coyle in exchange for the payment of \$7,000 and a 1% NSR with a buyback of 1% for \$1,000,000. The claims are now part of the Urban-Barry project.

4.5.3 Urban-Barry Property Option Agreement with Osisko Metals

Osisko Mining Inc. signed an option agreement with Osisko Metals Inc. on March 26, 2018 where Osisko Metals could earn a 50% interest in the Urban-Barry Base Metals Project, a select package of 151 claims located within Osisko Mining's Urban-Barry claim group. Osisko Mining shall retain a 100% interest over any fortuitous precious metals (gold-silver) discoveries on the claims covered by the agreement and will be project operator during the earn-in period.

Pursuant to the Agreement, Osisko Metals Inc. may earn a 50% interest in the Project by funding an aggregate of \$5,000,000 in exploration expenditures over four years as outlined below:

- \$500,000, on or before the 1st year anniversary of the Effective Date (the "Initial Option Expenditure Payment");
- \$1,000,000, on or before the 2nd year anniversary of the Effective Date;
- \$1,500,000, on or before the 3rd year anniversary of the Effective Date;
- \$2,000,000, on or before the 4th year anniversary of the Effective Date.

4.6 Royalties

4.6.1 Windfall Lake Property Royalties

The following NSRs are applicable for the Windfall Lake property: A 1% NSR to Franco-Nevada and 1% to Sandstorm Gold Ltd.: buyback each 1% NSR for \$1,000,000; a 0.5% NSR to Franco-Nevada and 0.5% to Sandstorm Gold Ltd.: buyback each 0.5% NSR for \$500,000; a 1% NSR to Scandium International Mining Corp.: buyback 1% for \$1,000,000; 2% Carat: buyback 1% for \$500,000, 2% Rousseau: buyback 1% for \$1,000,000. A 1% to 1.5% to Osisko Gold Royalties Inc. (Figure 4-3).

4.6.2 Urban-Barry Property Royalties

The following NSRs are applicable for the Urban Barry Property: a 1% NSR to Osisko Gold Royalties; a 2% NSR to Multi-Ressources Boréal: buyback 2% for \$2,000,000; a 1% NSR to Terrence Coyle: buyback 1% for \$1,000,000 (Figure 4-4).

4.7 Constraints and Restrictions

The Windfall Lake property and the northern half of the Urban-Barry property are in the Eeyou Istchee James Bay territory (Figure 4-4). Since 2013, this area corresponds to Category III lands where exploration is allowed under specific conditions. A claim titleholder is invited to communicate directly with the Cree Nation Government and the Eeyou Istchee James Bay Regional Government.

Five areas where exploration is prohibited under the Mining Act are adjacent to the Urban-Barry property (Figure 4-4). They are designated as a "Biological Refuge" and the status triggers a temporary suspension of issuance of mineral titles. One area is an experimental forest where exploration is allowed under specific conditions.

4.8 Permits and Environmental Liabilities

Osisko Mining and his 100% subsidiary Eagle Hill have obtained all necessary permits and certifications from government agencies to allow for surface drilling, exploration and bulk sampling on the Windfall Lake property.

Osisko Mining has a land use lease with the MERN for the Windfall exploration camp sector and has applied for a second lease for the ramp sector. Both sectors are 2 km apart.

Permits are required for any exploration program that involves tree cutting to create road access for the drill rig. Permitting timelines are short, typically about 3 to 4 weeks. The permits are issued by the *Ministère des Forêts, de la Faune et des Parcs* ("MFFP").

In 2007, Noront obtained all necessary authorizations to proceed with a bulk sample at the Windfall site. Noront started ramp advancement in February 2008, but prematurely suspended the work in October 2008 before completing the planned work. When work stopped, 18,500 tonnes of waste rocks were stored on the lined stockpile and 79,000 tonnes of waste rocks were stored on the unlined stockpile.

In 2017, Osisko undertook steps to continue the bulk sampling work started by Noront and obtained the following authorizations:

- Attestation of exemption from the environmental and social milieu impact assessment and review procedure stipulated under Chapter II of the Environment Quality Act ("EQA") issued October 10, 2017, for the completion of the bulk sampling program;
- Transfer of the certificate of authorization issued under section 22 of the EQA for Noront to collect a bulk sample to Osisko, authorized by the MDDELCC on March 17, 2017;
- Certificate of authorization issued under section 22 of the EQA to treat water from initial dewatering of the ramp and on-going dewatering during ramp extension and bulk sample extraction, obtained on May 25, 2017;
- MERN authorization issued on October 16, 2017 under section 69 of the *Mining Act* to extract a bulk sample of 5,000 tonnes of ore for the Caribou and 27 zones.

With the current bulk sampling program for the Caribou and 27 zones, the tonnage of the lined stockpile will increase from 18,500 to 90,000 tonnes of waste rocks.

Osisko has filed the same three requests (Attestation of exemption from the environmental and social milieu impact assessment and review procedure, certificate of authorization for the waste rock stockpile expansion and request to MERN for a bulk sample) to take bulk samples of the Lynx and Underdog zones and is awaiting responses.

Noront prepared a closure plan of the Windfall site for the MERN in 2007. The plan was updated in November 2012 and approved in June 2014. As requested by the *Mining Act*, the closure plan must be updated every five years; it was therefore updated in June 2017 and is currently being reviewed by the MERN. On July 10, 2014, Eagle Hill paid a financial guarantee of \$570,000 to the provincial government to cover the closure costs. This financial guarantee will be updated once MERN accepts the 2017 closure plan update.

Finally, a land in Lebel-sur-Quévillon has been identified to locate the process plant and the tailings management facility. A phase 1 environmental assessment is in preparation for the coveted land in order to assess the environmental liabilities.

5. ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURES AND PHYSIOGRAPHY

5.1 Accessibility

Access to the Windfall Lake project area can be achieved by heading eastbound from Val-d'Or on the paved Québec TransCanada Highway 117 for about 30 km to provincial Highway 113, then 36 km northbound on paved Highway 113 to the village of Senneterre, and then continue northbound on Highway 113 for about 87 km to the old (closed) Domtar pulp and paper mill next to the town of Lebel-sur-Quévillon. From the mill turn-off to Road 1000, the property can be reached by travelling eastbound on well-maintained un-paved logging roads for about 12 km towards the Gonzague-Langlois mine and continuing east towards the Urban-Barry area for about 55 km on Road 5000 to the junction with Road 6000, heading east-northeast on Road 6000 passing through the Metanor Resources Inc. hauling route for about 46 km to the main Windfall Lake camp gravel road turnoff heading south. The main project zone is located about 2 km south along the main camp road, the camp office and core shack are another 0.5 km south along this main road (Figure 5-1). The Windfall Camp expansion is completed for new accommodations (new core logging area and other facilities) for the approximately 300 people working at site (Figure 5-2).

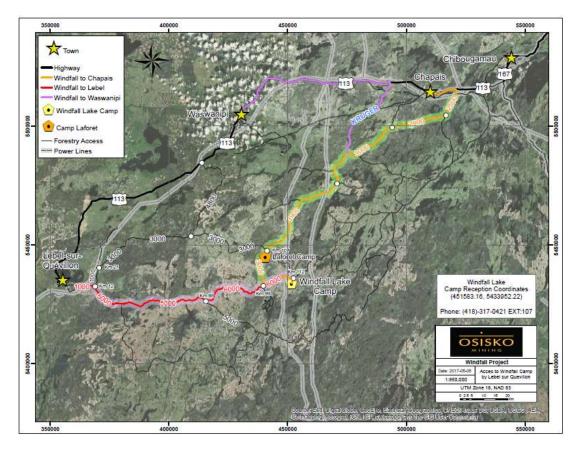


Figure 5-1: Map of the Windfall Lake property area showing access routes

Figure 5-2: Aerial photograph showing the Windfall Lake camp and typical physiography of the area

5.2 Climate

The climatic conditions are typically temperate characterized by continental extremes ranging from cold winters during the months of December to March with temperature lows usually less than -20°C and warm to hot summers often exceeding 25°C. Precipitation is sufficient to sustain a boreal forest environment including periods of spring-summer drought that often experience sporadic forest fires. Snow accumulation during winter months can be considerable necessitating the use of snow removal equipment to clear access roads and snowmobiles for off-road transportation.

5.3 Local Resources and Infrastructure

The Windfall Lake property is located in a remote area, approximately 115 km from Lebel-sur-Quévillon, the closest municipality with a population of 2,015 (Statistics Canada 2016). The mining and forestry industries are the historical cornerstones of Lebel-sur-Quévillon's local economy. Although Lebel-sur-Quévillon has its own small airport, Val-d'Or has the closest commercial airport with regularly scheduled direct flights to Montreal. Additionally, the communities of Senneterre, Waswanipi, Chibougamau, and Chapais are also in the vicinity of the Windfall Lake property with populations in 2016 of 2,239, 1,759, 6,862, and 1,318, respectively. Full infrastructure and an experienced mining workforce are also available in a number of well-established mining towns nearby, such as Val-d'Or, Rouyn-Noranda, Amos, La Sarre, and Matagami. Any future mining project would need to bring in a skilled workforce from these surrounding communities by road or, if necessary, from elsewhere in the province, by road or chartered flight. Supplies would also have to be trucked or brought by train.

5.3.1 Windfall Site

The Windfall Lake area is serviced by a complete network of well-maintained logging roads 1000 (Km 12), 5000 (Km 66) and 6000 (Km 112). The main users of the logging roads between Lebel-sur-Quévillon and the Windfall Lake camp are workers and personnel staff from Beaufield Resources Inc., Metanor Resources Inc., Bonterra camp and Osisko Mining Inc.

Several infrastructure components are still present on the project site from previous owners. These include an unlined waste rock stock pile, an overburden stockpile, and a lined stock pile containing ore waste rock. Also present are a ramp portal dating back to 2008, a sedimentation pond, and a polishing pond. Further south is the Windfall exploration camp, which can accommodate 300 people (Figure 5-2). The exploration camp area includes:

- Temporary trailer-type structures for administrative offices, dormitories, and infirmary as well as the kitchen and the dining room;
- Septic fields and an enviro-septic unit;
- Four separate core shacks with core racks;
- Two drill core storage areas;
- A core cutting building;
- Three drinking water wells;
- Three megadomes, one for the storage of contaminated residual materials;
- Three temporary maintenance and storage areas for diamond drilling companies (Forages Rouillier Drilling, Orbit-Garant, and Major);
- Two generators (2 MW);
- Fuel tanks;
- A helicopter landing area;
- Containers and sheds for storage of equipment.

The ramp portal sector currently includes the following infrastructures:

- Access roads;
- A portal and a ramp totaling approximately 1,450 m underground (Noront);
- Underground exploration tunnels totaling approximately 480 m of underground advancement (Osisko Mining Inc.);
- An overburden pile;
- An unlined waste rock stockpile;
- A lined stockpile (ore and waste rock) with lined perimeter ditches;
- A sedimentation basin and a polishing basin;
- Water treatment units and geotubes;
- A concrete slab from the old Noront garage;
- Sanitary facilities (septic tank and leaching field) built by Noront for about 15 people;
- Construction trailers serving as offices and drys (2017);
- Depots of explosives and detonators (2017);
- A megadome with concrete foundations (2017);
- A fuel storage tank (2017).

5.4 Physiography

The Property is part of the James Bay hydrographic basin. Physical relief is characterized by topographically low-lying ridges and valleys modified by remnants of Wisconsin aged glacial activity. Mean altitude is 360 m. The land areas are covered with boreal forests and numerous fresh water lakes, streams and muskeg (Figure 5-2).

5.5 Community

5.5.1 Human Environment

The Windfall Lake project is in the Nord-du-Québec administrative region (Region 10). The Eeyou Istchee James Bay territory includes the municipalities of Chibougamau, Chapais, Lebel-sur-Quévillon, and Matagami, as well as the nine Cree communities of Nord-du-Québec: Chisasibi, Eastmain, Waskaganish, Wemindji, Whapmagoostui, Mistissini, Nemaska, Oujé-Bougoumou and Waswanipi. With 6,862 inhabitants, Chibougamau has the largest population in the region. Other agglomerations include Lebel-sur-Quévillon with a population of 2,015 (2016) and Waswanipi with a population of 1,759 (2016).

The Windfall Lake project is located on Category III land, that is, crown land part of the domain of the State, most of which is dominated by forestry activities. It should be stated that on this land, the First Nation people have an exclusive right to harvest certain aquatic species and certain fur-bearing animals.

With the exception of Mr. Icebound's family camp and two non-Aboriginal seasonal hunting camps, the site is characterized by the absence of dwellings. Indeed, the closest residential areas are in Lebel-sur-Quévillon, Chapais and the Cree community of Waswanipi. Furthermore, there are five outfitters in a 10-km radius of the project namely, Pourvoirie Lac Hébert, Pourvoirie Lac Lacroix, Pourvoirie St-Cyr Royal, Pourvoirie Lac Berthelot and Pourvoirie WeteNagami (Les Pourvoiries du Québec, 2014).

Lebel-sur-Quévillon, just a little more than 115 km from the Windfall Lake project site, is an urbanized area that groups together residential, public and commercial uses, small hospital, services, industrial zones and public institutions.

5.5.2 Information and Public Consultation Process

5.5.2.1 Cree Community of Waswanipi

The Windfall Lake project is located on the traditional lands of the Cree community of Waswanipi, specifically on the traplines of Mr. Marshall Icebound (W25B) and Mr. Gary Cooper (W25A). The Cree village of Waswanipi is located about 75 km north-northwest of the Windfall Lake project.

Information on exploration work was forwarded to the Chief, the Deputy Chief, the Director of Natural Resources, the Mining Coordinator, the tallymen, the Cree Trappers' Association, the Cree Mineral Exploration Board, and the Cree Human Resources Development. The information was shared through meetings, presentations and information letters. Meetings were held with the tallymen to explain

the nature of the work and to understand how they use the territory. Osisko also presented the Windfall Lake project to the entire community at the Waswanipi Mining Exposition in February 2017, during the Cree Trapper's Association General Assembly on November 2, 2017, during the Open House events in Waswanipi on November 2, 2017 and February 28, 2018, and during the Waswanipi General Assembly on January 9, 2018. In addition, the bulk sampling project has been discussed with the Cree community of Waswanipi since last October.

Before Osisko acquired the project, several information meetings had been held between Eagle Hill representatives and Waswanipi representatives, including former Chief Paul Gull. These meetings led to the signing in 2012 of an Advanced Exploration Agreement with the Cree First Nation of Waswanipi, the Grand Council of the Crees and the Cree Regional Authority. Osisko continues to honour the terms of the 2012 Exploration Agreement between Eagle Hill and Waswanipi. Among other things, the Agreement stipulates the negotiation of a Social and Economic Participation Agreement (essentially an impact and benefit agreement: IBA) in the event the project is shown to be economically viable. However, discussions are underway with Waswanipi representatives, and preliminary negotiations for an IBA commenced on December 19, 2017 in Waswanipi.

Roughly 80 people from Cree communities (mainly Waswanipi) work at the Windfall Lake site. Two other First Nation communities have been identified as having an interest in the project: the Algonquin Anishinabeg Nation of Lac Simon and the Atikamekw d'Obedjiwan community. Up to now, these two communities were visited twice and the details of the Windfall Lake project description and of the bulk sampling project towards Lynx and Underdog were presented.

5.5.2.2 Communities of Lebel-sur-Quévillon, Chapais, Chibougamau and Senneterre

Osisko held various meetings and information sessions with representatives and members of local communities. In addition, information letters on exploration activities were sent to municipalities. It should be noted that before Osisko acquired the project, Eagle Hill representatives met informally with Lebel-sur-Quévillon representatives and attended an information session organized by the Economic Development Corporation of Lebel-sur-Quévillon in November 2014. Osisko presented the Windfall Lake project to the population in 2016 and 2017. Two Open House events were organized in Lebel-sur-Quévillon on October 2, 2017 and February 27, 2018 in order to present the Windfall project to the population.

An agreement has been reached between Osisko and the city of Lebel-sur-Quévillon. This collaborative process primarily aims to ensure transparency and effective communication with the city, to foster the social acceptability of the project, and to maximize the socioeconomic benefits of the project for Lebel-sur-Quévillon, all in a spirit of partnership.

As for Senneterre, Chapais and Chibougamau, even though the Windfall Lake project is not on their territory, stakeholders felt that local entrepreneurs could benefit from business opportunities generated by the project. As the Windfall Lake project progresses, a formal communication and consultation plan will be developed by the Corporation to engage both the Aboriginal and non-Aboriginal stakeholders. The objectives of these activities will be to inform and consult the First Nations and the public on the Windfall Lake project activities, to address their concerns and to collect their comments.

6. HISTORY

6.1 Summary of Historical Work

The Windfall Lake project was subject to several grassroots exploration programs undertaken by various companies from 1943 to 2016. Table 6-1 lists the historical work and sources in the Urban-Barry area. There have been no historical resource estimates, nor has there been any production from the Windfall Lake project.

The Urban-Barry greenstone belt, where the Windfall Lake project is located, has a long history of exploration. Multiple agencies and companies have explored the area in the last eight decades. During a reconnaissance geological survey, Milner (1943), Fairbairn (1946), and Graham (1947) of the Ministère des Ressources Naturelles (MRN) mapped the area, and in 1958, the MRN completed a survey of the area. In the last half of the 1970s and through the 1980s, several companies, notably Shell Canada Ltd. ("Shell Canada"), carried out sporadic exploration activity in the Urban-Barry greenstone belt.

Year	Company or Individual	Work Completed	Source
1943	Ministère des Ressources Naturelles du Québec	Geological Mapping	Milner (1943)
1946	Ministère des Ressources Naturelles du Québec	Geological Mapping	Fairbaim (1946)
1947	Ministère des Ressources Naturelles du Québec	Geological Mapping	Graham (1947)
1975 to 1977	Shell Canada	Airborne electromagnetic, prospecting, geological mapping, drilling	Côté (1977)
1983	Ministère des Ressources Naturelles du Québec	Airborne electromagnetic	Relevés Géophysique Inc. (1983)
1986	Kerr-Addison	Airborne electromagnetic	Frazer (1986)
1987 to 1988	DeMontigny	Line cutting, ground electromagnetic, geological mapping, drilling	Gaudreault (1987); Gaudrealt (1988)
1988 to 1990	Shiva Ventures	Geophysical surveys and drilling (no significant results)	Lamber (1988)
1994	Murgor	Discovery of gold showing in Barry Township	Gaudreault (1995)
1996 to 1998	Murgor / Freewest Resources / Fury	Ling cutting, ground mag, induced polarization, prospecting, trenching, drilling, discovery of debris showing (72 g/t Au over 1.0m)	Coyle (1996); Lapointe (1999)
1997	Ressources Orient	Drilling (no significant results)	Chainey (1997)
1996 to 1998	Alto Exploration / Noront	Line cutting, ground mag, geological mapping, induced polarization, prospecting, MaxMin II, discorvery of Alto Exploration showing (9.3 g/t Au over 1.7m)	Farrel (1998); Tremblay (1999a); Tremblay (1999b); Tremblay (1999c); White (1998)
1998 to 1999	Inmet Mining	Line cutting, deep electromagnetic survey, geological mapping, diamond drilling (27.5 g/t Au over 4.3m)	Bernard (1999a); Bernard (1999b)
1999	Provenor	Drilling	Cloutier (1999)
2002	Ministère des Ressources Naturelles du Québec	Geological Mapping, sampling, geochronology	Bandyayera et al. (2002)
2003-2004	Fury Exploration	Compilation, line cutting, diamond drilling (85.9 g/t Au over 5.4m)	Coyle (2004); Thorsen (2004);

Table 6-1: Historical exploration work in the Urban-Barry area

Year	Company or Individual	Work Completed	Source
			Tremblay and Bottomer (2002); Tremblay (2003).
2004-2006	Murgor	Induced polarization, transient electromagnetic surveys, core drilling and trenching. Discovery of the F-17, F-51, and F-11 gold zones (17.8 g/t Au over 6.8m)	Coyle (2005); Gagnon (2005); Gagnon (2006); Lanthier (2004 and 2005)
2005 to 2009	Noront	Trenching, mapping, diamond drilling, underground exploration ramp and drifts (140.8 g/t Au over 12.0m)	Armstrong (2006); Armstrong (2007); Chance (2009a)
2009	Eagle Hill Exploration	Sampling historical core, trenching, channel sampling, BHPEM, IP survey	Chance (2009b)
2010	Eagle Hill Exploration	BHPEM, TDEM, IP survey, diamond drilling	Turcotte (2011)
2011	Eagle Hill Exploration	SRK resource November, IP survey	SRK (2011); Armstrong (2011); G&T Metallurgical Services Ltd. (2011)
2012	Eagle Hill Exploration	IP survey, Till survey, SRK resource update March 2012, diamond drilling	SRK (2012); Lambert (2012)
2013	Eagle Hill Exploration	Diamond drilling, down-hole IP & resistivity, ground magnetometer survey, surface IP survey	Cheman (2013); Lambert (2014)
2014	Eagle Hill Exploration	Diamond drilling, IP survey	Simard (2014); Brown and Cheman (2014); Desrochers and Blouin (2015)
2015	Oban Mining Corp.	Diamond drilling, Till survey	Gaumond and Trepanier (2016);
2016	Oban Mining Corp./Osisko Mining Inc.	Diamond drilling, till sampling, airborne magnetic survey, airborne electromagnetic survey	Gaumond et al. (2016); SkyTEM (2016); Geotech Ltd. (2017)
2017	Osisko Mining Inc.	Diamond drilling, IP survey	Clearview Geophysics Inc. (2017)
2018	Osisko Mining Inc	Diamond drilling	

6.2 Winfall Lake Property

6.2.1 Kerr-Addison Mining Ltd.

The first systematic exploration started in 1986 when Kerr-Addison Mines Ltd. ("Kerr-Addison") drilled three drill holes (388 m) in the western part of the Windfall Lake project to test electromagnetic conductors, which were identified by an airborne geophysical survey carried out by the Ministère de l'Énergie et des Ressources Naturelles ("MERN") du Québec in 1983.

6.2.2 DeMontigny

In 1987-1988, DeMontigny carried out a ground magnetic and electromagnetic survey, and the mapping and drilling of nine drill holes (1,421 m) on the western half of the Windfall Lake project. The drilling resulted in the discovery of a gold-bearing graphitic argillite, intruded by units of altered quartz-eye intrusive and mafic units. In 1988, five additional drill holes (1,088 m) extended the strike extension of the previously intersected gold-bearing graphitic conductor.

6.2.3 Shiva Ventures

From 1988 to 1990, Shiva Ventures conducted magnetic and HEM surveys and drilled five drill holes (1,033 m) to test the extension of the gold mineralization identified by DeMontigny. The permit for DeMontigny's 40 claims on the Windfall Lake project expired in 1995.

6.2.4 Freewest Resources Canada Ltd.

In 1995, Freewest Resources Canada Ltd. ("Freewest Resources") staked the claims that DeMontigny had let lapse and completed two drill holes (289 m). The drill holes intersected encouraging gold grades.

6.2.5 Ressources Orient

In 1997, Ressources Orient drilled four drill holes (666 m) in the southern part of the property as part of a larger drill program.

6.2.6 Alto Exploration Ltd. / Inmet Mining Corporation / Fury Exploration Corporation

Alto Exploration Ltd. ("Alto Exploration") drilled three drill holes (977 m) in 1997, and optioned the Windfall Lake project to Inmet Mining Corp. ("Inmet Mining"), which drilled 30 drill holes (9,024 m) in 1998 and 1999. Inmet Mining dropped the option, which Fury Exploration Corp. ("Fury Exploration") subsequently picked up.

6.2.7 Noront

Noront explored the Windfall Lake project with trenching, mapping, and diamond drilling from 2004 to 2006. Following the encouraging results from the 2004 to 2006 surface diamond drilling programs, Noront decided to undertake an underground sampling program. Genivar provided and supported the planning, engineering, and permitting for this project. The underground development included the excavation of a 4.5 m by 4.7 m ramp driven for about 1,202 m, with approximately 233 m of access crosscuts and drifts along each of the three zones. The underground excavations were generally restricted, following narrow, high-grade gold intervals that lacked any persistence or continuity. The underground ramp excavation, completed by Noront in 2009, did not reach the Windfall Main zone of gold mineralization delineated by Eagle Hill through drilling in 2010 and 2011.

6.2.8 Murgor

In 1998, Murgor drilled six drill holes (1,130 m) to the northeast of the Windfall Main zone and Provenor drilled one drill hole (186 m) in the western part of the Windfall Lake project. Fury Exploration drilled 26 drill holes (7,152 m) in 2003 and 2004, and then assigned its 37.5% option interest to Noront in 2004.

Between November 2004 and July 2006, Murgor commissioned Abitibi Geophysics Inc. ("Abitibi Geophysics") to conduct seven induced polarization surveys (336.8 linekm), and one transient electromagnetic survey (51 line-km). The induced polarization ("IP") surveys identified 16 moderate to strong chargeability anomalies. Murgor verified some of the anomalies by mechanical trenching and/or diamond drilling. The transient electromagnetic survey identified four significant anomalies. Two small, very conductive anomalies were located in the northeast corner of the surveyed area and were interpreted to lie close to the surface. During this period, Murgor drilled a total of 114 drill holes (15,993 m) to test several showings and geophysical anomalies. They discovered the F-17, F-51, and F-11 gold bearing zones.

Between the winter 2010 and summer 2011 drilling programs, a borehole pulse electromagnetic ("BHPEM") survey was conducted on borehole EAG-10-196. This borehole was selected due to the high-grade gold assay intersections and the observation of visible gold in the core. Additionally, a surface gradient time domain electromagnetic ("TDEM") survey was conducted over and adjacent to the main mineralized zone on the Property. Both the BHPEM and TDEM surveys were completed by Koop Geotechnical Services Inc. during May 2010. In July 2010, Insight Geophysics Inc. ("Insight Geophysics") completed surface gradient and deep penetrating IP surveys using the existing grid previously employed by Noront. The survey covered the main mineralized zone and the immediate surrounding area near the main deposit and associated structures. In light of the positive results obtained by the survey during the winter of 2011, Eagle Hill decided to extend the survey further to the west where historical IP surveys had identified important chargeability anomalies.

One objective of the survey was to identify chargeability anomalies below the Red Dog dike. In total, Insight Geophysics surveyed an area measuring 2.5 km east-west by 1.6 km north-south of surface gradient IP and completed 10 lines of deeppenetrating IP-resistivity sections. The results of the surveys showed a good correlation between the high chargeability anomalies and the known pyrite-rich gold zones delineated by drilling.

In addition, the survey identified additional chargeability anomalies below the shallowdipping Red Dog quartz monzonite intrusion tested by just a few drill holes. These observations also support the interpretation that the quartz monzonite is a late to post gold mineralization intrusion that crosscuts the pyritic gold mineralization.

6.2.9 Eagle Hill Exploration Corporation (2013-2015)

Between January and April 2012, Eagle Hill again carried out an IP geophysical survey on the Property. Géophysique TMC completed 96 line-km of ground survey in two grids situated on the northwest and northeast portions of the Property, respectively. The survey picked up multiple sub-vertical anomalies trending east-west (Lambert 2012).

In 2012, Eagle Hill carried out a till survey on the Property. The sampling was done by Eagle Hill personnel and supervised by Les Consultants Inlandsis. Forty-nine samples, 15 kg to 20 kg each, were collected and processed for visual count of gold. Results from multiple samples indicated values higher than background values of about five to six gold grains typical of gold-bearing Archean greenstone belts. The results are indicative of a significant bedrock gold source within 100 m to 1,000 m up an ice from the till anomalies and in area that corresponds roughly to targeted large east-trending regional prospective structural corridor.

In October 2013, Eagle Hill contracted DGI Geoscience Inc. to survey six historical drill holes (NOT-07-150, EAG-11-259, EAG-11-295, EAG-12-365, EAG-13-466, and EAG-13-469) with an optical and an acoustic televiewer. The goal of the survey was

to identify the orientation of certain structural features of significance intersected with those drill holes.

Between November 1 and 24, 2013, and between October 16 and November 2, 2014, Abitibi Geophysics completed two geophysical hole-to-hole resistivity/IP surveys. The objective of the surveys was to investigate the outer and inner periphery of the volume encompassing the drill holes and to assess the potential for gold mineralization at depth below the Red Dog intrusion as well as directly below the Main zone. The survey detected chargeability and lower resistivity anomalies below the Red Dog intrusion that are similar to the anomalies associated with the sulphide-rich gold mineralization located above the Red Dog intrusion.

Sixty-eight pairs of receiver drill holes were surveyed at the Property to provide the best coverage at a depth of more than 500 m below surface. The collected data were then inverted using Res3D software by Abitibi Geophysics and DCIP3D software by Mira Geoscience Ltd. to provide a possible three-dimensional geometry for the deep gold mineralization at Windfall Lake. The results of the inversion show two high-priority targets located below the Red Dog intrusion.

Between December 6 and 17, 2013, Pro-Tech Géophysique Ltd. completed a magnetic survey to the south of the Main zone. The survey comprised 79.7 line-km on a cut grid consisting of 36 north-south lines with 100 m spacing. Total field readings were measured every 12.5 m along the lines. The results of the survey identified two main east-northeast-trending lineaments that are parallel to the magnetic lineament associated with the Main zone.

Furthermore, in December 2013, Abitibi Geophysics completed a dipole-dipole IP survey using the same survey grid used for the magnetic survey. Sixteen high-priority exploration targets were identified for follow-up exploration work.

Between February 19 and 25, 2014, Géophysique TMC completed a 23.9 line km dipole-dipole IP survey over the Rousseau claims, located some 10 km to the east of the Main zone. Survey lines were oriented north-south with 100 m separation. Survey station spacing was 25 m along the survey lines. Initial data interpretation showed five anomalies in the survey area.

6.3 Urban-Barry Property (Western, Eastern, Central and Southern Sectors)

6.3.1 Previous Work

The exploration history of the Urban-Barry property outside of the Windfall deposit area was subdivided into four different sectors: West, East, Central and South (Figure 6-1). According to the SIGEOM database, 114 drill holes were drilled on the Urban-Barry property. This is not surprising given the large size of the property and the fact that exploration work was mostly performed in the Souart, Barry and Urban Townships. The Urban-Barry belt is host to numerous gold deposits/showings that include the Lac Rouleau (Beaufield Resources), Souart (Nubar) (Osisko Mining), Barry (Metanor Resources), Windfall Lake (Osisko Mining), and Gladiator (BonTerra Resources) deposits.

The Urban-Barry greenstone belt has been, in recent years, the subject of several regional mapping surveys performed by the Québec government. The entirety of the

belt was covered by 1:50,000 mapping from 2001 to 2004. The western area was mapped in 2002 (RG200212), the Windfall claims and the Southern portion in 2001 (RG200114) the central and eastern sectors in 2003 (RG200307), and the southeastern limit of the belt in 2004 (RG200402).

There are over 300 geological assessment reports (gîte minier "GM") on file with the Québec government that describe historical exploration work that was done partly or entirely within the bounds of the current Urban-Barry property. A list of these GM reports is shown in Appendix II. Various companies have conducted prospecting campaigns and secondary environment surveys over the years but due to the general lack of outcrop, exploration has tended to rely upon geophysics to define targets. With the exception of the northernmost part, most of the Urban-Barry belt has been covered by airborne surveys. These included magnetic ("MAG"), electromagnetic ("EM"), very low frequence electromagnetic ("VLF-EM"), and more recently versatile time domain electromagnetic ("VTEM") surveys. A few companies also re-interpreted the INPUT data from government surveys to generate targets. The largest airborne surveys on file with the government were carried out by Shell Canada Resources Ltd. in the mid-seventies. Ground geophysics such as IP, MAG, VLF and other EM surveys usually followed.

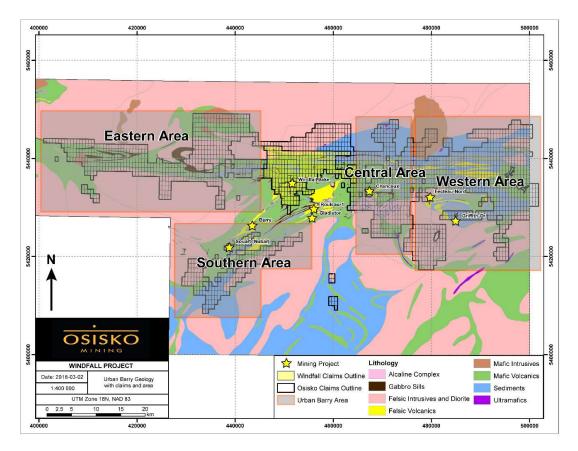


Figure 6-1: Exploration history in the Urban-Barry greenstone belt outside of the Windfall Lake deposit area subdivided into four sectors: Eastern, Southern, Central, and Western areas

6.3.2 Western Block

The earliest drilling on the Urban-Barry property that is listed in the SIGEOM files was done in the Effiat-Carpiquet sector, an area dominated by an E-W oriented band of volcanic rocks with EM conductors that hosts three gold showings (not on the property) from west to east: Lac Thubière NE, Rivière Panache Ouest, and Panache. The drilling was conducted by Merrill Island Mining Corp in 1957. Six of their 13 drill hole programs were drilled on the property to the WSW of the Lac Thubière NE gold showing, which had been discovered early in the same program. Between 1959 and 1964, Nightlen Mines drilled four holes approximately 6 km to the east of this showing, but no significant gold values were reported. At the end of this decade, Falconbridge drilled four holes 2.5 km southwest of the Lac Thubière NE showing and reported minor chalcopyrite and sphalerite. In 1986, Mines Sullivan Inc. completed the most important drill program in this sector by drilling 19 holes for a total of 3,780 m to the south and to the west of this showing. However, only a few isolated values up to 0.18 g/t Au were reported with the rest being at or below detection limits. One more hole was drilled on the Urban-Barry property as part of a multi-hole program undertaken by Cambior from 1987-1988, but no significant values were reported.

6.3.3 Central Block

This area occurs along part of the NE-SW oriented Masère-Barry Lake shear corridor in the townships of Belmont and Lacroix. The Lac Chanceux Ouest gold showing, discovered in 1997 by drilling, is located in this sector as well as the Lacroix alkaline complex.

In 1983, Mines Camchib Inc. drilled 14 drill holes of which three were on the property in this sector (MB-83-06, -6b and -07). In MB-83-07, a 7.62 m interval from 40.48 m to 48.46 m contained samples from 0.187 g/t Au to 0.373 g/t Au. There are a few other isolated samples in this hole within this range as well. Beaufield Resources and Falconbridge Ltd. drilled five holes to the southwest of the Lac Chanceux Ouest showing. These holes encountered graphite and iron sulphide and returned mostly trace gold values and a few values up to 100 ppb gold in drill hole 104-05. Kinross Gold and Beaufield drilled seven holes in this sector in 1997, four of which are on the Urban-Barry property. The best gold interval from drill hole BUL97-02 of the Lac Chanceux Ouest showing returned 1.384 g/t Au over 0.81 m. A few other intervals returned weak gold values (less than 250 ppb). Aur Resources drilled ten drill holes in 1998, three of which are on the Urban-Barry property; none of the three reported any significant gold value. The only significant value, 1.7 g/t Au over 0.7 m, came from drill hole 13501-10. Lastly, in 2004, Beaufield Resources drilled 11 holes. The last one, BFRL 411, is on the Urban-Barry property just southwest of the Belmont showing; no significant gold value was returned from this drill hole.

6.3.4 Eastern Block

This area occurs at the easternmost limit of the Urban-Barry belt and is bordered to the east by the Grenville front. It is dominated by the Freeman and Buteux volcanic felsic complex and most of historical work performed over the area focused on gold and base metals. Nineteen holes were drilled in the volcanic and volcanoclastic rocks in this sector.

In 1977, Shell Canada Resources Ltd. completed a 19 drill holes campaign on their Barry project. Nine drill holes (7515-77-19, -23, -24 and 7515-78-1A, -3, -7, -8, -10,

and -13) were completed in this sector of the property. Only traces or below detection limits were reported from these drill holes. From 1987 to 1989, SOQUEM completed a 32 drill holes campaign on their Freeman-Buteux property. Of these drill holes, ten are on the Urban-Barry property (87-4, -5, -8, -9, -11, -12, -13, -26 and 88-31). Most of the samples returned gold values at or below the detection limit. Only a few samples reported grades up to a maximum of 0.83 g/t Au over 0.85 m (hole 88-31).

6.3.5 Southern Block

This area occurs in the southernmost limit of the Urban-Barry belt. The Souart (Nubar) gold deposit was the main focus of drilling exploration in this area with other gold showings following the NE-SW oriented Souart Fault. Historical work performed over the area focused on gold and base metals. The Barry deposit (Métanor Resources Inc.) as well as the Black Dog project (Osisko Mining Inc.) located approximately 1 km northeast of the Souart (Nubar) deposit, are also located in this sector.

In 1950, three auriferous zones at the Souart (Nubar) deposit were discovered by Roybarn Uranium and Gold Mines Ltd. following a resistivity survey, known as the Central, West and East zones. In the same year, underground workings began in the auriferous zones and workings were suspended in 1951. From 1971, geological mapping, geochemical, and geophysical surveys, by Shell Canada Resources Ltd. and Exploration Minière Kidd Creek Ltd., led to the discovery of numerous polymetallic showings. In 1985, Oasis Ressources Inc. completed a 37 drill holes campaign in the three mineral zones (Central, East and West zones) on their Souart (Nubar) deposit for a total of 6,096 m. Gold intervals from the West zone allowed to evaluate a Mineral Resource Estimate of 47,505 tonnes, grading at 5.39 g/t Au (not in compliance with the NI 43-101 standards).

Between December 1988 and February 1989, Société d'exploration Minière Dufresnoy Inc. completed a 11 drill holes campaign NE of the Souart (Nubar) deposit for a total of 2,123.9 m. Best gold intervals included 5.15 g/t Au and 28 g/t Ag over 1 m (hole BAO-89-02). A total of 28 drill core intersections superior to 1 g/t Au were intersected.

6.4 Mineral Resource Estimates

In the period between 2011 and April 2015, Eagle Hill Exploration Corporation mandated three NI 43-101 compliant mineral resource estimates ("MRE") from SRK Consulting (Canada) Inc. ("SRK") (2011, 2012 and 2014) and one Preliminary Economic Assessment from Tetra Tech (2015). Results are summarized on Table 6-2 to Table 6-5. The supporting technical reports are available from SEDAR (sedar.com).

In 2011, SRK provided the first NI 43-101 compliant MRE for the Windfall Lake deposit (Table 6-2). The results were an Indicated Resource of 335,000 oz. and an Inferred Resource of 364,000 oz. at a minimum cut-off grade of 3.0 g/t Au. In 2012, SRK produced an update of the 2011 estimate. The mineral resources yielded an Indicated Resource of 538,000 oz. and an Inferred Resource of 822,000 oz. of gold at a minimum cut-off grade of 3.0 g/t (Table 6-3). The 2014 SRK mineral estimates presented a complete re-interpretation of the geology of the project based on additional drilling data and a new geological modeling approach. The result was an Indicated Resource of 744,000 oz. and an Inferred Resource of 731,000 oz. of gold at a minimum cut-off grade of 3.0 g/t (Table 6-4).

In 2015, Tetra Tech produced a Preliminary Assessment Report ("PEA") for Eagle Hill Exploration Corporation (Tetra Tech, 2015) in which SRK reviewed the mineral resource estimate in November 2014 to 748,000 oz. of gold in Indicated category and 860,000 oz. in Inferred category at a minimum cut-off grade of 3.0 g/t (Table 6-5). The PEA also proposed mineral processing and metallurgical testing recovery methods and addressed the surface water management, tailing storage, and the environmental aspect of the project.

Classification/Zone	Quantity (000 tonnes)	Grade gold (g/t)	Contained gold (000 ounces)		
	Indicate	ed			
Main Zone	1,144	9.1	335		
East Extension Zone	-	-	-		
F17 Zone	-	-	-		
Outside Zones	-	-	-		
Total Indicated	1,144	9.10	335		
Inferred					
Main Zone	644	6.68	138		
East Extension Zone	316	8.70	88		
F17 Zone	188	7.51	45		
Outside Zones	542	5.29	92		
Total Inferred	1,690	6.70	364		

Table 6-2: November 2011 MRE⁽¹⁾ provided by SRK for the Windfall Lake property

(1) Mineral resources are not mineral reserves and do not have demonstrated economic viability. All figures have been rounded to reflect the relative accuracy of the estimates. Reported at a cut-off grade of 3.0 g/t gold assuming an underground extraction scenario, a gold price of USD1,200 per ounce and metallurgical recoveries of 97%.

Classification/Zone Quantity (000 tonnes)		Grade Gold (g/t)	Contained Gold (000 ounces)			
	Indicated	b				
Main Zone	1,665	10.05	538			
F17 Zone	-	-	-			
F51 Zone	-	-	-			
Total Indicated	1,665	10.05	538			
	Inferred					
Main Zone	2,659	8.95	768			
F17 Zone	178	7.62	44			
F51 Zone	69	4.49	10			
Total Inferred	2,906	8.76	822			

Table 6-3: July 2012 MRE⁽¹⁾ provided by SRK for the Windfall Lake property

(1) Mineral resources are not mineral reserves and do not have demonstrated economic viability. All figures have been rounded to reflect the relative accuracy of the estimates. Reported at a cut-off grade of 3.0 g/t gold assuming an underground extraction scenario, a gold price of USD1,200 per ounce and metallurgical recoveries of 97%.

Classification/Zone	Quantity (000 tonnes)	Grade Gold (g/t)	Contained Gold (000 ounces)		
	Indicate	ed			
Main Zone	2,375	9.75	744		
F17 Zone	_	-	-		
F51 Zone	-	-	-		
Pyrite Stockwork					
Red Dog Dike/Dikes					
Fragmental Dike					
Total Indicated	2,375	9.75	744		
Inferred					
Main Zone	1,015	7.93	259		
F17 Zone	167	7.51	40		
F51 Zone	47	4.43	7		
Pyrite Stockwork	1,551	7.70	384		
Red Dog Dike/Dikes	249	4.26	34		
Fragmental Dike	55	3.94	7		
Total Inferred	3,084	7.37	731		

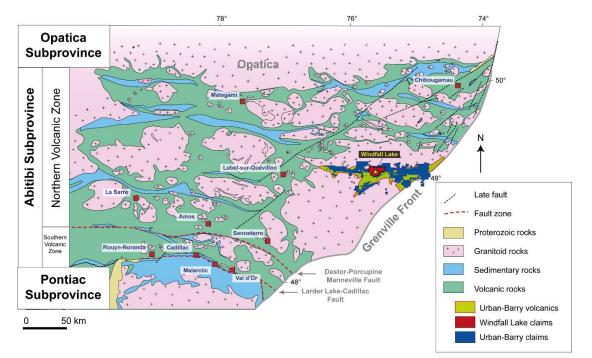
Table 6-4: March 2014 MRE⁽¹⁾ provided by SRK for the Windfall Lake property

(1) Mineral resources are not mineral reserves and do not have demonstrated economic viability. All figures have been rounded to reflect the relative accuracy of the estimates. Reported at a cut-off grade of 3.0 g/t gold assuming an underground extraction scenario, a gold price of USD1,200 per ounce and metallurgical recoveries of 91.7%.

Table 6-5: November 2014 MRE⁽¹⁾ provided by SRK for the Windfall Lake property in the PEA Report of Tetra Tech in April 2015

Classification/Zone	Quantity (000 tonnes)	Grade Gold (g/t)	Contained Gold (000 ounces)			
	Indicated					
Zone 27	1,714	8.48	468			
Caribou	910	6.99	204			
Mallard	123	10.29	41			
Below Red Dog	-	-	-			
F17 Zone	-	-	-			
F51 Zone	-	-	-			
Colloform Quartz Veins	16	70.67	35			
Pyrite Stockwork	-	-	-			
Red Dog Sill/Dikes	-	-	-			
Fragmental Dike	-	-	-			
Total Indicated	2,762	8.42	748			
	Inferre	d				
Zone 27	335	6.16	66			
Caribou	336	4.90	53			
Mallard	85	11.27	31			
Below Red Dog	447	9.14	131			
F17 Zone	167	7.51	40			

Classification/Zone	Quantity (000 tonnes)	Grade Gold (g/t)	Contained Gold (000 ounces)
F51 Zone	47	4.43	7
Colloform Quartz Veins	154	18.68	92
Pyrite Stockwork	1,665	7.55	404
Red Dog Sill/Dikes	248	4.04	32
Fragmental Dike	34	3.99	4
Total Inferred	3,512	7.62	860


(1) Mineral resources are not mineral reserves and do not have demonstrated economic viability. All figures have been rounded to reflect the relative accuracy of the estimates. Reported at a cut-off grade of 3.0 g/t gold assuming an underground extraction scenario, a gold price of USD1,200 per ounce and metallurgical recoveries of 96%.

7. GEOLOGICAL SETTING AND MINERALIZATION

7.1 Regional Geology

The Windfall Lake and Urban-Barry properties occur within the Urban-Barry greenstone belt located in the eastern part of the Archean Abitibi geological sub province. The Abitibi greenstone belt, divided into the Southern Volcanic zone ("SVZ") and the Northern Volcanic zone ("NVZ"), represents a collage of two arcs, delineated by the Destor-Porcupine-Manneville Fault zone (Figure 7-1). The SVZ is separated from the Pontiac sedimentary rocks, an accretionary prism to the south, by the Cadillac-Larder Lake Fault zone (Daigneault et al. 2004). The 2735-2705 Ma NVZ is ten times larger than the 2715-2697 Ma SVZ and both granitoid bodies and layered complexes are abundant in the former.

The Urban-Barry greenstone belt has an east-west extent of 135 km and is 4 km to 20 km wide. The greenstone belt is part of the NVZ of the Archean Abitibi sub province (Figure 7-1). It is bounded to the north by the Father plutonic suite, to the east by the Proterozoic Grenville province, to the south by granitoid and paragneiss rocks of the Barry Complex, and to the west by syn- to late-tectonic granitoid rocks of the Corriveau and Souart Plutons (Figure 7-2).

Figure 7-1: Generalized geology of the Archean Abitibi sub province and the location of the Urban-Barry greenstone belt and the Windfall Lake deposit. Modified from Daigneault et al. (2004)

7.2 Local Geology

The Urban-Barry greenstone belt contains mafic to felsic volcanic rock units and is cross-cut by several east-trending and east-northeast trending shear zones that delineate three major structural domains easily visible on the regional total magnetic

intensity map (Figure 7-3). The first domain is the Urban Deformation zone, a major sub-vertical, east-west-trending and dextral ductile shear zone extending along the northern margin of the greenstone belt (Bandyayera et al. 2002). The second domain is located in the central portion of the Urban-Barry belt and consists of a moderate strain fault-related folds style. The main foliation in this domain is oriented east-northeast and contains the Urban Syncline. The central portion of the belt is transected by the east-northeast-trending Milner and Masères ductile shear zones (Figure 7-2 and Figure 7-3). The latter is a thrust fault that strikes N60E dipping 60°E and is interpreted to cross-cut the Windfall Lake deposit. The Masères fault at Windfall is also named the Bank Fault. The Milner and Masères shear zones are truncated to the north by the Urban Deformation zone. The third domain is in the southern portion of the belt and is named the Barry Deformation zone. A set of north-northeast-trending brittle-ductile faults associated with slickenlines and stretching lineations that are moderately plunging to the northeast (Joly 1990) cross-cut all other structures and include the Thubière, Croft, Picquet, Father, Roméo, and Windfall faults.

Rocks of the Urban-Barry greenstone belt were deformed during the Kenoran orogeny (Card 1990; Hoffman 1991; Jackson and Cruden 1995). The age of the ductile deformation in the NVZ is bracketed between 2701 and 2692 Ma (Daigneault et al. 2004). Volcanics south of the Urban Deformation zone feature a Z-shape regional fold where the short limb is the site of a second order northeast-trending fault system (including the Milner, Mazère, Windfall, and Macho faults). Regional kinematic indicators point to a dextral transpressional setting. While approaching the Grenville Front, major Proterozoic discontinuities extending northeast become more prominent. The regional foliation generally strikes northeast to east-northeast with a variable dip from 30 to 85 degrees to the southeast (Hocq 1989; Joly 1990). The regional foliation is associated with a stretching lineation that plunges steeply to moderately to the east (Bandyayera et al. 2002). Associated regional folds are generally isoclinal with steeply plunging axes (Chown et al. 1992), although Bandyayera et al. (2002) interpreted a shallowly-plunging regional-scale syncline south of the Windfall Member (named Urban Syncline). The axial trace of the Urban Syncline is trending to the eastnortheast and is interpreted to pass between Lac Rouleau and Windfall Members (Figure 7-1).

Rocks of the Urban-Barry greenstone belt are generally metamorphosed to greenschist facies, although near intrusions, conditions locally reached amphibolite assemblages (Joly 1990). The regional metamorphic temperature-pressure gradient generally increases eastward towards the Grenville Front (Joly 1990).

The Urban-Barry greenstone belt is divided in four informal rock formations that are aged between 2791 and 2707 Ma (Rhéaume and Bandyayera 2006): 1) The oldest Fecteau Formation (2791 Ma) is located in the southeast limit of the belt. It mainly consists of mafic to felsic volcanics including graphitic sedimentary units (Bandyayera et al. 2004). 2) The Chanceux Formation (2727 Ma) mainly consists of tholeiitic basalt, thin beds of rhyodacitic or rhyolitic tuffs interlayered with greywackes and graphitic argillite (Bandyayera et al. 2004). Its geometry and extent are poorly constrained. 3) The Macho Formation (2718 Ma) located in the central part of the belt, mainly consists of basalt, andesite and basaltic andesite with comagmatic gabbroic sills (Bandyayera et al. 2002, 2004). The Macho Formation includes the Windfall and Rouleau members. Uranium-lead age dating of a felsic volcanic unit of the Windfall Member collected on the Windfall Lake property indicates an age of 2,716.9 ±2 Ma

(Bandyayera et al. 2002). 4) The Urban Formation (2707 to 2714 Ma) is the largest formation and consists of glomeroporphyritic tholeiitic basalt with minor synvolcanic gabbro inferred to be coeval with the Obatogamau Formation in Chibougamau. It equally includes felsic volcanics and sediments (Bandyayera et al. 2002). Finally, a series of quartz and/or feldspar porphyry dikes cut across volcanic rocks of the Macho Formation, including rocks of the Windfall Member. The dikes have been dated at 2697 ±0.6 Ma at the Barry gold deposit (Kitney et al. 2011) and at 2697 ±0.9 Ma at the Windfall deposit (Davis 2016, unpublished; Figure 7-3), which is located approximately 10 km southwest of the Windfall Lake deposit.

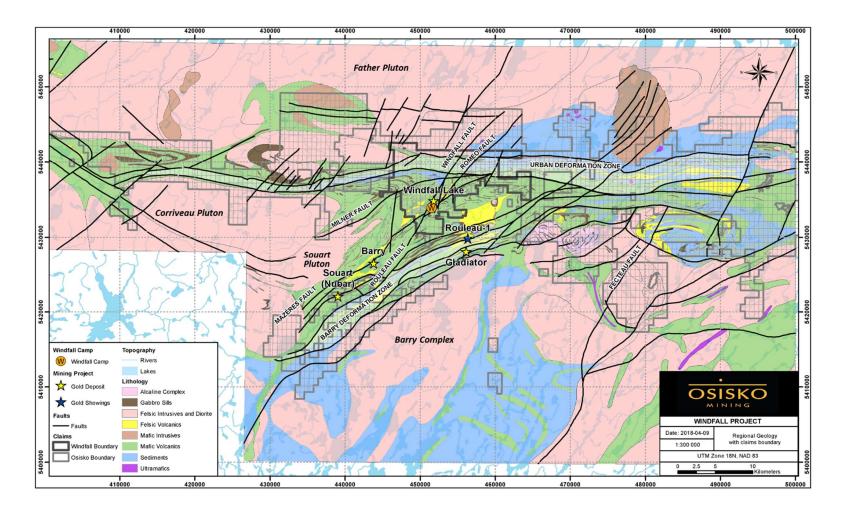
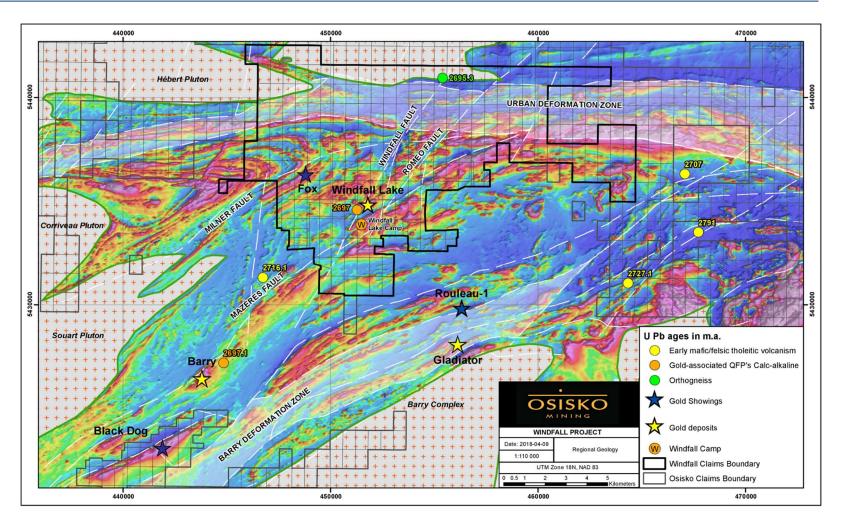



Figure 7-2: Regional geologic setting of the Urban-Barry greenstone belt and the location of the Windfall claim boundary (light grey) Modified after Bandyayera (2002)

Main gold mineralized zones owned by Osisko Mining Inc. are illustrated by the yellow stars. Barry deposit (Metanor Inc.), the Gladiator deposit (Metanor Inc.), and the Rouleau showing (Beaufield Resources Inc.) are indicated by the blue stars

Figure 7-3: Regional magnetic map of the Urban-Barry greenstone belt and the location of U-Pb ages (yellow, orange, and green circles).

7.3 Windfall Lake Property Geology

The Windfall Lake property is located in the central part of the Urban-Barry greenstone belt. The Windfall Lake deposit is hosted within the Windfall Member of the Macho Formation, which primarily consists of felsic and intermediate volcanic rocks including tuff and lava units. In the Windfall Lake deposit area, the stratigraphy trends northeast and dips moderately towards the southeast. Volcanic rocks are intruded by a series of younger quartz-feldspar porphyry dikes, commonly referred to quartz-feldspar porphyry "QFP" dikes, including early quartz-phyric felsic to intermediate dikes with fragments comprising quartz phenocrysts ranging from 1 mm to 2 mm and quartz-phyric felsic to intermediate dikes containing quartz phenocrysts up to 7 mm in size.

All dikes and volcanic rocks are affected by the regional foliation. The intensity of the foliation and the overall strain vary greatly within individual rock units and the alteration and mineralization can locally be overprinted by foliation.

7.4 Lithological Units in the Windfall Lake Deposit

The following paragraphs describe, as per core logging observations and geochemical data, the main features of each rock unit and associated core logging codes in brackets, described to date in the area of the Windfall Lake deposit.

7.4.1 Synvolcanic Rocks (2717 Ma)

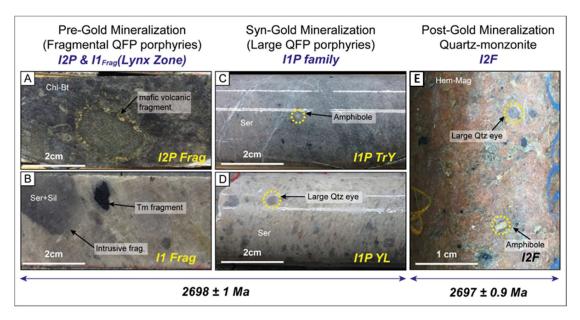
Intermediate to Mafic (V2, V2D)

The mafic volcanic rocks are of tholeiitic affinity and are constituted by basalts and andesites in composition. They consist of massive, pillowed, fragmental, and breccia flows that are locally vesicular or porphyritic with phenocrysts of plagioclase. The rock is commonly fine grained, medium green to dark green in colour, and is weakly to moderately foliated. In the south-western part of the deposit, and to the south of the Masères shear zone, a dark trachytic volcanic unit containing large reddish feldspar phenocrysts is present.

Felsic (V1)

The felsic volcanic rocks are dacitic to rhyolitic in composition and consist of massive and breccia flows that are often porphyritic containing small (1 mm to 3 mm) phenocrysts of quartz that vary in abundance from 2% to 10%. The rock is commonly fine grained, yellowish beige in colour that can locally be green when chloritized and is weakly to moderately foliated. Felsic volcanics are stratigraphically located above the mafic volcanics.

Gabbro (I3)


In the Lynx zone, a gabbroic sill (I3A) was injected in the felsic volcanics prior to the emplacement of pre- to syn-mineralized quartz-feldspar porphyry dikes. Both the felsic volcanics and the gabbroic sill are affected by the deformation associated to the Bank Fault, inducing a parallelization along the deformation zone, verticalizing the units along its contact and locally dismembering the gabbro.

7.4.2 Late Intrusive Rocks (2697-2701 Ma to Post-Mineralization)

There are six different types of dikes recognized to date at the Windfall Lake deposit: pre-mineral fragmental granodiorite porphyry dikes, syn-mineral granodiorite large

quartz eyes porphyry dikes, post-mineral quartz monzonite, fine grained quartz monzonite, and intermediate to mafic dikes. Pre-mineral dikes are commonly fragmental and contain xenotlihs of the hosting volcanic rocks. They likely represent magmatic-hydrothermal breccias related to the intrusion of the porphyry dikes within the wall rocks. Syn-mineral granodiorite dikes contain quartz eye porphyries (1 mm to 7 mm) hosted in an aphanitic quartzo-feldspathic matrix. The pre- and syn-mineral granodiorite and dikes are generally sub-vertical and plunge 35° east-northeast. The other dikes are post-mineral, smaller (except the Red Dog intrusion) and are generally less than 2 m thick. They all cross-cut the pre- and syn-mineral dikes. The post-mineral Red Dog intrusion trends to the north-northeast and dips at 30° to 40° to the east-southeast.

The following paragraphs describe all the dike units starting from the oldest unit to the youngest unit as defined by cross-cutting relationships observed on the drill core. The three main generations of dikes are illustrated in Figure 7-4.

A) Common pyritized mafic volcanic fragments hosted in pre-mineral fragmental granodiorite porphyry dikes; these dikes vary from massive with small quartz eyes to fragmental (I2P); B) Magmatic-hydrothermal breccia in the Lynx zone (I1 Frag) showing the presence of sericite to silica-altered felsic intrusive fragments, and tourmaline fragments; C-D) The syn-mineral granodiorite large quartz eyes porphyry dikes are generally sericite-altered and contain traces (I1P TrY) to 10% (I1P YL) of larger quartz eyes and is intimately associated with the pyrite-rich gold mineralization; E) The quartz monzonite Red Dog unit contains similar large quartz eyes as in the large quartz eyes porphyry dikes but its groundmass is well crystallized; the Red Dog unit cross-cuts the gold-bearing pyrite stockwork. Reference photos are from Osisko's drill core.

Figure 7-4: Core pictures of the three main types of porphyry dikes

7.4.2.1 Pre-mineral dikes

Fragmental Porphyry Unit (I2P, I2P Frag, I1 Frag)

The fragmental granodiorite porphyry dike unit ranges from medium grey, with a greenish to pinkish or reddish tint, to light grey where it is more sericite altered. It is characterized by 2% to 10% small quartz eyes generally less than 2 mm in diameter. This unit has internal texture variations ranging from massive and porphyritic to fragmental with up to 30% sub-angular to sub-rounded fragments. The fragments are

generally 1 cm in diameter but can reach up to 10 cm locally. Fragments are comprised of volcanic fragments, both intermediate and felsic compositions, that are locally sericitized and pyritized. In some cases, the high percentage of fragments led previous geologists to misinterpret this unit as a fragmental volcanic rock unit or a tuffaceous unit. However, the similar geochemical composition of this unit with other dikes, combined with its sub-vertical geometry that cross-cuts the moderately dipping volcanic rock units, confirms the current interpretation that it represents an intrusive unit. The presence of fragments suggests that this intrusive unit was emplaced at shallow crustal levels. The presence of pyritized volcanic fragments in the porphyry dike indicates that pyrite mineralization/alteration occurred in the host volcanic rock units prior to the emplacement of this porphyry dike unit (Figure 7-4a).

In the Lynx zone, another intrusive phase is present and is referred to as the I1 Frag (Figure 7-4b). The I1 Frag differentiates from the I2P Frag as it contains abundant intrusive fragments that contain large quartz eyes and pyrite disseminations, minor felsic volcanic fragments, and pyrite-replaced fragments. Additionally, the I1 Frag contains abundant, angular, strongly tourmaline-altered fragments of unknown origin, which is unique to this unit. This unit is generally moderately to strongly sericite-silica-altered.

7.4.2.2 Syn-mineral dikes

Large Quartz Eyes Porphyry Dikes (I1P YB, I1P YL, I1P TrY)

The large quartz eyes porphyry granodiorite dikes (I1P family) form a series of subvertical dikes trending NE or E-W and cross-cut the pre-mineral fragmental granodiorite porphyry dike (I2P).

This rock unit ranges from dark reddish to greenish gray up to light grey or yellowish beige depending on the intensity of alteration. It is characterized by trace (I1P TrY; Figure 7-4c) to 10% (I1P YL; Figure 7-4d) large quartz phenocrysts reaching up to 11 mm in diameter hosted in a fine-grained groundmass. The unit locally contains 2% to 5% smaller quartz phenocrysts, generally less than 2 mm. These syn-mineral dikes are also composed of 1 mm to 3 mm, euhedral beige, sericite-altered amphibole crystals. Large quartz eyes granodiorite dikes located in the Underdog mineralized zone (I1P YB) are distinguished by the presence of large, often ghostly-textured feldspar phenocrysts (5% to 10%) accompanying the quartz eyes. Petrographic descriptions indicate that the larger quartz phenocrysts display well-developed resorbed textures, which may suggest a rapid ascent of magma in the presence of fluorite-rich magmatic hydrothermal fluids (Chang and Meinert 2004). Although gold mineralization is found in all rock units, including host volcanic sequences and pre-and post-mineral dikes, it is generally more abundant within or in the vicinity of those large quartz eyes porphyry dikes.

7.4.2.3 Post-mineral

Quartz Monzonite ("Red Dog") (I2F)

The quartz monzonite dike, or herein referred to the Red Dog, is a 100 –m thick unit that trends to the north-northeast and dips at 30° to 40° to the east-southeast. Minor splays of the Red Dog dike are typically up to 15 m thick. The Red Dog unit is a late intrusive phase that cross-cuts all the others volcanic and felsic porphyry units and locally hosts gold-bearing quartz-carbonate tension veins.

This unit is the most obvious of all the porphyry rock units due to its brick red colour (Figure 7-4e). The red colour is due to the hematite content, as observed in thin sections and by the absence of staining for K-feldspar in the etched offcut. It contains 3% to 10% quartz phenocrysts (up to 1 cm) and 5% to 10% poorly defined relict feldspar, together with 2% to 10% altered mafic minerals in a brick red and generally well-crystallized, fine-grained groundmass. The rock is weakly to strongly magnetic and shows minor slow reaction to cold diluted HCl-

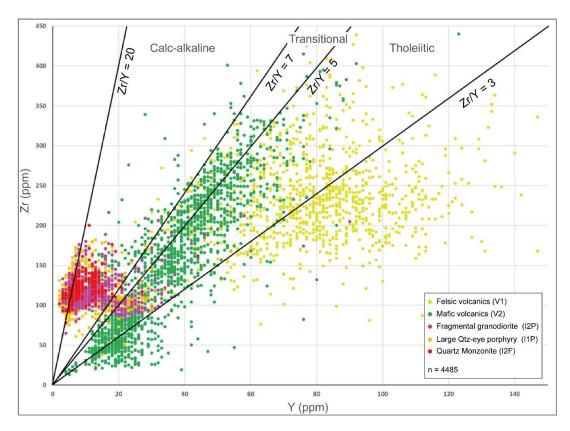
Fine Grained Quartz Monzonite Dikes (I2F)

These dikes are fine-grained equivalents of the Red Dog unit. They form subhorizontal to horizontal dikes that lie generally at 10 m to 50 m above the Red Dog unit. The dikes are less than 10 m thick and cross-cut andesite units, and felsic/intermediate porphyries. The quartz monzonite dikes are pinkish red, finegrained and massive and are weakly to moderately magnetic. They generally have traces of quartz eyes smaller than 0.5 mm.

113 Dikes (113)

The fine-grained quartz monzonite unit consists of metric-scale sub-horizontal dikes that can reach up to 20 m in thickness. They are interpreted as a later intrusive unit as it cross-cuts all other rock units including the Red Dog. This unit is pinkish to slightly orange and is fine to medium grained and homogeneous, non-magnetic, and contains less than 1% quartz eyes smaller than 2 mm. This unit is associated with gold mineralization at the Fox gold occurrence, located northwest of the Windfall Lake deposit, and occurs within sericite- and silica-rich alteration envelope at the contacts with the host rock.

Intermediate to Mafic Dikes (I2J, I3A)


Intermediate to mafic green dikes are characterized by medium to dark green colour and are fine- to coarse-grained. These are generally non-magnetic, massive to weakly foliated, and characterized by chlorite and carbonate alteration. They are oriented north-northeast and dip shallowly to the east-southeast. They are a minor unit and cross-cut all volcanic and intrusive units and are therefore the latest magmatic event at Windfall.

7.5 Geochemical Characterization of the Rock Units

Rock units at Windfall are often difficult to differentiate due to alteration overprinting. This resulted in the misinterpretation of the rock units in historical drill cores and trenches. The result of the geochemical analysis was critical in discriminating the rhyolite flow units from the porphyry dikes (Desrochers 2013). However, geochemistry is insufficient to discriminate between individual porphyry dikes themselves and they cannot be resolved from each other suggesting they are all part of a same parental magmatic source.

A summary of geochemical characteristics of porphyry dikes and volcanic units based on whole-rock geochemistry are listed in Table 7-1. The intermediate to mafic volcanic units are characterized by Zr/Y ratios <4 in general, which indicates that they are of tholeiitic affinity (Barrett and MacClean 1994). The porphyry intrusions show Zr/Y ratios >4 and up to 20, which makes them transitional to calc-alkalic. The difference in the Zr/Y ratio between the volcanic rock units and the porphyry dikes suggests that they are from two different magmatic sources (Figure 7-5).

Rock Code	TiO₂ wt%	Zr ppm	Zr/TiO ₂	Y ppm	Zr/Y	Nb ppm
I1P YB	0.2-0.35	75-150	200-500	<10	5-25	<8
I1P YL	0.1-0.5	75-150	250-525	Two populations <10 and >40	3-50	<18
I1P TrY	0.2-0.5	75-275	250-550	<20	5-40	<11
I2P	0.1-0.6	75-225	200-525	<20	3-36	<16
V1	<0.4	>200	>600	>20	<4	>10
V2	>0.5	>100	>400	-	3-7	6-12

Figure 7-5: Magmatic affinity of Windfall rocks on a Zr vs. Y diagram (units are in ppm)

The rock units can also be further divided on a TiO_2 vs. Zr diagram (Figure 7-6). On this diagram, the intermediate to mafic flows and dikes are localized on the left side of the diagram whereas the felsic volcanic flows are dispersed at the bottom of the diagram. The porphyry dike units, including the Red Dog unit, form a group centered around 100 ppm Zr and 0.35% TiO_2 . Those units also have Nb values that are generally <6 ppm, which is lower than the rhyolite (generally >10 ppm). The Nb values are another chemical element used to discriminate between the felsic volcanic rocks and the porphyry intrusions.

🗱 InnovExplo

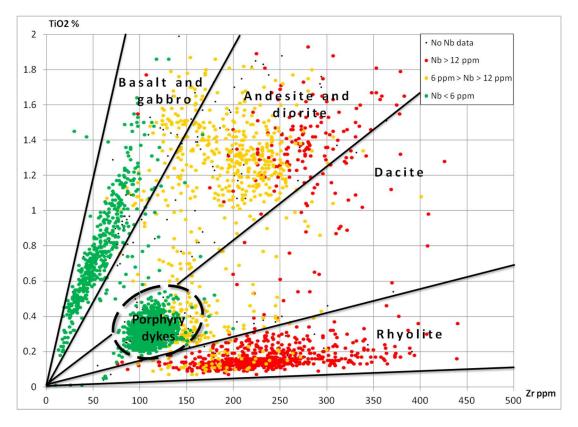


Figure 7-6: Discrimination of rock units on a TiO₂ vs. Zr diagram with Nb values in coloured dots

7.6 Mineralized Zones

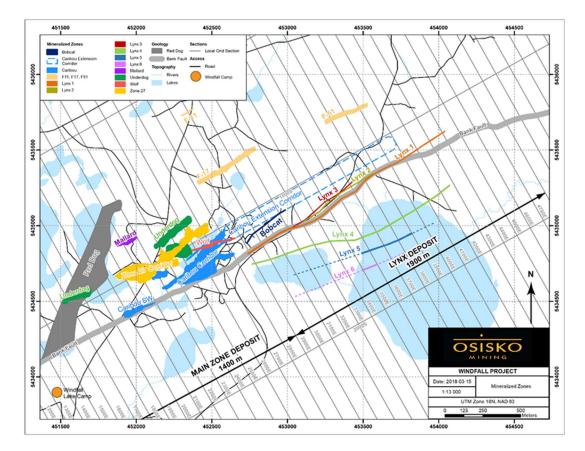
At Windfall, the main gold event is temporally and spatially constrained by the emplacement of quartz porphyry dikes (i.e., I1P family). The best gold mineralization is contained in narrow high-grade gold bands and stockworks at the dikes contacts with host volcanic rocks. Mineralization consists of pyrite-rich and silica > sericite-carbonate-tourmaline (and some base metals) mineral association that is zoned outward into erratic to low gold grade sericite > silica-carbonate-tourmaline halos, which in turn pass into an outer barren chlorite > sericite-rutile zone.

The mineralization is currently known for a vertical extent of approximately 1,200 m, separated in three sectors, the Main zone (Zone 27, Caribou, and Mallard), the Underdog zone, and the Lynx zone. All zones trend east-northeast and plunge roughly 35° (Figure 7-7 to Figure 7-10). The Main and Underdog zones are separated by the thick, low-angle post-mineral quartz monzonitic sill "Red Dog". The Main zone is located in the hanging wall, above the Red Dog quartz monzonitic sill, and is constrained along east-northeast oriented contacts of narrow sub-vertical granodioritic dikes (I1P) within tilted volcanic rocks (Figure 7-9). The Underdog mineralized zone is located in the footwall, beneath the Red Dog sill. The understanding of the Underdog mineralized zone is progressing with the results of the ongoing exploration drilling program. The top of this deeper mineral zone starts at around 600 m depth and continues to a depth of roughly 1,200 m where it is still open towards vertical depth and plunge. The Lynx mineralized zone (discovered in 2016) is located approximately 3 km to 6 km northeast of the Main zone and is also located

in the hanging wall of the Red Dog intrusion (Figure 7-7, Figure 7-8 and Figure 7-10). The mineralized zone between the Caribou and Lynx zones has been recently recognized as the Bobcat zone (Figure 7-10. Additional gold mineralization is also present in the peripheral F-11, F-17, and F-51 zones (Figure 7-7 and Figure 7-8).

The spatial relationship between all mineralized zones composing the Main zone (Zone 27, Caribou, Mallard and Underdog) and the geological context of the area is illustrated in Figure 7-8 and Figure 7-9.

Significant gold mineralization defined to date on the Windfall Lake property occurs in the Main zone, located in the central-south portion of the property, and the Lynx zone, located to the NE of the Main zone. The Lynx zone is associated with shallow, high-grade gold mineralization. The gold mineralization is controlled by the geometry of the dikes, specifically for Zone 27 and the Caribou corridor, which are spatially associated with 2 m to 30 m thick sub-vertical northeast-trending quartz-feldspar porphyry dikes. Generally, gold mineralization is associated with sulphide replacement, generally pyrite, occurring as disseminations, stockworks and breccias. The gold mineralization in the Lynx zone is localized at the contacts between the I1P syn-mineral dikes and the wall-rock lithologies and is interpreted to be localized in pinch-and-swell areas between different rock units. Gold mineralization in the Lynx zone is also observed in the fragmental facies of the magmatic-hydrothermal breccia unit.


Gold-bearing pyrite stockwork mainly consists of pyrite stringers with minor tourmaline needles; the stringers are typically less than 1 cm in thickness and are oriented in several directions. Trace amounts of chalcopyrite, sphalerite, pyrrhotite, arsenopyrite, tetrahedrite and bismuth sulphosalts are also present around pyrite grains and as inclusions in pyrite in the pyrite stockwork. Sub-millimetre specks to local centimetre patches of gold are sometimes visible in the pyrite stringers and in semi-massive sulphide bands, tourmaline veins or in the altered part of the rock around these features. Some of the fragments in porphyry dikes were altered and mineralized prior to being brecciated and porphyry dikes locally cross-cut the pyrite stockwork mineralization, suggesting that emplacement of the gold mineralization was broadly coeval with the intrusion of the quartz-feldspar porphyry dikes. Gold mineralization (up to several ounces per tonne) is locally associated with brecciated quartz veins with local colloform and crustiform banding.

Visible gold mineralization in the Main zone can occur as auriferous quartz-carbonatechalcopyrite-pyrite extensional veins. Such veins are found in all rock units (Red Dog dike, other quartz-phyric dikes, mafic dikes, and volcanic rocks) frequently near or within shear zone intervals. They are typically 1 cm to 10 cm in thickness but locally reach up to 1.5 m. These veins cross-cut the pyrite stockwork and are interpreted to be associated with a separate hydrothermal event controlled by brittle-ductile shear zones that postdates the auriferous pyrite stockwork. Gold zones in the Red Dog are in those types of veins, the intrusion itself being barren.

The style of gold mineralization at the F-17 and F-51 zones differs from that of the Main and Lynx zones. The F-17 and F-51 zones are two separate zones of gold mineralization containing typical orogenic gold mineralization (also termed greenstone-hosted quartz-carbonate vein mineralization). The two zones trend to the northeast, subparallel to the Main Zone, but dip steeply to the north. Both zones are aligned along the same trend but separated by approximately 500 m. Limited drill hole

data are available from this gap zone. Continuity between the two zones cannot be established from the current drilling data.

The F-11 zone is a small gold mineralized area located near the portal of the ramp. Gold mineralization consists of small quartz-carbonate extensional veins, typically less than 1 cm thick, characterized by their high content of visible gold. Continuity of this gold mineralization has not been demonstrated.

Developing targets are also illustrated and include the Bobcat (dark blue) and Caribou SW zones (blue)

Figure 7-7: Topographic map with surface projection of the Caribou (blue), Zone 27 (yellow), Mallard (purple), Underdog (green), Lynx zones (right), F-11, F-17, F-51 zones (light yellow), and barren Red Dog intrusion (dark grey)

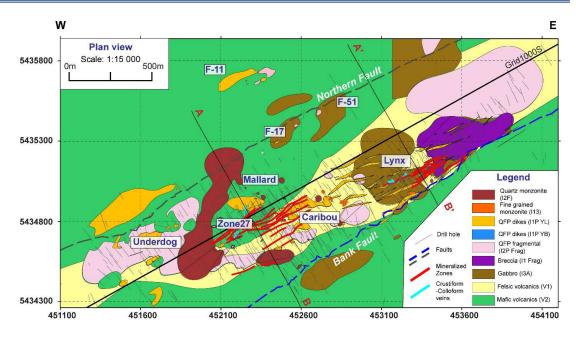


Figure 7-8: Interpreted surface geology of the Windfall Lake gold deposit with logged mineralized zones and lithologies projected to surface illustrating the spatial relationship between syn-mineral I1P dikes (orange) and gold mineralization (red). Refer to Figure 7-9 and Figure 7-14 for vertical cross-sections (A - B "Main zone") and (A'- B' "Lynx zone").

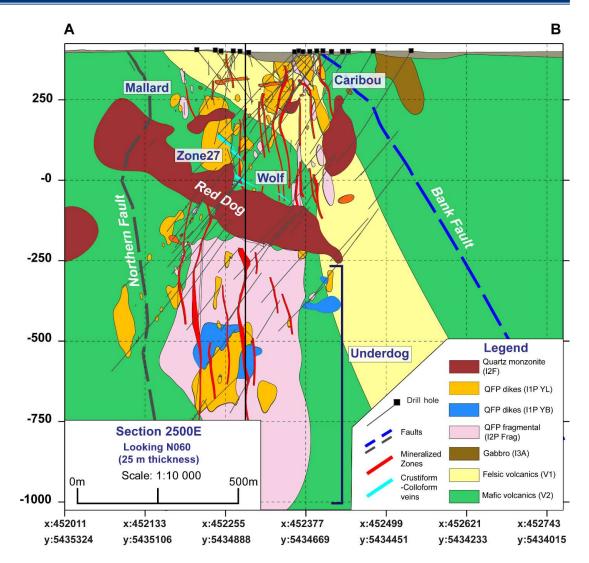


Figure 7-9: Simplified NW-SE vertical cross-section of the geology of the Main zone of the Windfall Lake deposit along grid line 2500E (A-B in Figure 7-8), showing the spatial setting and geometry of mineralized zones shown in red (Caribou/Wolf, Zone 27, Underdog)

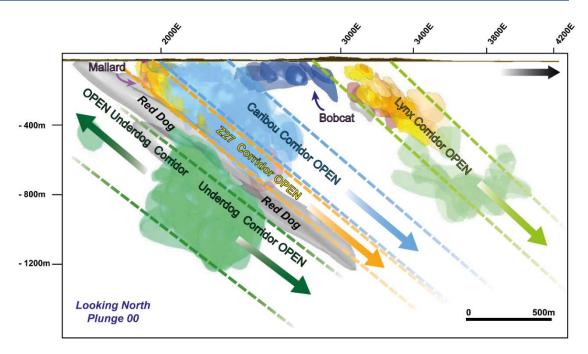


Figure 7-10: Leapfrog 3D modeling illustrating idealized vertical cross-sections (looking North) of the geometry of the mineralized zones plunging 30° to the NE (Caribou, Zone 27, Underdog, and Lynx zones). The Mallard and Bobcat zones are indicated by the purple and dark blue arrows, respectively. Exploration is open at depths for all zones. The Underdog zone is also open up-plunge for exploration.

The following paragraphs describe the typical alteration assemblages and mineralization textures found in each mineralized zone.

7.6.1 Zone 27

Zone 27 is characterized as a package of mafic to felsic volcanic rocks that have been intruded by quartz-feldspar porphyry dikes. Gold mineralization is spatially associated to syn-mineral granodiorite (I1P TrY) dikes. These intrusives have a sub-vertical thin irregular elongated lensoid shapes and plunge 35° towards the N60E. The separation of the I1P TrY dikes from other early generation of felsic porphyry dikes, which are not spatially associated to significant gold mineralization, has provided a geological constraint for gold mineralization in Zone 27.

7.6.1.1 Alteration

Proximal to the mineralized intervals, the rocks have a phyllic alteration assemblage consisting of sericite > pyrite > silica > chlorite (Figure 7-11a). The mafic volcanic rocks that are close to the mineralized zone locally have weak pervasive to patchy chlorite alteration, moderate to strong pervasive and/or banded sericite alteration, and locally have pervasive silicification. Less common is fuchsite alteration that typically occurs as a pervasive or spotted alteration. The felsic volcanic rocks at the contacts with the mineralized quartz-feldspar porphyry dikes also have strong pervasive and/or banded sericite, and pervasive or patchy silica alteration. Where alteration is most prevalent there is a strong correlation with economic gold mineralization.

Distal alteration assemblages consist of a chlorite > sericite assemblage and can occur as narrow zones a few metres wide to large zones greater than 10 m in lateral distance from the mineralized interval. The mafic volcanic rocks that are distal to the mineralized zone have a green to slightly bleached colour, pervasive, patchy or fracture filling moderate to strong chlorite alteration, and/or a weak to moderate pervasive or banded sericite alteration. The felsic volcanic rocks and quartz-feldspar porphyry dikes that are distal to the mineralized zones have weak pervasive and/or fracture filling chlorite alteration, with weak to moderate pervasive and/or banded sericite alteration. This alteration assemblage is difficult to separate from the background alteration which has a typical greenschist facies assemblage.

7.6.1.2 Mineralization

Mineralization in Zone 27 is recognized as sub-vertical to steeply dipping envelopes, with true widths averaging 2 m to 12 m and oriented east-northeast (060-075°N). These mineralized zones are known as the Z27 FW, Z27 HW, and Z27 zones. The main setting for gold mineralization is auriferous pyrite stockwork veinlets that are controlled by the contacts of the quartz-feldspar porphyry dike (specifically, the I1P TrY; e.g., Figure 7-11b) and can expand into the dike or several metres into the hanging wall and footwall rocks. Economic gold mineralization occurs as sub-vertical lensoids that mimic the shape of the intrusive body and plunge roughly 35° at N60°E strike. These mineral zones can vary in thickness from 1 m to 12 m and can locally be discontinuous. Gold grade can vary from a few parts per million to very high grade (greater than 100 g/t). Very high gold grades are reported generally in the tens of g/t over several metres in thickness and locally can reach over 1 kg/t over intervals less than 1 m, in locally intense silicified zones. Economic gold mineralization occurs where a sericite-pyrite ± silica assemblage is observed. Pyrite dominantly occurs as disseminations and as diffuse stockworks of veinlets that locally contain significant amounts of tourmaline, Fe-carbonates and locally traces of chalcopyrite and sphalerite. Gold mineralization associated to pyrite mineralization and intense phyllic alteration makes up greater than 90% of recorded mineralized intervals in Zone 27 (Figure 7-11a-b). Other observed mineralization styles that contain economic gold grade in Zone 27 include guartz-tourmaline ± pyrite crustiform veins that are locally brecciated and are dominantly oriented east-northeast, and guartz-carbonate-pyrite colloform veins that have variable thickness, typically several centimetres (~1% of total Au mineralization). Locally visible gold is observed in areas that are dominated by intense silicification with abundant pyrite and tourmaline mineralization (Figure 7-11c).

A) Pyrite stringers associated with strong phyllic alteration within a quartz-feldspar porphyry dike (I1P TrY). B) Strong silica alteration associated with gold-bearing pyrite mineralization at the contact between two phases of quartz-feldspar porphyry dikes. C) Visible gold associated with abundant pyrite and tourmaline mineralization in a strongly silica-sericite altered quartz-feldspar porphyry dike. All gold grades (Au g/t) are cut to 100 g/t unless indicated.

Figure 7-11: Typical mineralization and associated alteration styles in Zone 27 of the Windfall Lake deposit.

7.6.1.3 Drilling Highlights

Drilling highlights for the Zone 27 are listed in Table 7-2.

Zone	Hole	From (m)	To (m)	Interval (m)	Au uncut (g/t)	Au cut (g/t) to 100 ppm
Z27	OBM-16-603	188	207.9	19.9	12	11.4
Z27	OSK-W-17-973	57.4	59.8	2.4	60.5	51.6
Z27	OSK-W-17-1095	88.2	90.7	2.5	58.8	52.9
Z27	OSK-W-17-903	539	543	4	36.1	34.2
Z27 FW	OBM-16-610	221	226	5	87.9	24.2
Z27 HW	OBM-16-572	572 101.5 103.5 2		2	97.3	50.3
Z27	OBM-16-608	177.3	177.3 186.6 9.3		17.4	10.3
Z27	OSK-W-17-1203	27.9	30 2.1		128	42.9
Z27	OBM-16-643	245.6	247.9	2.3	58.7	25.2
Z27 FW	OSK-W-17-1191	235.4	237.5	2.1	218	34.6

Table 7-2: Drilling highlights from Zone 27

7.6.2 Caribou Zone

The Caribou zone is characterized as a package of felsic volcanic rocks that have been intruded by several quartz-feldspar porphyry dikes. Towards the southeast, the Caribou zone is bounded by the Bank Fault. Gold mineralization is hosted in the felsic volcanic rocks close to the contact or within the quartz-feldspar porphyry dikes.

7.6.2.1 Alteration

Proximal to the mineralized intervals, the rocks have a phyllic alteration assemblage consisting of sericite > pyrite > silica > chlorite. The volcanic rocks and quartz-feldspar porphyry dikes that are spatially close to the mineralized zone contain strong pervasive and/or banded sericite, and pervasive or patchy silica alteration (Figure 7-12a-b). There is a strong correlation with economic gold mineralization where silica alteration is most prevalent.

Distal alteration assemblages in the pre-mineral dikes consist of an early potassic alteration consisting of a chlorite > biotite > sericite assemblage and can occur as narrow zones a few metres wide to large zones greater than 10 m in lateral distance from the mineralized interval. In contrast to the quartz-feldspar porphyries, the volcanic host rocks, particularly the andesite-basalt sequence, and gabbro dikes display propylitic assemblages defined by chlorite, actinolite, carbonate and magnetite. The pyrite in this assemblage is accompanied locally by pyrrhotite.

7.6.2.2 Mineralization

Mineralization in the Caribou zone is recognized as sub-vertical to steeply dipping envelopes, with true widths averaging 2 m to 8 m and oriented east-northeast (060-075°N). These mineralized zones are known as the CS1, CS2, CS3, CN1, CN2 and Wolf zones. The main setting for gold mineralization is auriferous pyrite veinlets that are controlled by the contacts of the quartz-feldspar porphyry dikes and can expand into the dikes or several metres into the hanging wall and footwall rocks. Gold mineralization occurs as sub-vertical lensoids that mimic the shape of the intrusive

bodies and plunge roughly 35° at N60E strike. These mineral zones can vary in thickness from 0 m to 12 m and locally can be discontinuous. Economic gold mineralization occurs where a sericite-pyrite ± silica assemblage is visually observed. Very high gold grades are reported from 10 g/t to >100 g/t over thicknesses from 0.3 m to several metres with local visible gold, in locally intense silicified zones. Pyrite dominantly occurs as disseminations and fracture filling veinlets that locally contain significant amounts of tourmaline (Figure 7-12a-b) along with traces of other sulphide species, chiefly chalcopyrite. Gold mineralization associated to pyrite mineralization and intense phyllic alteration makes up greater than 90% of recorded mineralized intervals in the Caribou zone.

A) Pyrite stringers associated with strongly sericite-altered andesite. B) Strong sericite alteration associated with gold-bearing pyrite stockworks at the contact between a fragmental granodiorite porphyry dike (I2P) and a red quartz-monzonite (Red Dog). All gold grades (Au g/t) are cut to 100 g/t, unless indicated.

Figure 7-12: Typical mineralization and alteration style in the Caribou zone of the Windfall Lake deposit.

7.7 Drilling Highlights

Drilling highlights for the Caribou zone are listed in Table 7-3.

Table 7-3: Drilling highlights from the Caribou zone

Zone	Hole	From (m)	To (m)	Interval (m)	Au uncut (g/t)	Au cut (g/t) to 100 ppm
Caribou	OSK-W-16-735	101.8	137.2	35.4	17.00	6.06

Zone	Hole	From (m)	To (m)	Interval (m)	Au uncut (g/t)	Au cut (g/t) to 100 ppm
CS1	OSK-W-17-820	558.5	564.5	6.0	31.40	25.40
Caribou	OSK-W-16-720	260.0	265.7	5.7	34.40	20.90
CS1	OSK-W-16-706-W1	546.5	563.0	16.5	5.75	3.53
Caribou	OBM-16-626	40.5	43.0	2.5	54.80	41.80
Caribou	OSK-W-17-871	152.0	156.8	4.8	17.90	13.40
CS1 FW	OSK-W-17-820	616.5	619.0	2.5	936.00	32.10
Caribou extension	OSK-W-17-1391	453.0	455.0	2.0	42.70	33.00
CS1	OSK-W-17-842	540.0	545.5	5.5	14.50	8.55
CN1 FW	OSK-W-17-1079	597.0	599.3	2.3	108.00	17.50

7.7.1 Mallard Zone

The Mallard mineralized zone is located northwest of the Main zone and above the large monzonitic Red Dog sill (I2F). The Mallard zone is hosted within bimodal volcanic sequences with mafic volcanics (V2) dominating the lower stratigraphy and felsic volcanics (V1) dominating the upper portion of the area near the surface (Figure 7-9). Gold mineralization is mostly associated within quartz-feldspar porphyry dikes (I1P) that plunge roughly 35° and strike 145°N. It is also hosted in bleached mafic volcanics (V2) adjacent to quartz-feldspar porphyry dikes (I1P).

7.7.1.1 Alteration

Proximal to the mineralized intervals, the rocks have a phyllic alteration assemblage consisting of sericite > pyrite > silica > chlorite. Sericite alteration is mainly associated with quartz-feldspar porphyry dikes and is also observed as bleaching in the mineralized andesitic host rock, adjacent to these porphyry dikes. Distal alteration assemblages consist of a chlorite > sericite assemblage with most of the quartz-porphyry dikes containing abundant chlorite spots. Distal alteration assemblages are associated with lesser gold grades.

7.7.1.2 Mineralization

The main setting for gold mineralization is auriferous pyrite veinlets that are controlled by the contacts of the quartz-feldspar porphyry dikes. The mineralization expands into the dike or several metres into the wall-rock lithologies, mainly within bleached andesite. Economic gold values occur as sub-vertical lensoids that mimic the shape of the intrusive bodies and follow a general strike of 145°N with higher concentrations of gold restricted to the interior of the quartz-feldspar porphyry dikes. Pyrite stringers and local pyrite clusters are mainly associated with strong sericite and local silica alteration. Mineralization is also found in bleached andesite as pyrite stringers and disseminations, marginal to the quartz-feldspar porphyry dikes. The fragmental felsic porphyritic intrusive (I2P) in the Mallard zone is locally mineralized, although the grades are poorer than elsewhere on the Windfall Lake property. Most of the mineralization associated with the I2P is found at or near the contacts with andesite.

7.7.1.3 Drilling Highlights

Drilling highlights for the Mallard zone are listed in Table 7-4.

Zone	Hole	e From To (m) (m)		Interval (m)	Au uncut (g/t)	Au cut (g/t) to 100 ppm
Mallard	OSK-W-17-1087	354	356.6	2.6	191	19.6
Mallard	OSK-W-17-1225	245.2	247.5	2.3	20.5	-
Mallard	OSK-W-17-1124	204.6	207	2.4	18.3	-
Mallard	ard OSK-W-17-1276 176 178.8 2.8		2.8	12.6	_	
Mallard	OSK-W-17-1276	195.6	197.6	2	13.3	_
Drake	Drake OSK-W-17-969 58.2 61.5		61.5	3.3	7.39	-
Mallard	OSK-W-17-977	269.5	271.7	2.2	12	-
Mallard	OSK-W-17-969	210.6	213 2.4		10.1	_
Drake	OSK-W-17-1224	70.3	73.1	2.8	15.7	-
Mallard HW	OSK-W-17-1225	201.3	203.6	2.3	9.58	-

Table 7-4: Drilling highlights from the Mallard zone

7.7.2 Underdog Zone

The main lithological feature of the Underdog mineralized zone is a large composite felsic to intermediate porphyritic stock hosted in low angle dipping felsic to mafic volcanic rocks (Figure 7-9). The intrusive stock forms a large ellipsoidal shape with its main axis plugging ~35° toward the east-northeast. The porphyritic stock is composed of three intrusive phases that show good continuity up and down plunge. The earlier phase forms the large fragmental intrusive body (I2P) with biotitic alteration. The stock is later intruded by two smaller volumetric phases, including a quartz-feldspar-plagioclase porphyry dike with biotitic and sericitic alteration. The I1P dikes are generally restricted within the core of the I1P YB intrusive body and appear to be the latest felsic intrusive phase associated with gold mineralization.

7.7.2.1 Alteration

Two main alteration mineral assemblages affect the rocks of the Underdog mineral zone that locally completely or partially obliterated the original texture of the intrusive rocks. The first is an early and barren potassic alteration represented by fine grained pervasive biotite (phlogopite), and a later phyllic (sericite-silica-pyrite-tourmaline \pm chlorite) alteration assemblage associated with gold mineralization. The potassic alteration affects the majority of the fragmental felsic porphyry (I2P) stock and is locally observed in the large quartz-eye porphyry dikes (I1P YB). The latter phyllic alteration is an acidic lower temperature assemblage that is observed in all the rocks including the syn-mineral quartz porphyry (I1P) dikes and altered the rocks that were previously altered to biotite.

The presence of sericite and strong silica alteration is typical of the high-grade gold zones intersected in the Underdog mineralized zone. Beyond the sericite dominated halo, the early biotitic alteration retrogrades to a chlorite > sericite + pyrite and is normally barren or weakly and erratically mineralized.

7.7.2.2 Mineralization

Mineralization in the Underdog zone is recognized as sub-vertical to steeply dipping envelopes, with true widths averaging 2 m to 8 m and oriented east-northeast (060-075°N). These mineralized zones are known as the Z14, FW0, FW1, FW2, FW3,

FW3U, and FW4 zones. The contacts of the quartz-feldspar porphyry dikes may have acted as conduits for gold-rich hydrothermal fluids, an interpretation that is reinforced by the presence of strong sericite (+/-) silica alteration coupled with gold mineralization found proximal to the dike contacts (Figure 7-13). Sulphide minerals include pyrite \pm sphalerite-chalcopyrite-molybdenite and occur as disseminations and as stringers typically millimetric in size.

Although gold mineralization generally follows main intrusive contacts, some goldmineralization is not bounded by intrusive contacts (e.g. gold mineralization within the I2P stock). Gold mineralization in this case can be attributed to unknown or unrecognized structural features in the Underdog mineralized zone, which may have caused remobilization of the gold along such structures. Another potential postulation could be rheological or structurally-influenced inflexion points in the quartz-feldspar porphyry (I1P YB) stock that may have focused the gold-rich hydrothermal fluids in the pre-mineral fragmental granodiorite porphyry stock (I2P) near the inflexion points in the quartz-feldspar porphyry (I1P YB).



Figure 7-13: Drill hole OSK-W-17-821-W1. Strong sericite with localized zones of strong silica alteration coupled with pyrite-gold mineralization within a synmineral quartz porphyry dike (I1P) in the Underdog mineralized zone. The average gold assays from 1,219.4-1,220.1 m (marked by solid yellow arrows) is 13.75 g/t gold (cut to 100 g/t).

7.7.2.3 Drilling Highlights

Drilling highlights for the Underdog zone are listed in Table 7-5.

Table 7-5: Drilling highlights from the Underdog zone

Zone	Hole	From (m)	To (m)	Interval (m)	Au uncut (g/t)	Au cut (g/t) to 100 ppm
FW1	OSK-W-17-821-W1	1110.0	1141.0	31.0	24.9	16.4
FW3U	OSK-W-17-1275	844.0	849.0	5.0	76.5	59.9
FW3U HW	OSK-OBM-16-693	654.1	664.0	9.9	30.8	22.2

Zone	Hole	From (m)	To (m)	Interval (m)	Au uncut (g/t)	Au cut (g/t) to 100 ppm
FW3U	OSK-OBM-16-609	654.3	662.0	7.7	63.2	23.7
FW1	FW1 OSK-W-17-789		860.9	7.9	19.4	16.4
FW3	OSK-W-16-706-W1	1033.0	1041.9	8.9	16.6	15.9
FW2	OSK-W-16-743	1233.7	1236.3	2.6	303.0	47.0
FW2	OSK-W-17-833-W2	1014.0	1017.0	3.0	43.9	41.6
FW3	OSK-EAG-12-333	848.1	850.2	2.1	116.0	59.4
FW0	OSK-W-17-821-W1	937.0	941.0	4.0	36.7	35.4

7.7.3 Lynx Zone

The geological interpretation for the Lynx zone is based on the relative timing of rock units and the spatial relationship of the gold mineralization with the I1P dikes. From oldest to youngest lithologies, these are: rhyolite (V1), gabbro (I3A), felsic porphyry dikes with small quartz eyes (I2P), magmatic-hydrothermal breccia (I1 Frag), felsic intrusive porphyry with large quartz eyes (I1P) followed by late quartz porphyry monzonitic intrusions (I13) (Figure 7-14).

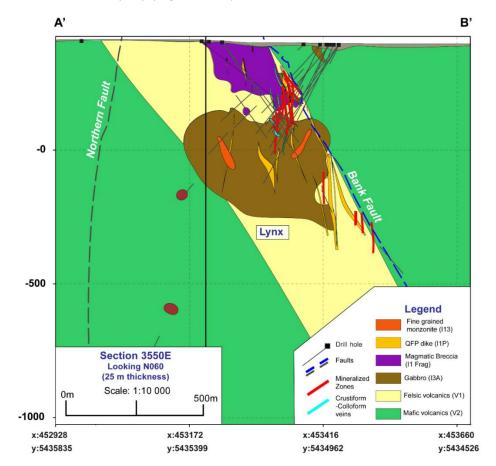


Figure 7-14: Simplified northwest-southeast vertical cross-section of the geology of the Lynx zone of the Windfall Lake deposit along grid line 3550E (A'-B' in Figure 7-8), showing the spatial setting and geometry of mineralized zones shown in red

Often, the gold mineralization is constrained to the silicified-sericitized contacts of the large quartz eyes felsic porphyry intrusive (I1P) with the other rock types. A second significant gold mineralization is hosted within crustiform veins generally occurring near the upper contacts of the gabbro with the other rock types.

The injection of quartz porphyry dikes (I1Ps) occurred later, plunging towards the fragmental granodiorite porphyry stock (I2P) margins and cross-cutting all the lithologies described above. The dikes are emplaced along a shear zone roughly parallel to the Bank Fault.

7.7.3.1 Alteration

Sericite and silica hydrothermal alteration in the Lynx zone are associated with gold mineralization. The alteration occurs as large sericitic envelopes or halos (up to several tens of metres) to narrow (less than 10 m) pervasive silica flooding. Silica may also be weakly to moderately pervasive, occur within fractures, veins, and as patches.

The silica alteration is interpreted as the main pathfinder to gold mineralization. Usually the best mineralized intervals, locally with visible gold, are often related to the pervasive silica flooding or crustiform-like veining.

7.7.3.2 Mineralization

Mineralization in the Lynx zone is recognized as sub-vertical to steeply dipping envelopes, with true widths averaging 2 m to 6 m and oriented east-northeast (060-075°N). These mineralized zones are known as the Lynx Hanging Wall, Lynx 1, Lynx 2, Lynx 3, and Lynx 4 zones and are spatially associated with the vertically emplaced sericite-(±silica) altered quartz-feldspar porphyry (I1P) dikes (Figure 7-15a). Mineralization is also associated with silica and sericite alteration and often near the contacts of the dikes and the felsic volcanic rocks with the breccia, the gabbro, and the Bank Fault. Gold grade can vary from a few parts per million to very high grade (greater than 100 g/t). Very high gold grades (bonanza zones) are reported generally in the tens of g/t over several metres in thickness and locally can reach over 1 kg/t over intervals less than 1 m, in locally intense silicified zones (Figure 7-15b).

Gold mineralization is also associated with weakly to locally moderately developed crustiform-colloform veins that often occur within the gabbro near the contacts with rhyolite and quartz-feldspar porphyry dikes. The length of the crustiform-colloform veins may extend up to 1 m to 2 m on average and appear to extend up to 150 m along the same trend, however they are discontinuous.

Mineralization hosted within the fragmental felsic intrusive unit (I1 Frag) is mainly observed in the fragmental facies occurring as stringers, dissemination (within silicified zones), crustiform-colloform-like quartz-carbonate veins, and quartz-tourmaline veining. Minor-narrow-discontinuous gold bearing hydrothermal tourmaline-pyrite-silica breccia dikes are also present, cutting all previously described gold mineralization styles (Figure 7-15c).

🗱 InnovExplo

A) Silicified and strongly sericitized rhyolite containing abundant pyrite stringers and local specks of gold in contact with porphyry dikes (I1P). B) Bonanza-grade zone associated with strong silica-pyrite alteration. C) Goldbearing silica-tourmaline hydrothermal breccia. All gold grades are cut to 100 g/t unless indicated.

Figure 7-15: Typical mineralization and associated alteration styles in the Lynx zone of the Windfall Lake deposit

7.7.3.3 Drilling Highlights

Drilling highlights for the Lynx Zone are listed in Table 7-6.

Zone	Hole	From (m)	To (m)	Interval (m)	Au uncut (g/t)	Au cut (g/t) to 100 ppm
Lynx 4	OSK-W-17-1166-W1	1027.0	1032.9	5.9	415.0	69.6
Lynx 4	OSK-W-17-909	912.0	918.2	6.2	301.0	53.7
Lynx 1	OSK-W-17-834	292.0	295.7	3.7	421.0	27.8
Lynx HW	OSK-W-17-1169	761.0	763.0	2.0	479.0	30.3
Lynx HW	OSK-W-17-1343	541.0	546.0	5.0	140.0	30.8
Lynx 2	OSK-W-17-881	412.0	414.0	2.0	379.0	30.7
Lynx 1	OSK-W-16-760	223.0	232.0	9.0	95.3	42.7
Lynx 4	OSK-W-17-923	890.1	892.5	2.4	210.0	44.3
Lynx 2	OSK-W-17-837	320.0	328.4	8.4	97.4	33.7
Lynx 1	OSK-W-17-792	309.5	318.7	9.2	42.1	25.2

Table 7-6: Drilling highlights from the Lynx zone

7.7.4 Zones F-17, F-51 and F-11

The mineralized F-zones are of second order in terms of scale compared to the zones composing the main Windfall Lake deposit (Figure 7-7 and Figure 7-8). The F-17 and F-51 zones are two separate zones of gold mineralization containing typical orogenic gold mineralization (also termed greenstone-hosted quartz-carbonate vein mineralization). The two zones, located approximately 450 m north-northeast from the Main zone, trend subparallel to the Main zone along a shear zone and dip steeply to the north. Both zones are aligned along the same trend but separated by

approximately 500 m. Zones F-17 and F-51 are characterized by multiple quartzfeldspar porphyry dikes (I1P) cross-cutting host mafic volcanic rocks (V2). Gold mineralization is spatially associated with quartz-porphyry dikes restricted to the shear zone. Limited drill hole data are available from this gap zone. Continuity between the two zones cannot be established from the current drilling data. Both zones are characterized by strongly developed foliation associated with sericite fuchsitetourmaline-pyrite alteration.

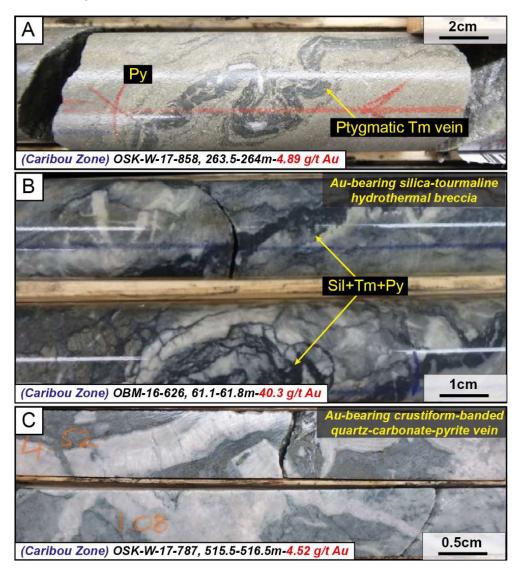
Zone F-11 is located 900 m NNE of the main deposit and forms a narrow corridor of alteration and mineralization oriented ENE. Zone F-11 is characterized by multiple quartz-feldspar porphyry (I1P) dikes cross-cutting host mafic volcanic rocks (V2). Gold mineralization is spatially associated with the contacts of the quartz-feldspar porphyry dikes (I1P) and host mafic volcanics (V2).

7.7.4.1 Alteration

Alteration in zones F-11, F-17 and F-51 is confined to the lithological contacts and their margins. More specifically, alteration seems to be restricted to the contacts between the quartz-porphyry dikes (I1P and I2P) and the host mafic volcanics. There are slight differences in terms of spatial distribution and intensity between zones. All zones present a similar sericite-carbonate alteration mineral assemblage, though zone F-11 seems to be lacking silica.

In zones F-17 and F-51, the alteration appears to have been solely constrained within the area of the shear zone. Pervasive sericite-carbonate-fuschite (\pm) silica alteration assemblage is strong along the shear zone. It was observed that most of the I1P and the I2P dikes composing the zone F-17 are found within the shear. The few quartz-feldspar porphyry dikes found outside of the shear lack alteration.

7.7.4.2 Mineralization


In zones F-17 and F-51, gold distribution is constrained to the shear zone suggesting a genetic link between the host structure and the mineralization. In zones characterized by strongly developed foliation, alteration is dominated by sericite-fuchsite-tourmaline-pyrite that can contain up to 15% of white quartz-albite-carbonate veins with 1% to 10% pyrite and traces of sphalerite and chalcopyrite. Visible gold is also frequently present in the veins. The highest gold grades are associated in brecciated zones where fuchsite and tourmaline are abundant.

The F-11 zone is a small gold mineralized area located near the portal of the ramp. Gold mineralization consists of small quartz-carbonate extensional veins, typically less than 1 cm thick, characterized by their high content of visible gold. Continuity of this gold mineralization has not been demonstrated.

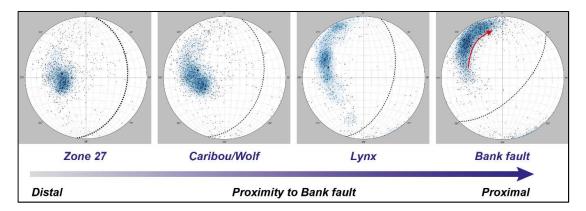
7.8 Other Mineralization Styles

Other minor mineralization styles that locally contain significant gold grade occur at the Windfall Lake deposit and generally cross-cut the main gold mineralization event associated with sericite-silica alteration zones at the contacts with other rock units. These other types of mineralization are seen in all zones of the deposit. Examples from the Caribou zone include pyrite disseminations and fracture filling veinlets that locally contain significant amounts of tourmaline (ptygmatic) and Fe-carbonates (Figure 7-16a) along with traces of other sulphide species, chiefly chalcopyrite. Other

observed mineralization styles include quartz-tourmaline \pm pyrite hydrothermal breccia/veins (Figure 7-16b), and quartz-carbonate \pm pyrite colloform-crustiform veins (Figure 7-16c) that have variable thicknesses, typically several centimetres. The colloform-crustiform veins can extend over 500 m along the same trend in the Main zone, however they are discontinuous. These other minor mineralization styles are often at low-angle to the core.

A) A ptygmatic tourmaline and Fe-carbonate vein in disseminated to semi-massive pyrite. B) Low-angle goldbearing silica-tourmaline hydrothermal breccia. C) Low-angle gold-bearing crustiform quartz-carbonate-pyrite veins. All gold grades (Au g/t) are cut to 100 g/t unless indicated

Figure 7-16: Other mineralization types and associated alteration styles present in the Windfall Lake deposit


7.9 Structural Geology

Major structures are observed in drill core, trench surfaces and as major lineaments interpreted from both ground and airborne geophysics (magnetic, gradient EM and IP-resistivity surveys). Current information supports northeast trending (050° to 060°

azimuth) shear and fault zones with both northwest and southeast dipping (55° to 60°) inclination. These are referred to as the Northern Fault located northwest of the deposit and the Bank Fault located southeast of the deposit (Figure 7-8, Figure 7-9 and Figure 7-14). Several shear zones cross-cut the property, including the east-trending Urban Deformation zone and the east-northeast-trending Milner and Masères shear zones. The latter, also known as the Bank Fault at Windfall, is interpreted to cross-cut the Windfall Lake deposit. Some of the shear zones are spatially related to distal gold mineralized zones (e.g., zones F-51 and F-17). The Milner and Masères shear zones are truncated to the north by the Urban Deformation zone. The Windfall fault is interpreted as a brittle feature that bisects the Property and cuts all shear zones.

Osisko has done a preliminary structural study of the Windfall Lake deposit to define the attitude of specific structural features, such as schistosity, pyrite stringers, and veins. The study compared structural data measured in oriented core from four zones in the deposit: Zone 27, Caribou, Lynx, and proximal or beyond the Bank Fault. The structural data from Underdog and Mallard were not compared to these data sets. Results of this preliminary study are briefly described below.

The schistosity is dominantly observed in volcanic rocks as quartz-feldspar porphyry dikes generally tend to not develop schistosity. The volcanic rocks tend to develop a well-defined penetrative schistosity that is weak to moderate in intensity and locally can be very strong forming discreet shear zones that vary in thickness from several centimetres to a few metres. These shear zones have not been mapped for their continuity but likely represent sub-vertical subtle features. The attitude of the schistosity in the Caribou zone strikes N15E dipping 40°E, whereas, the schistosity in Zone 27 strikes north-northwest and dip 30°E (Figure 7-17). The schistosity becomes more intense towards the Bank Fault and parallelize to its general trend (i.e., the Lynx zone; Figure 7-17).

Figure 7-17: Stereographic projection of the schistosity measured in oriented DDH core within volcanic rocks by zones

Pyrite stringers in the Caribou zone has two preferred orientations (Figure 7-18). One is oblique to schistosity and one is nearly parallel to it in felsic volcanic rocks. The most dominant orientation strikes N50E dipping 65°E. This attitude is similar to the orientation of the schistosity in the Bank Fault. The least dominant orientation strikes roughly N15E dipping 60°E. This attitude is similar to the orientation of foliation observed in the felsic volcanic rocks of the Caribou zone. Pyrite stringers in Zone 27

also have two preferred orientations, one oblique to foliation and one nearly parallel to foliation (Figure 7-18). The most dominant orientation strikes ENE and dips at 70°SE which is similar to the orientation of the schistosity recorded in the Bank Fault. The least dominant orientation strikes roughly north-northeast and dips 50°E like schistosity in the volcanic rocks.

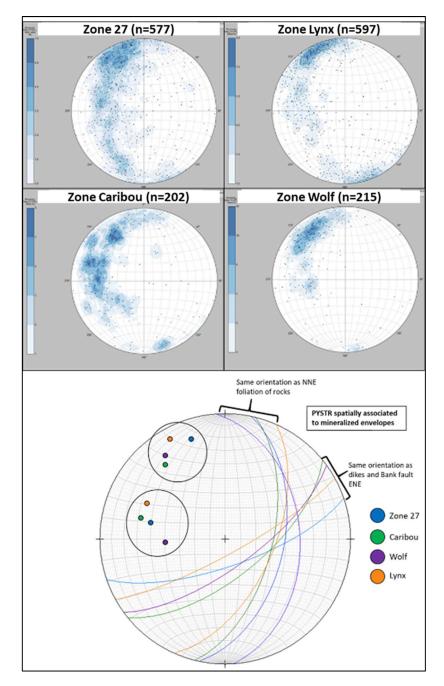
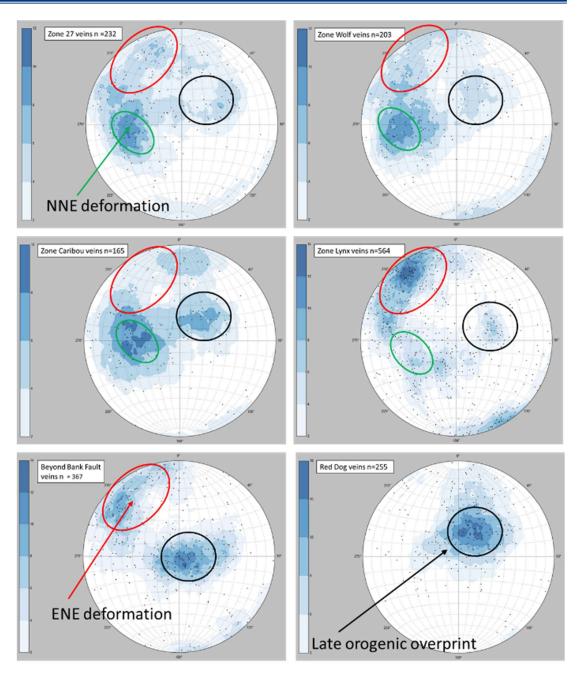



Figure 7-18: Stereographic projection of pyrite stringers (PYSTR) proximal to mineralized envelopes from Zone 27, Caribou, Wolf and Lynx along with the interpretation

Quartz veins in the Caribou zone have two preferred orientations (Figure 7-19). One vein set strikes north and dips roughly 40°E nearly parallel to foliation in the volcanic rocks. A second vein set is observed striking roughly south-southeast dipping 40°SW. Veins of this orientation are the only vein set recorded in the post-mineral Red Dog dike, and thus represents a late hydrothermal event. Quartz veins in Zone 27 have three preferred orientations. One vein set is oriented near parallel to the foliation of the rocks striking north-northwest dipping 40°E. Two vein sets occur oblique to foliation, one striking N60E dipping 70°SE and the other striking south-southeast dipping 33°SW (Figure 7-19). The vein set striking northeast has a similar attitude to the foliation measured in the Bank Fault and could possibly be related to the same deformational event. The vein set striking south-southeast is not a typical structural orientation observed at the Windfall Lake deposit. They are late fracture filling barren quartz veins that do not contain economic gold mineralization. This type of vein set is commonly observed in the Red Dog dike and therefore is interpreted as a late hydrothermal event.

Data indicates that at least three quartz vein sets are present

8. DEPOSIT TYPE

The Windfall Lake deposit most likely represents an Archean intrusion-related hydrothermal gold system based on observations from drilling and geological mapping, as well as mineralogical assemblages, the close spatial and temporal association of porphyry intrusions, alteration and gold mineralization, and the lack of A/B vein type and intermineral intrusion phases (Thompson et al. 1999; Lang et al. 2000). The mineralization in distal parts of the system (e.g., F-17 and F-51 zones) shows strong evidence of gold-enrichment associated with orogenic greenstonehosted quartz-carbonate veins (Dubé and Gosselin 2007). The environment of mineralization also closely resembles syenite-hosted disseminated gold deposits in the Abitibi greenstone belt (e.g., Malarctic district) as described by Robert (2001), but there is no evidence of Timiskaming-type sedimentary rocks neither alkaline intrusions in the close area of Windfall. The lack of Timiskaming-type sediments is potentially consistent with the short timeline between the first pre-mineral porphyry intrusions (2701 ±2.0 Ma; Davis 2016, unpublished) and the last post-mineral porphyry intrusions (2697 ±0.9 Ma; Davis 2016, unpublished), which would not have generated a significant uplift required to initiate significant sedimentary material and subsequent basin. Sediment could have also been eroded.

Like most ore deposits, the formation of intrusion-related gold systems involves a structural component that may have influenced the geometry and emplacement of intrusions and related mineralization and alteration (Mair et al. 2000; Miller et al. 2000; O'Dea et al. 2000; Stephens et al. 2000). The lack of detailed structural mapping in the Windfall Lake area combined with a possible overprinting of alteration and mineralization makes it difficult to identify the main structural controls in the area. However, not refuting the existence and influence of structural features, the porphyry intrusions in the Windfall Lake area are likely the source and a major factor controlling the occurrence of gold mineralization. A brief description of the genetic model of intrusion-related gold deposits is presented below.

8.1 Intrusion-Related Gold Deposits

The term intrusion-related gold systems ("IRGS") is a relatively newly defined gold deposit class and has been described in recent years by many workers (Sillitoe 1991; Sillitoe and Thompson 1998; Lang et al. 2000; and Thompson and Newberry 2000). IRGS are defined as magmatic-hydrothermal systems where gold mineralization is hosted primarily within the intrusions or in the immediate wall rocks of these intrusions. Although some genetic ambiguities still surround this type of deposit, many characteristics have been established to define this model. Most of the genetic characteristics related to IRGS deposits have been recognized in the best studied Tintina Gold Province of Alaska/Yukon (Hart et al. 2002; Newberry 1995; McCoy et al. 1997) and will be described below.

IRGS are most often found inboard of collisional arc settings, often superimposed on older basement rock. The intrusions that are associated with IRGS formed at depths of <1 km to >8 km with most of the intrusions being at depths of 4 km to 6 km. Fluid inclusions in these deposits show variations that likely reflect the exsolution of volatiles at different crustal levels. In general, saline fluid inclusions are found in shallow levels, whereas carbonic-rich inclusions are found in deep environments

(Baker 2002; McCoy et al. 1997). These intrusions are best defined as reduced I-type magmas with oxidation states in the ilmenite series of Ishihara (1977).

Most deposits are characterized by reduced mineral assemblages dominated by pyrite, pyrrhotite, arsenopyrite. The intrusions are predominantly felsic, alkalic, and metaluminous, typically ranging from granodiorite to granite. Isotopic data from these plutonic suites indicate a large crustal contribution (Marsh et al. 2003; Mair 2004). Such intrusions, including highly fractionated intrusive phases, are often accompanied by gold mineralization, reflecting the incompatible behaviour of gold mineralization.

IRGS deposits are characterized by a range of mineralization styles reflecting proximal to distal environments to the mineralizing pluton that are associated with distinctive ore assemblages (Figure 8-1). The mineralogical and spatial evolution of the intrusion-related gold system reflect temperature and hydrothermal fluid variations from the host pluton with an early, high-temperature mineral assemblage, gradually followed by a late stage low temperature mineral assemblage more distal to the pluton (Thompson et al. 1999; Hart et al. 2000, 2002; Lang and Baker 2001). Intrusion-hosted mineralization consists predominantly of sheeted veins (Au-Bi-Te \pm W, Mo, As). Mineralization styles in proximal environments occur as breccias, disseminated and fracture-controlled (Au-As \pm Sb). Base metal-rich fissure veins are characteristic of distal environments (Au-As-Sb \pm Ag-Pb-Zn).

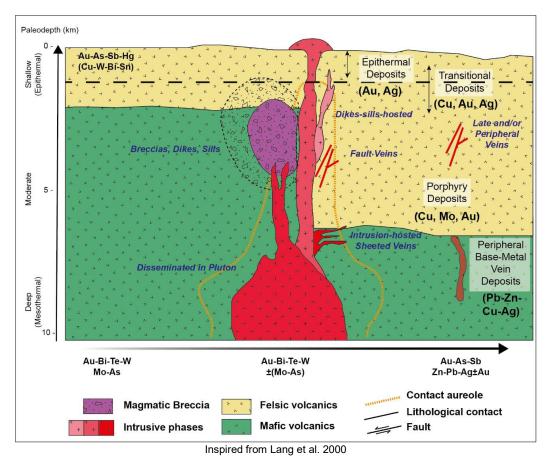


Figure 8-1: Schematic geological model for intrusion-related gold systems at Windfall showing lateral and vertical mineralogical zonations

8.2 Windfall Lake Deposit

The Windfall Lake gold deposit is located in the Urban-Barry greenstone belt and occurs in bimodal volcanic rocks of the Macho Formation, constituted by felsic, intermediate, and mafic volcanics of tholeiitic affinity that are intruded by a series of younger calc-alkalic quartz-feldspar porphyry dikes. The general morphology of the orebodies (i.e., quartz-feldspar porphyry dikes) in the Windfall Lake deposit is tabular and discordant to the host volcanic units that are moderately plunging 35° north-northeast. Even if the generative of the mineralized zones is quite predictable in space, the controls and the genesis of the localization of the orebodies are not yet fully understood. So far, porphyry dikes for which contacts with hosting volcanic rocks appears to represent the main control over most of the mineralization, however, fractures, fault zones, structural fabric, and primary stratigraphic contacts are likely the influence on the emplacement of porphyry dikes but also late minor gold event.

Unmineralized volcanic rock units and the late-stage guartz-monzonite "Red Dog" sill display a propylitic alteration assemblage. Proximal to the mineralized quartz-feldspar porphyry dikes, the host volcanic rocks and the porphyry dikes have undergone phyllic alteration, pyritization, and local silicification. The most common type of mineralization occurs as millimetre- to centimetre-thick pyrite-silica stockworks and pyrite disseminations (less than 10 vol%) in or marginal to the guartz-feldspar porphyry dikes and contact volcanic rock units. Alteration haloes associated with gold mineralization are generally confined to narrow alteration envelopes restrained to the porphyry dikes and/or in the volcanic host rocks surrounding the dikes and are dominated by strong sericite-carbonate and/or silica spatially associated with pyrite mineralization. Remnants of early potassic alteration in pre-mineral guartz-feldspar porphyries (i.e., biotite transformed to chlorite) are locally visible and associated with minor chalcopyrite and molybdenite as observed in the Underdog mineralized zone. The main ore minerals are pyrite, followed by chalcopyrite, and minor galena, sphalerite, molybdenite, and Ag-Pb-Bi-bearing tellurides, and sulphosalts. Visible gold is a common occurrence in the Windfall Lake deposit. The alteration associated to this main stage mineralization occurs prior to the main regional deformational event since the schistosity crosscuts mineralized zones.

Milky quartz±carbonate extensional to colloform-crustiform veins overprint the main stage mineralization, and commonly contain high-grade gold mineralization, particularly in the Lynx zone. Quartz-carbonate extensional veins are also found in the late-stage Red Dog intrusion and locally contain visible gold grains. Magmatic-hydrothermal brecciated zones, composed predominantly of quartz and tourmaline, are also common and observed in all zones of the Windfall Lake deposit. Both the veins and the quartz-tourmaline breccia are interpreted to be associated with late-stage brittle deformation where gold was likely remobilized along these features.

Gold mineralization in the distal F-17 and F-51 zones exhibits clear evidence of mesothermal or shear-controlled deposits, although gold still seems to be spatially associated with quartz-feldspar porphyry intrusions confined to the shear zone. This style of gold deposit typically exhibits strong relationships with regional arrays of major shear zones. Such deposits are formed by circulation of gold-bearing hydrothermal fluids in structurally-enhanced permeable zones developed in supra-crustal rocks during regional deformation and metamorphism. Gold-associated alteration in F-17 and F-51 mineral zones consists of pervasive sericite-carbonate ± silica alteration.

Gold mineralization is hosted in pyrite veinlets, quartz-ankerite-pyrite veins and silicatourmaline-pyrite breccias

The characteristics of the gold mineralization in the Windfall Lake deposit (excluding the F-17 and F-51 zones) are similar to intrusion-related gold mineralization as discussed above. Although these atypical deposits display similar regional-scale controls and commonly occur in the same camps as orogenic deposits, they differ in styles of mineralization, metal association, interpreted crustal levels of emplacement, and relative age. Additionally, gold mineralization at the Windfall Lake deposit shows a close spatial association with high level porphyry stocks and dikes.

9. EXPLORATION

This chapter of the report will briefly summarize the exploration work completed on the Windfall Lake property from April 28, 2015 (the day following the effective date of the previous Preliminary Economic Assessment report) to March 2, 2018 (Table 9-1). Drilling campaigns during that period are covered under Item 10.

From 2015 to present, Osisko Mining Inc. (formerly Oban Mining Corp) was in charge of the exploration on the property. A summary of exploration work is described in Table 9-1.

9.1 2015

During the fall of 2015, a total of 777 till samples were collected throughout the Urban-Barry property. The samples were collected by the staff of Osisko Exploration James Bay who was acting as sub-contractor. Most of the till samples are spaced by a 500 m mesh. Analysis of the fine and dense fractions was contracted to Actlabs in Ancaster, Ontario. Analysis of the gold grain counts was contracted to Overburden Drilling Management ("ODM") in Ottawa, Ontario.

9.2 2016

From January 13 to March 6, 2016, SkyTEM Canada Inc. carried out a SkyTEM electromagnetic and magnetic survey over the Urban-Barry greenstone belt and the Windfall Lake deposit. A total of 9,277 line-km, specifically 722.85 line-km over the Windfall deposit were acquired during the survey, with traverse line spacing of 200 m and tie line spacing of 2,000 m.

From February 8 to April 12, 2016, Geotech Ltd. carried out a helicopter-borne magnetic survey over the Urban-Barry greenstone belt and included the Windfall Lake deposit. A total of 34,240 line-km, specifically 2,761.97 line-km over the Windfall deposit of geophysical data were acquired during the survey, with traverse line spacing of 50 m and 100 m and tie line spacing of 500 m.

During the summer of 2016, a second regional till survey was carried out specifically for the Windfall Lake area. A total of 28 till samples for fine fraction analysis (1 kg) and 19 till samples for gold grain counts and heavy mineral concentrate analysis (15 kg) were collected. The samples were collected by Osisko Exploration James Bay's staff at a mean grid-space of 500 m. Detailed till survey of 1 kg till samples, spaced by a 100 m mesh, were locally performed to define anomalous results obtained during the 2015 till sampling program. Analysis of the fine fraction and the heavy mineral concentrate were contracted to Actlabs in Ancaster, Ontario. Analysis of the gold grain counts were contracted to ODM in Ottawa, Ontario.

Potential targets recognized from the compilation of till surveys and geophysical surveys carried out at the beginning of the year led to ten days of data compilation and six weeks of prospecting in the Urban-Barry belt during the months of June and July, with the aim of developing new auriferous targets.

9.3 2017

From December 11, 2016 to January 2, 2017, Geo Data Solutions GDS Inc. ("GDS") performed digitally-recorded high sensitivity helicopter-borne magnetic survey consisting of 5,307 line-km over six properties in the Urban-Barry area, with traverse line spacing of 100 m and tie line spacing of 1,000 m.

Simultaneously, from the 7th to the 21st of December 2016 and from the 6th to the 19th of January 2017, Abitibi Geophysics Inc. conducted an OreVision[®] polarization survey covering an area of 35.9 km² in the Buteaux Township. The survey covered 18 lines spaced every 200 m with an azimuth of 0°.

From December 17, 2016 to January 29, 2017, Geotech Ltd. carried out a helicopterborne electromagnetic survey ("VTEM[™]plus") over selected areas in the Urban-Barry belt, with traverse line spacing of 200 m and tie line spacing of 2,000 m.

From the 17th to the 27th of April and 23rd of May to June 5, 2017, Abitibi Géophysique Inc. performed a ground Induced Polarization ("IP") survey in the Fox deposit area, northeast of the Windfall Lake deposit, covering 53.9 line-km. The survey covered 25 lines with maximum line lengths of 2.4 km, and with a spacing of 100 m.

The summer fieldwork program was conducted from June 5 to July 24, 2017 and consisted of prospecting and till sampling over different sectors of interest in the Urban-Barry property. Prospecting focused on targets mainly determined by high definition airborne magnetic surveys, and a compilation work including geological, geophysical and geochemical layers. The till survey (fine fraction analysis, gold grain count and heavy mineral concentrate analysis) was mainly planned on newly acquired claims or to define anomalous till clusters obtained during the 2015 and 2016 till campaigns. The till survey (fine fraction analysis, gold grain count and heavy mineral concentrate analysis, gold grain count and heavy mineral concentrate analysis, gold grain count and heavy mineral concentrate analysis. The till clusters obtained during the 2015 and 2016 till campaigns. The till survey (fine fraction analysis, gold grain count and heavy mineral concentrate analysis) was mainly planned on newly acquired claims or to define anomalous till clusters obtained during the 2015 and 2016 till campaign. A total of 344 outcrops and 49 boulders were examined and from these 447 samples were collected for gold and multi-element analysis and four samples were collected for whole rock analysis. A total of 288 till samples were collected for fine fraction analysis, gold grain count analysis and heavy mineral concentrate analysis (1+15 kg) and 16 till samples were collected only for fine fraction analysis (1 kg).

From March 30 to April 16, 2017, Abitibi Géophysique Inc. performed an IP survey on the Black Dog deposit consisting of 57.6 line-km. The line spacing was 100 m with maximum line lengths of 2.4 km.

From July to October 2017, ClearView Geophysics Inc. carried out spectral IP/Resistivity surveys at the Windfall Lake project, covering an area of 121 km at 50 m to 100 m spacing.

Year	Туре	Survey	Area	Company	Amount	Reference
2015	Geochemistry	Till survey	Urban-Barry belt and Windfall Lake deposit	Osisko Exploration James Bay (Osisko Gold Royalties Ltd.)	777 samples	Gaumond and Trépanier (2015)
	Geophysics	Airborne electromagnetic and magnetic survey	Urban-Barry belt	SkyTEM Canada Inc.	9,277 km (200 m spacing)	SkyTEM Canada Inc. (2016)
	Geophysics	Airborne magnetic survey	Urban-Barry belt	Geotech Ltd.	34,575 km (50-100 m spacing)	Geotech Ltd. (2016)
2016	Geochemistry	Till survey	Windfall Lake deposit	Osisko Exploration James Bay (Osisko Mining Inc.)	28 samples	Gaumond et al. (2016)
	Exploration	Prospecting	Windfall Lake area/Urban-Barry belt	Osisko Mining Inc.	6 weeks	Sproule and Tuscherer (2016)
	Geophysics	Ground IP survey OreVision®	Project Urban-Barry Canton Buteaux	Abitibi Géophysique Inc.	35.9 km (200 m spacing)	Abitibi Géophysique Inc. (2017b)
	Geophysics	Airborne magnetic survey	Urban-Barry belt	Geo Data Solutions GDS Inc.	5,307 km (100 m spacing)	Geo Data Solutions GDS. Inc. (2017)
	Geophysics	Airborne electromagnetic survey (VTEMTM)	Urban-Barry belt	Geotech Ltd.	1,496 km (200 m spacing)	Geotech Ltd. (2017)
	Geophysics	Ground IP survey	Fox deposit area	Abitibi Géophysique Inc.	53.9 km (100 m spacing)	Abitibi Géophysique Inc. (2017c)
2017	Geochemistry	Whole-rock analysis	Urban-Barry belt	Osisko Mining Inc.	447 samples	Girard and Roussel- L'Allier (2018)
	Geochemistry	Till survey	Urban-Barry belt	Osisko Mining Inc.	228 samples	Girard and Roussel- L'Allier (2018)
	Geophysics	IP survey	Black Dog deposit	Abitibi Géophysique Inc.	57.6 km	Abitibi Géophysique Inc. (2017a)
	Geophysics	IP survey	Windfall Lake deposit area	ClearView Geophysics Inc.	121 km (50 and 100 m spacing)	ClearView Geophysiques Inc. (2017)

10. DRILLING

Information reported in this chapter was obtained from the Osisko's exploration team during the site visit and further exchanges. Osisko produces employee's reference documents for logging and sampling procedures.

This section of the report briefly summarizes Osisko's drilling program from October 20, 2015 to March 2, 2018 on the Windfall Lake deposit. Drilling was carried out by Rouillier Drilling, Orbit Garant-Myuka Drilling, and Major Drilling. The number of rigs has varied from 1 to 24. Most diamond drilling recovered NQ size drill core, with down hole orientation surveys performed by drilling companies using a Reflex tool (Reflex EZ-SHOT[™]) that simultaneously measures azimuth, inclination, total magnetic field and magnetic dip. Oban/Osisko Mining used the "CorientR" tool or "Reflex Act III RD" system to orient the core and to measure structural features.

Exploration drilling in 2017 aimed to better define the mineralized zones, with high priority of expanding the Lynx deposit at the beginning of the year and merging towards better defining the Underdog mineral zone towards the end of the year and the beginning of 2018.

10.1 Overview

Since 2015, a total of 535,967 m of surface exploration drilling has been completed by Oban Mining Corporation and Osisko Mining Inc. Details of the various drilling programs are summarized in Table 10-1 and shown in Figure 10-1. Drilling also included 4,619.5 m for metallurgical studies. The distribution and orientation of drill holes in representative cross-sections in the Lynx zone and the Main zone are illustrated in Figure 10-2 and Figure 10-3.

								whole-rock
geochemist	ry san	nples d	delivered fr	om 20	15 to Mar	ch 2	2, 2018	

Company	Year	Туре	DDH count	Length (m)	Assay sample count	Whole-rock geochemistry sample count
Oban Mining Corporation	2015	DDH	17	9,476	9,059	284
		Extension	1	189	160	7
Total			18	9,665	9,219	2,424
Oban Mining Corporation	2016	DDH	138	43,396	38,364	519
		Extension	2	730	684	81
		Wedge	1	627	608	25
Osisko Mining Inc.	2016	DDH	67	48,096	39,302	1,357
		Extension	3	12,202	817	29
		Wedge	18	1,015	11,313	413
Total			229	106,065	51,432	1,799
Osisko Mining Inc.	2017	DDH	678	323,934	241,778	8,793
		Extension	32	10,980	7,958	249
		Wedge	34	49,896	39,215	1,240
Total			804	384,809	288,951	10,282

Company	Year	Туре	DDH count	Length (m)	Assay sample count	Whole-rock geochemistry sample count
Osisko Mining Inc.	2018	DDH	47	23,456	751	196
		Extension	11	3,490	123	63
		Wedge	25	8,482	482	27
Total			83	35,428	1,356	286
TOTAL (2015-2018)			1,134	535,967	390,614	13,283

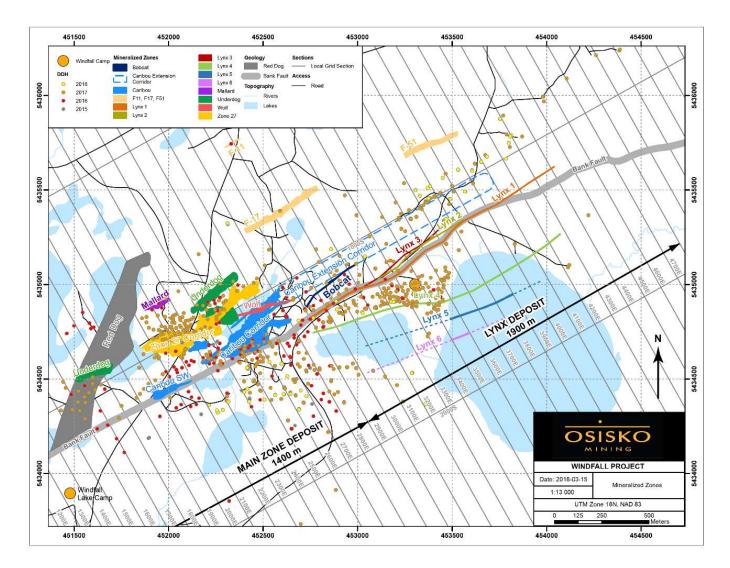


Figure 10-1: Windfall Lake property map showing drill holes completed from 2015 to 2018 by Oban Mineral Corporation and Osisko Mining Inc.

Technical Report and Mineral Resource Estimation – Windfall Lake Project June 12, 2018

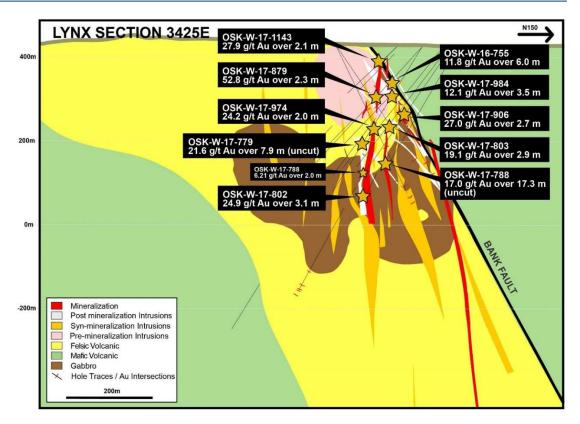


Figure 10-2: Representative geological cross-section showing the distribution of drill hole spacing and orientation and significant assay results in the Lynx zone (section 3425E)

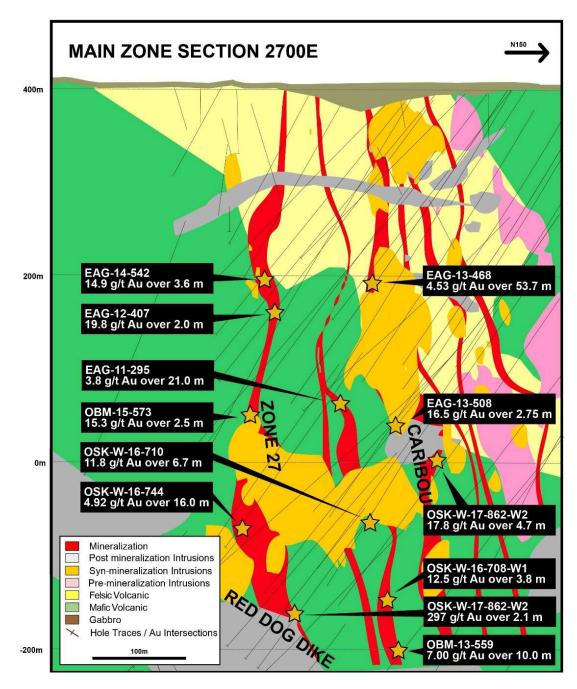


Figure 10-3: Representative geological cross-section showing the distribution of drill hole spacing and orientation and significant assay results in the Main zone (section 2700E)

10.2 Drilling Methods

All core diamond drilling completed consists of wireline diamond drilling recovering NQ size drill core. Metallurgical recovered HQ and PQ sized core and directional core drilling ("Devico[©]") recovered AQ sized core.

Directional core drilling has been used on the Windfall Lake project since June 2016, using Devico[©]'s tool DeviDrillTM. The DeviDrillTM allows controlled deviation of the drill hole path by making multiple branches from a mother-hole, reaching targets within one percent error. Field technicians from the qualified license user, Tech Directional Services Inc., are on site on a full-time basis to control the directional core drilling.

Drill hole deviation surveying at the Windfall Lake project includes singleshots and multishots, and is achieved by using the electronic down hole instrument Reflex EZ-SHOT[™]. Singleshot measurements are taken every 30 m during drilling. Multishots are taken once the drill hole is completed and measurements are taken every 3 m up hole. From March to December 2017, the North Seeking Champ Gyro[™] system provided by TMC Géophysique was used for deviation surveying in instances where the host rock was magnetic. Since the beginning of the current year, the Reflex EZ-GYRO[™] is used on all drill rigs. Measurements are taken every 10 m to 15 m up hole and down hole for accurate results.

The Reflex TN14 Gyrocompass[™] has been used to align the drill rigs to the correct azimuth and dip since May 2016. Prior to this date, the Azimuth Pointing System ("APS") was used to align the drill rigs. Drill hole coordinates are entered directly into the wireless handheld unit on site showing the live orientation of the drill rig.

All drill hole casings remain anchored in bedrock to allow future surveying, drill hole lengthening or cementation. A red metallic cap flag with the drill hole name was put on the remaining casing.

All drill cores are stored in the yard of the core shack at the Windfall Lake camp. Each core box is identified with an aluminum tag indicating the drill hole name, box number, and from-to metres of the core interval located inside the box.

10.3 Field Procedures

The drill core is placed into wooden core boxes at the drill site. Blocks are used to separate the core in the box at the beginning and end of each drill run. The core boxes are labelled and closed with transparent tape by the drillers. The drill core is brought back to the core shacks at the end of every shift from each drill site by drill contractor personnel. Core boxes are placed on individually labelled trestles in front of every core shack. Geo-technicians have the responsibility to place the core boxes in order and transport them into the core shacks on the respected core logging tables.

When working with the "CorientR" tool or the "Reflex Act III RD" system, which provided an oriented drill core reference, the drill core received from the drill at the core logging facility is aligned according to the driller marks drawn at the end of each 3 m interval drilled, to indicate lower portion of the drill hole. A blue line joining the marks is then traced by a core handling technician, indicating the bottom of the core. The core is then put back into the box oriented with the blue line in the upright (top) position.

10.4 Geological Logging

Geotechnical logging records core recovery, rock quality designation (RQD), and core alignment (refer to Section 10.3).

Once geotechnical measurements are completed, and the core is oriented, the drill core is logged by a geologist recording a detailed description of the lithologies, structures, mineralization, alteration, and veining directly into the Datamine software ("DH Logger"). Qualified professionals under the employ of Osisko are members in good standing of the OGQ or OIQ. Structures are recorded using the Reflex IQ-Logger[™] electronic instrument. Rock units are also occasionally identified using a hand-held X-Ray fluorescent (XRF) device (see Section 7.4). Handheld Vanta X-ray fluorescence energy dispersive spectrometer¹, generally known as a XRF analyzer, is routinely used at Windfall to discriminate between different lithologies, including porphyry dikes, felsic volcanics and intermediate-mafic rocks. A semi-quantitative analysis of a rock sample of 15-20 seconds is generally sufficient to determine the geochemical signature of a rock and respective rock unit. However, for an even more reliable result, a 40 second analysis is recommended. The values (e.g., TiO₂, Zr, Y and Nb) can be written on the core and are documented within the drill log.

After completion of the core description, the geologist is responsible for marking the samples on the core using a red water-proof marker. Photos of the core for the entire drill hole length are then taken with the sample tags (four boxes photographed per picture).

Once the core samples have been cut, the boxes containing the remaining core halves are placed in an outside permanent core rack.

10.5 Core Recovery

Core recovery and RQD are measured and calculated for each core and recorded in the drill log. Rock units intersected by drilling are generally solid, yielding an effective core recovery of 99.79%.

10.6 Collar Surveys

Surface drill hole collars are originally spotted in the field using an Azimuth Pointing System ("APS") instrument. Additionally, minor trails and areas were bulldozed to level the ground for drill pads and provide access to local water bodies for the emplacement of water lines and pump shacks. Down hole surveying has been performed routinely on every drill hole. A Reflex electronic instrument (Reflex EZ-SHOT[™]) is used every 30 m to record down hole deviations. Surveys are recorded daily in the drill log and monitored daily. The coordinate system used is UTM NAD 83 Zone 18.

After the completion of the drill hole, the collars are surveyed by Corriveau J.L. & Assoc. Inc. (Val-d'Or) using a high-precision Leica GPS (precision of ± 0.05 m). An inhouse high-precision GPS system is also occasionally used by Osisko's

¹ Only operators who have been trained and authorized to operate the XRF equipment are allowed to use the Vanta XRF analyzer. Geologists using this device at the Windfall Lake project are required to be certified according to NRC Standard CAN/CGSB-48.9712-2006/ISO9712:2005 (Canadian Federal Regulations (Radiation Emitting Devices Act)).

geotechnicians for surveying completed drill holes. The final surveyed coordinates are inserted in the database.

10.7 Drill Hole Validation

DH Logger, from the Fuision suite of software supplied by DATAMINE, is used to plan, log, view, and manage down hole-related data. DH Logger is a fully flexible logging software system that can be configured to meet all specific drilling and data collection requirements. In association with DH Logger, Fusion is a central database and a management system for geological, geochemical, geotechnical, geophysical, Assay, QA/QC and any field data. The Fusion-DH Logger software suite is an approved system, widely used in the mining industry and allows for complete control of collected data.

The logging method at the Windfall project utilizes a compilation of best logging practices known in exploration. The method preserves the integrity of raw results and meets all the current requirements for data capture and management according to mining industry standards. All logging geologists received personal training with a supervisor upon their arrival on the project. An internal report titled *DH Logger User's Guide* contains all explanations and procedures on the logging process and data entry (*GUIDE_UTILISATEUR_DH-LOGGER*). The *DH Logger User's Guide* is updated periodically according to the evolution of the procedures.

10.7.1 Logging Validation Rules

10.7.1.1 Collar

The collar table contains all the essential information of a drill hole and many fields are required to validate the table. All fields must be filled using a pick-list approved and validated by supervisors. If these fields are empty or not correctly filled, an error message will appear until the correction has been implicated. A complete description of the fields, rules and obligations is available in the *DH Logger User's Guide*.

10.7.1.2 Coordinates

The coordinate table contains all spatial data for the drill holes. During the creation of a drill hole in the database, the planned coordinate is noted by the logging geologist from a planning file. During the drill setup, geologists validate the planned coordinate using a handheld GPS device (spotted). The drill holes are then surveyed by an independent surveyor using DGPS and imported into the collar table. When interpreting data through planning and modeling, a Structured Query Language ("SQL") query will select the most accurate coordinate for each drill hole.

10.7.1.3 Survey

The survey table contains all drill hole deviation data. Daily deviation measurements (singleshot) are entered each morning in the database by the logging geologist and validated by the planning team. When needed and/or systematically at the end of a drill hole, series of deviation measurements (multishot) are performed on the entire drill hole. These tests are processed by a dedicated software (e.g. Reflex SProcess) and/or processed by an internal program coded in Visual Basic (WIN_GEO_DEVIATION VALIDATION_OSK-W-18-TEMPLATE_V4.12). The internal program contains formulas and rules for deviation validation, considers all the

measured parameters (e.g. dip, magnetism, magnetic declination, magnetic inclination, etc.), warning messages for errors and graphics for comparing data. The program and the associated procedure can be provided upon request.

All raw data is archived on the server while all the processed data is added to the database. The final decision to validate or invalidate a test remains the responsibility of the logging geologist under the control of the supervisor. The column SURVEY_FLAG in the Survey table is used to discriminate the validity of the test. Considering that many deviation methods have been used on the Windfall project (e.g. Reflex, Gyro, Flexit, Pewee, etc.) and considering that a drill hole may contain more than one acceptable type of test for the same depth, the code "OK-Accepted" is used to define the official drill hole trace when interpreting data through planning and modeling.

10.7.2 Geological Tables

Various validation rules are used depending on the table involved. A breach of these rules generates an error message and an immediate correction must be performed. The validation rules applied and constrained by informatics coding with DH-Logger during data input in the local database are described in Table 10-2.

Geological Tables	Overlaps	Duplicates	Gaps
Major Minor Lithology	No	No	No
Detailed lithology	No	No	No
Alteration	No	No	No
Mineralization	No	No	No
Structure	No	No	Yes
Oriented structure	No	No	Yes
Veins	Yes	No	Yes

Table 10-2: Validation rules applied to geological tables with DH Logger during data input in the local database

Considering these rules, there are no overlaps, no duplicates and no gaps in the entire database for Major-Minor Lithology, Detailed Lithology, Alteration, Mineralization. Overlaps are allowed only for the Veins tables.

Below is a list of key logging rules within the geological tables.

10.7.2.1 Major-Minor Lithology

- The rock-type is chosen from an approved pick list for the windfall project;
- From-to interval is rounded to 0.1 m;
- Major intervals must be greater than 0.3 m width and minor intervals must be less than 0.3 m;
- The code *NR* (Non-Recovery) is used for missing drill core;
- The code *MH* (Mother Hole) is used to describe the portion of core before an extension hole or a wedge hole.

10.7.2.2 Detailed Lithology

• Each major-minor interval is associated with at least one detailed lithological description.

10.7.2.3 Alteration

- The code *NA* (Non-Applicable) is used for overburden and core portion before extension and wedge;
- Alteration intervals can cross lithological boundaries;
- The intensity of each alteration type is indicated in separate columns and associated with a style.

10.7.2.4 Mineralization

- The code *NO MIN* (No Mineralization) is used for overburden and core portion before extension and wedge;
- The presence and the number of gold grains must be indicated;
- The type, style and percentage of sulphide minerals must be indicated;
- Mineralized intervals can cross lithological boundaries;
- Mineralized intervals should be separated in coherent groups, according to the type and percentage of sulphides. Whenever possible, sampling should respect the limit of mineralized intervals.

10.7.2.5 Structure

- Contains all structural geology data;
- Includes descriptions on:
- Deformation Fragile (joint and fault) and Ductile (fold);
- Fabrics Planar and linear (schistosity, cleavage, lineation);
- Shear zone and kinematic interpretation;
- Tectonic breccia.
- The intensity of the deformation and the core angle (alpha) must be indicated.

10.7.2.6 Oriented Structure

- Contains all oriented measurement data identified in the drill core;
- Includes: faults, shears, foliation, lithological contacts, lineation, veins-veinlets, etc.;
- Oriented measurements are performed using the tool IQ logger (Reflex);
- Alternatively, the oriented measurement can be done manually.

10.7.2.7 Veins

- Contains all veins/veinlets identified in the drill core;
- Descriptive columns contain: thickness, percentage, gangue, texture, sulphides, Au, and type;
- Gaps are allowed in the Veins table;
- Veins/veinlets with similar characteristics are grouped into the same intervals;

• Core logging geologists are requested to focus on veins/veinlets that may have an economic interest.

10.7.3 Technical Tables

Technical tables have various validation rules depending on the table involved. A breach of these rules generates an error message and an immediate correction must be performed. The validation rules applied and constrained by informatics coding with DH Logger during data input in the local database are described in Table 10-3.

Table 10-3: Validation rules applied to technical tables with DH Logger during input in the local database

OSISKO Internal tables	Overlaps	Duplicates	Gaps
RQD	No	No	Yes
Best Mineralization	Yes	Yes	Yes
Drilling Report	Yes	Yes	Yes
Deviation	Yes	Yes	Yes

Below is a list of key logging rules within the technical tables.

10.7.3.1 Rock Quality Designation

- The RQD table contains all the data to evaluate the geomechanical properties of the rock;
- RQD is measured by technicians and validated by logging geologists;
- The fields *Recovered Length (m)* and *RQD Length (m)* are automatically calculated.

10.7.3.2 Best Mineralization

- This table is used for internal purposes, logged and input into the database before 8 AM each morning by the logging geologist;
- The table is used to compare the geological interval identified by the logging geologist and the economic interval from assay results.

10.7.3.3 Drilling Report

- Data is collected from daily drilling reports provided by the drilling company and used to evaluate drilling production;
- Information on equipment used, deviation tests used, mechanical issues, and other problems are logged.

10.7.3.4 Deviation

• Data of unnatural deviation of drill hole is logged for: Iron wedge, Devico Cut, and Devico Cut-off.

10.7.4 Sample Tables

The validation rules applied and constrained by informatics coding with DH Logger during data input in the local database are described in Table 10-4.

Table 10-4: Validation rules applied to sample tables with DH Logger during input in the local database

Samples tables	Overlaps	Duplicates	Gaps
Assays	No	No	Yes
Whole rock analysis	No	No	Yes
Duplicates analysis	Yes	No	Yes
Qaqc (Blank - Crm)	No	No	Yes

Below is a list of key logging rules within the Samples tables.

10.7.4.1 Assays – Whole Rock Analysis – Duplicates Analysis

- All samples in the database are listed in the table HOLE_ASSAY_SAMPLE;
- The column ASSAY_SAMPLE_TYPE_CODE identifies each sample type:
- Sample types: ASSAY, WRA (Whole Rock Analysis), PDUP (Pulp Duplicate), RDUP (Reject Duplicate), and QSPLIT (Quarter Split).
- An error message will pop-up during the logging if an overlap in meterage or a duplicate sample number is detected in the drill hole and must be corrected immediately;
- Sample numbers are automatically created in increments of one to prevent typing errors.

10.7.4.2 QA/QC

- All QA/QC samples in the database are listed in the table HOLE_ASSAY_STANDARDS;
- QA/QC samples are systematically inserted each 20 assay samples to obtain a quantity of QA/QC samples equal to 10% of total assay samples;
- QA/QC type is chosen in a pick-list updated and validated by database managers;
- QA/QC default values have been updated and validated by database managers.

10.7.4.3 Samples Validation

During the transfer of data from the local database into the central database on the server (when a logging geologist "Checks-In" the drill hole), data integrity checks identify the presence of duplicated sample numbers. If a duplicated sample number is found, an error report will be created and the drill hole cannot be checked-in until the duplicate is removed.

Each day after the data entry of samples are input into the database, the geologist is responsible to fill out a sample submission form. The sample submission form is controlled by a supervisor in charge of sending and tracking samples to the geochemical laboratory. If anomalies are identified in the sample submission form, the supervisor corrects the database.

10.7.5 Final Validation Rules

Once the logging of a drill hole is completed, a supervisor from the planning team validates the data using a drilling closure form. If incorrect data is identified, not in

conformity with the procedure or missing, the drilling closure form is returned to the logging geologist who must perform the corrections before a final validation by the supervisor. Once cleared, the data is considered finalized and signed off by the supervisor. The detailed drilling closure form is available upon request.

Periodically and in association with the correction of the historical database, a full validation review is performed on a selected table or on a range of drill holes using SQL queries and programming.

10.8 Database Validation

Since the installation of Fusion-DH Logger in early June 2017, database managers have worked on the correction and validation of historical data, transformation and redesign of historical tables, creation of new tables and the complete update of logging procedures. Changes were intended to improve the control and optimize and accelerate the data flow in and out of the database.

The entire database has been thoroughly reviewed during this time. Numerous corrections and validation processes have been applied to the historical database. Various tools such as SQL queries, SQL programming, Excel validation sheets, and Visual Basic Macro were used to cross-check data between current database and databases, satellite files, photos, core-boxes and other available sources of data.

Non-exhaustive list of corrections includes:

10.8.1 Global Modification

- Back up of original data;
- Integration of data from the re-logging campaign of October to November 2017 conducted on 939 drill holes;
- Correction of all tables on 401 drill holes with a range of offset.

10.8.2 Drill Hole Number

- Complete review of drill hole numbers;
- Validation of drill hole type: mother hole, extension, extended drill hole and wedge.

10.8.3 Coordinates

- Complete review of easting, northing and elevation;
- Cross-checking data between historical database and raw data from survey reports.

10.8.4 Collar Data

- Complete review of: Start_date, End_date, Final_depth, drilling_status, azimuth and dip;
- Correction of all additional collar data.

10.8.5 Major-minor Lithology and Detailed Lithology

- Correction of overlaps, gaps, incorrect intervals;
- Homogenization of rock codes;
- Migration and transformation of lithological description from text into appropriate columns using picklists to store, classify and control the data and to allow SQL querying;
- Migrate geological structural data from lithology table to structure table.

10.8.6 Alteration, Mineralization, Structure, Oriented Structure and RQD

- Re-design of the tables;
- Addition of columns;
- Deletion of repeated data;
- Correction of all data;
- Cross-check of data between historical database and satellite files.

10.8.7 Veins

- Creation of the Veins table;
- Migration of vein/veinlet data from text in the historical lithology table into the newly created Veins table.

10.8.8 Assay Samples

- Complete correction of samples data (typo, prefixes, suffixes, duplicates number, missing samples);
- Cross-checking review of sample numbers between all sources of data;
- Validation by core-boxes, check if uncertainties on compiled data;
- Identification of metallic sieve and rush samples;
- Creation of a concatenation formula to fetch geological information from tables to automatically generate sample descriptions;
- Deletion of prefixes/suffixes in new sample booklets to prevent errors.

10.8.9 QA/QC Samples

- Complete correction of samples data (typos, prefixes, suffixes, duplicates number, missing samples);
- Cross-check of sample numbers between all sources of data;
- Validation via core-box verification if uncertainties persisted in compiled data.

10.9 Specific Gravity

Specific gravity ("SG") is measured on a selection of samples mostly within the mineralized zones. For the resource calculation, the database contains 152,939 SG values for 515,865 samples. One sample can have different SG measurements and the totality of SG data can be found in ASSAY_EXTENDED table (153698 SG data). Four different protocols have been used:

10.9.1 SG_Unity_GRA08 - ALS (491 analyses)

Method used by ALS for bulk samples. The core section is weighed dry then weighed while it is suspended in water. The specific gravity is calculated from the following equation:

SG = [sample weight (g) / (dry weight (g) - wet weight (g))]

10.9.2 SG_Unity_GRA08b - ALS (152,226 analyses)

Method used by ALS for pulverized material. A prepared sample (3.0 g) is weighed into an empty pycnometer. The pycnometer is filled with a solvent (methanol) and then weighed. From the weight of the sample and the weight of the solvent displaced by the sample, the specific gravity is calculated according to the equation below.

SG = [sample weight (g) / weight of solvent displaced (g)] x specific gravity of solvent

10.9.3 Density_sg_SPG04 – Bureau Veritas (28 analyses)

Method used by Bureau Veritas on pulps or rock chips using a gas pycnometer.

10.9.4 SG_Unity_ELEDEN – Osisko Mining (953 analyses)

In-house protocol using an electronic densimeter MD-300S. The process is similar to SG_Unity_GRA08 from ALS. The full detailed protocol is available (*Protocole_densité_windfall_28-01-2018.docx*). Of these 953 analyses, 427 analyses can be compared with pycnometer data (SG_Unity_GRA08b) from the laboratory for validation. Like the SG_Unity_GRA08, the electronic densimeter used the following standard calculation equation:

SG = [sample weight (g) / (dry weight (g) - wet weight (g))]

10.10 Magnetism

Magnetic intensity is measured by logging geologists directly on the drill core using a magnetic pen, using a scale from 1 (weak) to 3 (high). The data is stored in the detailed lithology table.

10.11 Drill Spacing

Drilling has been conducted over the Windfall-Lynx deposit on an area of 3,500 m of length by 1,200 m of depth. The drilling pattern was designed to sample the deposit orthogonally to the interpreted strike and dip of the gold mineralization. The majority of the drill holes were drilled with a dip varying between -45° to -70°. All core holes were drilled on sections spaced approximately 25 m apart in most parts of the deposit. Drill hole spacing of 25-30 m by 25-30 m occurs over the bulk of the orebody to a depth of approximately 600 m below surface. Before 2017, spacing on Zone 27 and Caribou zone was of 30 m by 30 m. The spacing was then tighten in 2017 to 25 m by 25 m on Lynx and in further drilling on Caribou and Zone 27. Below 600 m, down to approximately 1,200 m, and in the down plunge-extension of zones, core hole spacing of 50 m by 50 m is usually observed. The Underdog, Lynx 4, and Mallard zones are mostly drilled with 50 m by 50 m spacing. Only 23 drill holes have been drilled 1,200 m below surface. For definition drilling, drill hole spacing is generally 15 m by 15 m inside the existing 30 m drill spacing mostly conducted on the Zone 27. An area of approximately 200 m by 200 m has been infilled with 15 m spacing.

10.12 Drilling (Urban-Barry Greenstone Belt)

The 2016-2017 Urban-Barry drilling program was conducted from November 2016 to June 2017 over different sectors of interest in the Urban-Barry area (Figure 10-4). In 2016, drilling was carried out by Rouillier Drilling and in 2017, drilling was carried out by both Rouillier Drilling and Orbit Garant. A total of 93 drill holes were drilled for a total of 37,867.5 metres. The first part of the program started in the eastern and southern part of the Urban-Barry property on the E1, E2, E7, and Black Dog areas, which were highlighted during the summer of 2016 prospecting campaign. The second part of the program focused on properties in the vicinity but outside of the Windfall deposit footprint and included Fox, Fold Hinge, Bobtar, and NE Windfall areas. Details of the various drilling programs englobing the Urban-Barry drilling program are listed in Table 10-5.

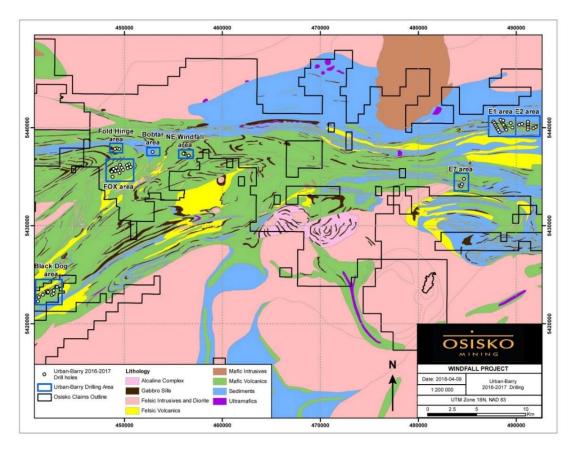


Figure 10-4: Location of the main areas of the 2016-2017 Urban-Barry project drilling campaign, Urban-Barry and Windfall properties

Table 10-5: Details of drill hole collars with their associated area, Urban-Barry drilling program (2016-2017)

Hole number	UTME (NAD 83 Zone 18)	UTMN (NAD 83 Zone 18)	Elevation (m)	Azimuth (deg)	Dip (deg)	Length (m)	Area
OSK-UB-16-001	488616.2	5440466	412.0	330	-45	300.0	E1
OSK-UB-16-002	488515.0	5440638	415.0	330	-45	300.8	E1

· · · · · ·			r		1	1	1
OSK-UB-16-003	487679.0	5440627	399.0	330	-45	288.5	E1
OSK-UB-16-004	488417.0	5440807	394.0	330	-45	292.0	E1
OSK-UB-16-005	488694.0	5440719	414.0	330	-45	298.0	E1
OSK-UB-16-006	491216.0	5440193	429.0	0	-45	289.0	E2
OSK-UB-16-007	491217.0	5440389	438.0	0	-45	301.0	E2
OSK-UB-16-008	488817.0	5440106	406.0	330	-45	301.0	E1
OSK-UB-16-009	491214.0	5440590	440.0	0	-45	301.0	E2
OSK-UB-16-010	488915.0	5439933	411.0	330	-45	316.0	E1
OSK-UB-16-011	490601.0	5440372	424.0	0	-45	298.0	E2
OSK-UB-16-012	489009.0	5439772	409.0	330	-45	301.0	E1
OSK-UB-16-013	490331.0	5440281	411.0	0	-45	298.0	E2
OSK-UB-17-014	487775.0	5440454	407.0	330	-45	309.0	E1
OSK-UB-17-015	489634.0	5440018	410.0	0	-45	297.0	E1
OSK-UB-17-016	487877.0	5440278	404.0	330	-45	303.0	E1
OSK-UB-17-017	487977.0	5440101	398.0	330	-45	300.0	E1
OSK-UB-17-018	488733.0	5440277	406.0	330	-45	300.0	E1
OSK-UB-17-019	488083.0	5439920	400.0	330	-45	288.0	E1
OSK-UB-17-020	488309.0	5439529	396.0	330	-45	318.0	E1
OSK-UB-17-021	488180.0	5439755	397.0	330	-45	300.0	E1
OSK-UB-17-022	489449.0	5440452	409.0	0	-45	288.0	E1
OSK-UB-17-023	491215.0	5439995	427.0	0	-45	300.0	E2
OSK-UB-17-024	491223.0	5439795	422.0	0	-45	309.0	E2
OSK-UB-17-025	484676.0	5434745	399.0	20	-45	294.0	E7
OSK-UB-17-026	492008.0	5440064	407.0	0	-45	306.0	E2
OSK-UB-17-027	491780.0	5439942	405.0	0	-45	306.0	E2
OSK-UB-17-028	484263.0	5434071	404.0	20	-45	300.0	E7
OSK-UB-17-029	484415.0	5434012	403.0	20	-45	300.0	E7
OSK-UB-17-030	484481.0	5434204	405.0	20	-45	300.0	E7
OSK-UB-17-031	452914.0	5437512	403.0	150	-50	615.0	Bobtar
OSK-UB-17-032	449030.0	5435750	401.0	330	-45	501.0	Fox
OSK-UB-17-033	449498.0	5437800	401.0	330	-50	479.8	Fold Hinge
OSK-UB-17-034	448737.0	5435685	396.0	330	-45	495.0	Fox
OSK-UB-17-035	448794.0	5435684	400.0	329	-45	498.0	Fox
OSK-UB-17-036	449241.0	5437866	400.0	330	-48	486.0	Fold Hinge
OSK-UB-17-037	448819.0	5435633	400.0	329	-45	555.0	Fox
OSK-UB-17-038	449078.0	5437832	403.0	330	-45	510.0	Fold Hinge
OSK-UB-17-039	448727.0	5435623	400.0	331	-45	480.0	Fox
OSK-UB-17-040	448763.0	5435726	397.0	330	-45	378.0	Fox
OSK-UB-17-041	448754.0	5435577	400.0	331	-47	483.0	Fox
OSK-UB-17-042	448810.0	5435742	397.0	330	-47	354.0	Fox
OSK-UB-17-043	448870.0	5435546	400.0	330	-47	567.0	Fox
OSK-UB-17-044	448833.0	5435702	399.0	330	-47	438.0	Fox
OSK-UB-17-045	448860.0	5435666	400.0	330	-47	489.0	Fox
OSK-UB-17-046	448768.0	5435544	399.0	331	-47	513.0	Fox
OSK-UB-17-047	448853.0	5435775	398.0	330	-47	420.0	Fox

· · · · · ·					1	1	1
OSK-UB-17-048	448675.0	5435599	397.0	330	-45	450.0	Fox
OSK-UB-17-049	448880.0	5435731	399.0	330	-47	423.0	Fox
OSK-UB-17-050	448793.0	5435501	400.0	331	-47	521.0	Fox
OSK-UB-17-051	448907.0	5435688	400.0	330	-47	468.0	Fox
OSK-UB-17-052	448810.0	5435571	399.0	331	-52	69.0	Fox
OSK-UB-17-053	448810.0	5435573	400.0	332	-52	504.0	Fox
OSK-UB-17-054	448723.0	5435516	400.0	329	-48	510.0	Fox
OSK-UB-17-055	448937.0	5435643	401.0	330	-47	531.0	Fox
OSK-UB-17-056	448832.0	5435525	400.0	332	-52	615.0	Fox
OSK-UB-17-057	448749.0	5435481	400.0	332	-51	627.0	Fox
OSK-UB-17-058	448921.0	5435760	399.0	330	-47	402.0	Fox
OSK-UB-17-059	449207.0	5435917	401.0	330	-45	534.0	Fox
OSK-UB-17-060	449537.0	5435355	399.0	330	-45	498.0	Fox
OSK-UB-17-061	456138.0	5437398	401.0	330	-45	565.0	NE Windfall
OSK-UB-17-062	449384.0	5435619	400.0	330	-45	519.0	Fox
OSK-UB-17-063	448806.0	5434975	397.0	330	-45	654.0	Fox
OSK-UB-17-064	449130.0	5435558	401.0	330	-45	465.0	Fox
OSK-UB-17-065	449579.0	5436195	406.0	330	-45	498.0	Fox
OSK-UB-17-066	456161.0	5437355	400.0	330	-47	586.0	NE Windfall
OSK-UB-17-067	449757.0	5435886	406.0	330	-45	534.0	Fox
OSK-UB-17-068	456603.0	5437148	402.0	330	45	702.0	NE Windfall
OSK-UB-17-069	449889.0	5435667	407.0	330	-45	504.0	Fox
OSK-UB-17-070	456184.0	5437310	399.0	330	-47	622.0	NE Windfall
OSK-UB-17-071	450680.0	5435957	410.0	330	-45	459.0	Fox
OSK-UB-17-072	450502.0	5436258	415.0	330	-45	444.0	Fox
OSK-UB-17-073	450371.0	5435835	410.0	330	-45	477.0	Fox
OSK-UB-17-074	456049.0	5437346	399.0	330	48	531.0	NE Windfall
OSK-UB-17-075	450281.0	5436136	416.0	330	-45	498.0	Fox
OSK-BD-16-001	441703.9	5422936	399.0	330	-56	288.0	Black Dog
OSK-BD-16-002	442131.4	5423313	390.0	331	-61	196.5	Black Dog
OSK-BD-16-003	443064.0	5423730	390.0	328	-61	295.5	Black Dog
OSK-BD-16-004	443164.0	5423726	390.0	329	-62	60.5	Black Dog
OSK-BD-16-005	443164.0	5423726	390.0	330	65	340.5	Black Dog
OSK-BD-16-006	442824.0	5423368	390.0	331	-60	547.5	Black Dog
OSK-BD-16-007	-	-	-	326	-60	729.0	Black Dog
OSK-BD-16-008	442617.4	5422926	393.0	326	-60	700.5	Black Dog
OSK-BD-16-009	441304.7	5422684	409.0	331	-62	289.5	Black Dog
OSK-BD-16-010	441186.2	5422261	389.2	328	-65	608.0	Black Dog
OSK-BD-16-011	442134.0	5423316	411.0	295	-45	199.5	Black Dog
OSK-BD-16-012	442131.0	5423312	410.0	360	90	241.5	Black Dog
OSK-BD-16-013	442135.0	5423160	395.0	330	-65	340.5	Black Dog
OSK-BD-16-014	442138.0	5423160	391.0	330	-52	336.4	Black Dog
OSK-BD-16-015	442182.0	5423140	394.0	330	-68	58.5	Black Dog
OSK-BD-16-016	442182.0	5423140	394.0	330	-69	33.5	Black Dog
OSK-BD-16-018	442242.0	5423219	390.0	330	-60	391.5	Black Dog

🗱 InnovExplo

www.innovexplo.com

OSK-BD-16-019	442800.7	5423046	387.4	348.5	-65	736.5	Black Dog
	112000.1	0120010	001.1	010.0	00	100.0	Black Bog

11. SAMPLE PREPARATION, ANALYSES AND SECURITY

The following sections describe Osisko's sample preparation, analysis, and security procedures for the diamond drilling programs. InnovExplo did not conduct any drilling or sampling on the Windfall Lake property. Data pertaining to sampling, analytical, security, and quality assurance-quality control ("QA/QC") protocols were supplied by the issuer. The information included in this chapter relates to samples taken from drilling campaigns for which the assay certificates were received after the 2014 MRE database close-out date of July 28, 2014 and before the Osisko database close-out date of March 5, 2018.

11.1 Laboratories Accreditation and Certification

Osisko Mining used ALS Minerals ("ALS") in Val-d'Or, Québec, Canada as their primary sample preparation and analytical (assay) laboratory. ALS is independent of Osisko Mining. The laboratory is currently accredited by the Standards Council of Canada (accredited laboratory number 689) to ISO 17025 for the analysis of gold by lead collection fire assay with atomic absorption spectrometry as well as the determination of gold by lead collection fire assay with gravimetric finish. The management system of the ALS Minerals Group laboratories is accredited International Organization of Standardization ("ISO") 9001:2008 by QMI Management Systems.

As a secondary laboratory, Osisko Mining sends shipments to the Bureau Veritas Commodities Canada Ltd. ("BV") in Timmins, Ontario, Canada where samples are processed and analyzed. BV is independent of Osisko Mining. The laboratory is registered under the corporate ISO 9001 registration. The Timmins lab is in process of seeking ISO 17025 accreditation for fire assay procedures, but is listed on the Vancouver lab's ISO 17025 scope of accreditation (accredited laboratory number 720) as a qualified sample preparation facility. Off-site sample preparation and analytical procedures at Timmins follow those of Vancouver and are monitored regularly for QA/QC practices. The management systems of all BV sites are registered with the ISO 9001 Model for Quality Assurance and compliant with ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laboratories.

11.2 Historical Sampling

The drill hole sampling preparation, analyses and security procedures utilized by Kerr Addison, DeMontigny, Alto, and Inmet between 1986 and 1999 are unknown. InnovExplo assumes that the exploration activities conducted by these companies were in accordance with prevailing industry standards at the time.

The drill hole sampling preparation, analyses, and security procedures from 2003 to 2014 are presented in the Tetra Tech MRE 2015.

11.3 Osisko Core Handling, Sampling, and Security

Routine sampling of the diamond drill core for gold analysis was accomplished by adhering to previously established sampling guidelines. This procedure ensures the quality and accurate representation of the material sampled and the remaining split core archived for future reference.

Preparation of designated drill core intervals to be sampled was completed by the following method:

Drill core received from the drill at the core logging facility (core shack) was pieced back into continuous intervals to minimize any spaces between individual pieces of core and to check for incorrect placement of the core by the drillers.

- When working with the "CorientR" tool or the "Reflex Act III RD" system, which
 provided an oriented drill core reference, the drill core received from the drill
 at the core logging facility was aligned according to the driller marks drawn at
 the end of each 3 m interval drilled, to indicate lower portion of the borehole.
 A blue line joining the marks was then traced by a core handling technician,
 indicating the bottom of the core. The core was put back into the box oriented
 with the blue line in the upright (top) position.
- After alignment, rotation, and record made of the geotechnical measurements, which included recovery and rock quality designation ("RQD"), the core was marked (with a china pencil) with 1 m hole-depth intervals. This annotation allowed for better depth precision between the drill-run meterage block markers inserted at every 3 m run by the drillers.
- Intervals of core slated for sampling were marked with a red china pencil perpendicular to the core axis showing arrows to indicate the "from" and "to" range of each sample. The mark-ups were designed to assist the core cutters to saw each core sample between the "from-to" arrows and solid red lines marking the end/beginning of each sample.
- Individual core samples are typically taken at 1 m intervals with minimum and maximum sample intervals from 0.3 m to 1.5 m. Collecting samples less than 1 m in length is discouraged unless it is done to respect lithological and/or mineralization contacts. A sample does not cross a lithological contact (except minor veins and dikes less than 0.3 m). To minimize sample errors and simplify the entire sampling process, intervals are generally started and ended on a whole metre. Where sampled intervals fall between metre marks, subsequent samples are lengthened or shortened to bring the sequence in line with wholenumber metre depths. Exceptions to the 1 m material occur to better represent the geology and or gold grade of the sample interval.
- Books containing numerical sequences of 50 pre-labeled triplicate waterdurable sample tags (three tags per sheet) are used: one to tag the core sample; a second to indicate the position of the sample in the core box; and the third remained with the book as an archival record of the samples particulars such as sample ID, drill hole ID, sample interval from-to holedepths, rock type and a brief sample description. From each sample sheet consisting of three perforated identical tags, the last two from the right (the third remaining in the sample book) were separated (torn) from the page and tucked along the side/under the core at the beginning of each sample in such a way that the tag numbers could be read by the core cutter. Quality control sample tags, representing a blank or standard were inserted behind and slightly above the previous regular core sample tag in the series. For example, if the core sample was tagged with sample number 180229 and the next sample tag 180230 was reserved as a standard, then both tags would be inserted at the same position along the core. Sample 180230 would be paired behind and slightly above sample 180229, and sample 180229 would be paired in front and slightly below sample 180230 in such a way as to allow the

core cutters to see both sample ID's stacked one behind the other. This method of tagging signaled the core cutter to insert either a standard or a blank sample into the sample batch at that point.

- Digital photographs of the marked and tagged core are taken for archival purposes.
- Blanks and standards were inserted as the core cutting and sampling progressed to avoid mix-ups.
- Drill core, marked and tagged for sampling, is moved to the sawing room to be cut using electric motorized, diamond impregnated bladed rock saws. The core saw operator(s) cuts and samples the core, one sample at a time, starting with the first sample tagged and follows through to the next sample tagged in sequence until the end of the batch. The cutter(s) starts from the tagged sample previously inserted at the end of the sample and cuts backwards to the previously cut sample or un-sampled core. If sampling started from the top of the hole, the cut would be made up to the beginning of the first core box or casing block. This method of sample cutting was performed to avoid mixing two consecutive samples. This is often the case when cutting from the beginning of one sample interval and failing to stop at the beginning of the next continuous sample as the core appears uncut as the cutter proceeds in this direction.
- Unbiased sampling is managed by consistent selection of the same side from each halved piece of cut core. The sampled core pieces pertaining to a given sample are placed in a heavy duty transparent plastic bag and the remaining pieces are placed back into their original position in the core box. When working with the "CorientR" tool or the "Reflex Act III RD" system, the half containing the reference blue line is selected to be archived for future reference, the other half is put into the sample bag. Broken core (fault-gouge, fault-breccia) is sampled by scooping the right half into a sample bag and by leaving the remaining half in the core box. The paired sample tags are then torn with one tag stapled to the core box at the start of its sample interval and the other tag placed into the sample bag with the core sample.
- Sample bags are also labeled with the sample number written with black permanent marker and the open tops sealed with plastic zip tie (one direction).
- For blank samples, the core cutter(s) are required to scoop approximately 1 to 2 kg of gold-barren limestone gravel (assays <0.005 ppm gold) into a plastic sample bag as per the procedure outlined in the previous step.
- Certified gold reference materials are assigned by the core-logging geologist and the identification code verified by the core-cutter(s). One or two pouches of standard material is placed into plastic sample bag. The name of the standard written on the pouch is erased by the core-cutter(s) before putting it into the bag.
- Numerical sequences of five samples, starting with the first sample, are packed into rice bags and the open tops sealed with plastic zip ties (one direction). The sample number range and incremental bag number are written on the rice bag and this information is recorded on a rice-bag sample sheet. This operation is completed by the core cutting staff.
- All samples that pertained to a specific drill hole are packaged in batches of 100 samples. Batches are generated for each drill hole and submitted to the ALS in Val-d'Or to avoid confusion given the volume of samples. This practice allows the batched assay results received from the lab to be representative of

a single drill hole and not spread over multiple drill holes. Upon completion of core sampling for any given drill hole (one batch), the rice-bag sample sheet is handed to the assay dispatch technician for verification. Once verified, the assay dispatch technician prepares an ALS/BV sample submittal form indicating the following information and instructions: Contact and project particulars; Date of submission; Sample type: drill core; Sequence range and quantity of samples (e.g., 180001 – 180100, 100 samples); Sample preparation requirements (e.g., code PREP-31D: crush, split, pulverize to 90% passing <70 μ m); Analytical method (e.g., AU-Au-AA26: 50 gram pulp test for gold by fire-assay with atomic absorption finish); Special preparation and/or analytical instructions (e.g., run specific gravity, gold by metallic screen, preparation of double splits, etc.); Disposition of assay results; Invoice instructions; and Name and signature of the submitting Assay Dispatch Technician.

• A copy of the Sample Submittal Form and associated rice bag sample sheet are sent by email to the lab. When a total of 100 samples (20 rice bags) are ready, they are packed and sent to the lab. The samples are then transported by an Osisko Mining exclusive transporter and delivered directly to the ALS laboratory facility in Val-d'Or or BV shipment receival in Timmins. Transportation occurs daily.

11.4 Litho-geochemical Samples Procedure

In addition to routine samples selected for gold analysis, an ancillary batch of representative samples were tested to better characterize the lithologies based on whole-rock geochemistry.

Whole-rock samples consisted of roughly 15-cm pieces of quarter core. The sample was selected to be the most representative piece of the rock unit being sampled (no veins, preferably weakly to non-mineralized material). A sample was taken at approximately every 30 m of core and samples were also taken to provide some insight about the composition of unknown unit lithologies.

Osisko's preparation of whole-rock samples was completed by the following method:

- The geologist selects a 15-cm piece to be sampled.
- Books containing numerical sequences of 50 pre-labeled triplicate waterdurable sample tags (three tags per sheet) are used: one to tag the wholerock sample; a second to indicate the position of the sample in the core box; the third remains with the book as an archival record of the samples particulars such as sample ID, drill hole ID, sample interval from-to hole-depths and rock type.
- The geologist places the sample into a plastic sample bag with the first part of the sample tag and closes the bag using a tie-wrap. The sample number is written on the sample bag using a permanent marker.
- The second part of the sample tag is stapled in the core box where the sample is taken to indicate that a piece of entire core has been removed for this purpose (whole-rock analysis test).
- No blanks or standards are inserted in this procedure.
- All samples pertaining to the same drill hole are then packed together in a rice bag labeled "Whole-rock Geochemistry" including the project name, quantity

and reference numbers of samples.

- Upon completion of the core sampling for a given drill hole (one batch), the assay dispatch technician prepares an ALS sample submittal form indicating the following information and instructions: Contact and project particulars; Date of submission; Sample type: drill core; Sequence range and quantity of samples (e.g., 279001 279010, ten samples); Total number of rice-bags submitted (e.g., one bag); Sample preparation requirements (e.g., code PREP-31: crush, split, pulverize to 90% passing <70 µm); Analytical method (e.g., ME-XRF06, Zr-XRF05, Y-XRF05, Nb-XRF05: whole-rock analysis on a package of 14 major elements, plus Zr, Y, and Nb, using lithium borate fusion and X-Ray Fluorescence ("XRF") instruments); Disposition of assay results; Invoice instructions; and Name and signature of the submitting geologist.
- A copy of the sample submittal form is included in the rice bag for each sample batch (one drill hole); this bag is tied with orange flagging tape for quick identification by laboratory personnel.
- After verification of the sample lists and forms, sample batches are transported to the ALS laboratory facility in Val-d'Or by the Osisko Mining exclusive transporter.

11.5 Analytical Methods (ALS and Bureau Veritas)

Historical analytical quality control measures were set in place by Fury in 2003 and 2004, and Noront in 2007. Details of these measures are outlined in previous technical reports produced for the Property (SRK, 2011, 2012, 2013 and Tetra Tech 2015). The next sections describe the analytical methods during Osisko period.

11.5.1 Samples for Gold Analysis

At the ALS laboratory, samples underwent conventional sample preparation procedures (ALS code PREP-31). Samples were crushed to a fineness of 70% passing below ten mesh, or 2 mm. A 250-g split of the crushed material was further comminuted to a sample pulp by pulverizing to 90% passing below 200 mesh, or 70 μ m. The pulveriser assembly (steel barrel, rings and puck) was cleaned with silica sand between samples. Most samples were submitted to the primary laboratory, i.e. ALS, in batches of 20 (rush analysis) and 100 (regular analysis) samples.

Due to the high volume of sampling, approximately 10% of non-rush samples are sent to BV in batches of 100 samples. At BV, samples underwent conventional sample preparation procedures (BV code PRP90-250). Samples were crushed when 90% of material passed a 2 mm sieve. A 250-g split of crushed material was pulverized to 85% passing a 75 μ m sieve.

Table 11-1 outlines the analysis methods used at both ALS and BV laboratories. Routine samples are analyzed with Fire Assay. If visible gold is identified by corelogging geologists, samples were automatically run through metallic screen analysis. Prepared pulp samples were assayed for gold using a fire assay procedure with atomic absorption finish at ALS and BV on a 30- or 50-g pulp charges. Default overlimit methods used gravimetric finishes. As requested by Osisko, ALS automatically ran samples with values over 10 ppm through metallic screen analysis as well.

At the request of Osisko, all samples exceeding 10 g/t Au with the Au-AA26 method, or any samples containing high grade or visible gold were rerun with the screen

method (Au-SCR24 method). A 1,000 g split of the final prepared pulp (PUL-32) is passed through a 75 μ m stainless steel screen to separate the oversize fractions. Any +75 μ m material remaining on the screen is retained and analyzed in its entirety by fire assay with gravimetric finish using pycnometer (OA-GRA08B method) and reported as the Au(+) fraction result. The -75 μ m fraction is homogenized and two 50 g sub-samples are analyzed by fire assay with AA finish. The average of the two AA results is taken and reported as the Au(-) fraction result. All three values are used in calculating the combined gold content of the plus and minus fractions.

Laboratory	Method	Method code	Sample weight (g)	Lower limit (ppm)	Upper limit (ppm)	Default over- limit method
		Au-AA23	30	0.005	10.0	Au-GRA21
	Fire Assay with	Au-AA24	50	0.005	10.0	Au-GRA22
	Atomic Absorption Finish	Au-AA25	30	0.010	100.0	Au-GRA21
ALS		Au-AA26	50	0.010	100.0	Au-GRA22
Minerals	Fire Assay with Gravimetric Finish	Au-GRA21	30	0.050	10,000.0	-
		Au-GRA21	50	0.050	10,000.0	-
	Metallic Screen	Au-SCR21	1000	0.050	10,000.0	-
	Metallic Screen	Au-SCR24	1000	0.050	10,000.0	-
	Fire Assay with	FA430	30	0.005	10.0	Gravimetric
Bureau	Atomic Absorption Finish	FA450	50	0.005	10.0	Method
Veritas	Fire Assay with	FA530	30	0.900	-	-
	Gravimetric Finish	FA550	50	0.900	_	-
	Metallic Screen	FS652	50 - 500	0.005	-	-

Table 11-1: Analytical methods used by Osisko Mining Inc.

11.5.2 Multi-elements Analysis

For the multi-elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, Zn), the samples were assayed by atomic emission spectrometry procedure, ME-ICP41, at ALS. A prepared sample is digested with aqua regia in a graphite heating block. After cooling, the resulting solution is diluted to 12.5 ml with deionized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. The analytical results are corrected for inter-element spectral interferences.

11.5.3 Litho-geochemical Samples

For litho-geochemical samples, the sample preparation method was the same as for routine samples. Whole-rock analysis was performed using a package that included major oxides (Al_2O_3 , BaO, CaO, Cr₂O₃, Fe₂O₃, K₂O, MgO, Na₂O, P₂O₅, SiO₂, SrO₂, TiO₂) LOI's, total oxides, plus Zr, Y, and Nb. The analytical method was performed using a lithium borate fusion followed with an XRF finish (ALS codes ME-XRF06, Zr-XRF05, Y-XRF05, and Nb-XRF05). A calcined or ignited sample (0.9 g) is added to 9.0 g of Lithium Borate Flux (50% - 50% Li₂B₄O₇ - LiBO₂), well mixed and fused in an

auto fluxer between 1050°C – 1100°C. A flat molten glass disc is prepared from the resulting melt. This disc is then analyzed by XRF.

11.6 Quality Assurance and Quality Control (QA/QC) Programs

The exploration work conducted by Osisko Mining was carried out using a quality assurance and quality control (QA/QC) program following the industry's recognized best practices. InnovExplo was not involved in the collecting and recording of the data, which was performed by Osisko employees. InnovExplo only synthesized sample batches for which the assay certificates were received after the database close-out date of March 5, 2018.

QA/QC for the 2015-2018 drilling program consisted of a drill hole database audit, inserting quality control samples within all sample batches submitted for assaying, intra-laboratory as well as inter-laboratory check assays. A re-sampling program of core drilled by previous operators was conducted in 2016.

11.6.1 Field Assay Standards (Certified Reference Materials and Blanks)

Contamination is monitored by the routine insertion of blank material. The control procedure also included certified reference materials ("CRMs") or gold assay standards to determine if there were assay problems with specific sample batches and possible long-term biases in the overall dataset. Blanks and CRMs go through the same sample preparation and analytical procedures as the core samples. They were assigned sample IDs at a frequency of at least one of each control type per range of 15 sample tag IDs. Each control type represents approximately 6% of the total batch depending on the total range of samples tags used (Table 11-2).

The results of the quality control samples were assessed by the *Batch Authorization* module of the Fusion software in DH Logger (Table 11-3).

Table 11-2: Samples submitted to ALS for analysis along with routine drill core samples (July 2014 to March 2018)

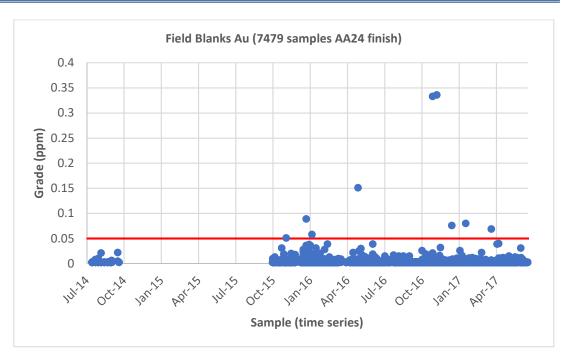
Type of sample	Quantity	%
Primary drill core samples	396,512	88.58
Field blanks	27,008	6.03
Certified reference material	24,121	5.38
Total	447,641	100.00

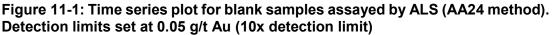
Table 11-3: Current sample QA/QC statuses in DH Logger

ID	Description
Passed	Sample has passed QA/QC review – controlled by passed control samples.
Passed NSA	Non-significant assay – assays below defined background value of 0.2 ppm.
	Flagged by DHL, accepted for a variety of reasons: Suite of samples affected includes no anomalies;
QP Accepted	Suite of samples affected includes minor and/or isolated sub- low-grade anomaly; Blank contamination with no impact on other samples; Marginal fail low/high.

ID	Description
Failed	Surpassed maximum/minimum defined standard control values (± 3 SD); re-assays pending.
	Assays from historical Owners' drill programs:
	Kerr Addison (1997);
Historical	Alto Minerals (1998-1999);
HIStorical	Fury (1996/2003/2004);
	Mugor (2004-2006);
	Noront (2004-2007).

11.6.1.1 Blanks


The blank is a coarse crush blank material (limestone gravel) sourced from a regional hardware store. The blank material has not changed since 2014. The blank is submitted with samples for crushing and pulverizing to determine if there has been contamination or sample cross-contamination during the preparation. Elevated values for blanks may also indicate sources of contamination in the fire assay procedure (contaminated reagents or crucibles) or sample solution carry-over during instrumental finish.


From April 28, 2014 to March 5, 2018, there were a total of 27,008 blanks submitted to ALS and BV with the samples (Table 11-4). Blank materials were considered failed when the returned gold value exceeded 10x the lower detection limit of the analytical method (Table 11-1). A general guideline for success on a contamination quality control program is a success rate of 90% of blanks showing no contamination exceeding the acceptance limits. Table 11-4 and Figure 11-1 to Figure 11-4 summarize the performance of the blanks. Depending on the method used during the analyses, more than 91% of the blanks analyzed passed the process (Table 11-4); overall is 98.53%.

Method	Lab	Expected gold valued (g/t Au)	Quantity inserted	OSISKO mean grade (g/t Au)	Min (g/t Au)	Max (g/t Au)	Quantity failed	% passing
AU_PPM_AA24	ALS	0	7,479	0	0	0.05	11	99.85
AU_PPM_AA26	ALS	0	14,402	0.03	0	0.10	202	98.60
AU_PPM_AA26D	ALS	0	1,505	0.13	0	0.10	138	90.83
AU_PPM_FA450	BV	0	2,116	0	0	0.05	3	99.86
AUCHECK_PPM_AA26	ALS	0	1	31.4	0	0.10	1	0.00
AUTOTAL_GPT_FS652	ALS	0	5	0.03	0	1.00	0	100.00
AUTOTAL_PPM_SCR24	ALS	0	1,500	0.17	0	0.50	41	97.27
TOTAL			27,008				396	98.53

Table 11-4: Blanks submitted for analysis along with routine drill core samples (July 2014 to March 2018)

🗱 InnovExplo

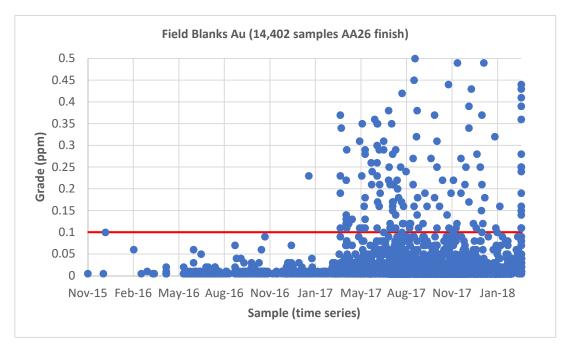
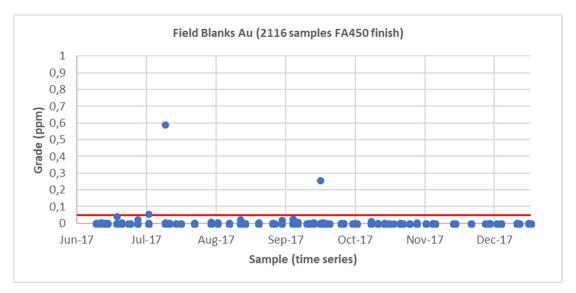
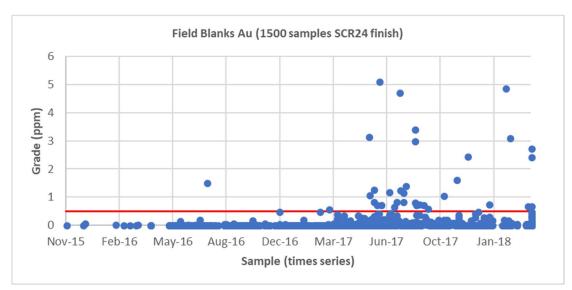




Figure 11-2: Time series plot for blank samples assayed by ALS (AA26 method). Detection limits set at 0.1 g/t Au (10x detection limit)

🗱 InnovExplo

Detection limits set at 0.05 g/t Au (10x detection limit)

Detection limits set at 0.5 g/t Au (10x detection limit)

Figure 11-4: Time series plot for blank samples assayed by ALS (SCR24 method)

11.6.1.2 Comments for Monitoring Contamination

Given the high gold values and the amount of visible gold at Windfall, blanks are systematically inserted after each potential sample to be contaminated. When the potential for contamination is high, Osisko asks the lab for additional cleaning processes of the crusher and sprayer before even passing the blank. Despite these precautions, there are still cases of contamination.

There is a concern for blanks analyzed with method AA26 from March 2017 to March 2018 (Figure 11-2), and, in a lesser extent, for those analyzed with method SCR24

from May 2017 to March 2018 (Figure 11-4). During this period, 1.45% of the blanks analyzed with method AA26 (201 out of 13,825) failed the warming limit of 0.1 g/t gold compared to 0.17% for the period before using the same method (AA26). A possible cause for the increase of failures is the extreme rise in the drilling rate during March 2017 (from 12 to 24 drills). The massive influx of core managed and logged by Osisko personnel and the samples treated by ALS for this period could explain the QC performance.

The issuer is aware of this problem and has taken actions accordingly. In all cases, each rejected blank value is tracked by Osisko to validate and rectify the problem. Most exceedances are due to cross-contamination between two samples. Inversion of a blank by a CRM and an erroneous entry in the database are also possible errors. In cases where a blank fail was caused by a high-grade sample and a clear contamination trail was identified, succeeding affected samples, along with the failed blank control would be resampled using ¼ split method and analyzed. In the case where the contamination source and/or contamination trail is not identifiable, all affected samples preceding and succeeding the failed blank would be ¼ split and analyzed. The process is applied until an uncontaminated blank or a value below 10x the detection limit is obtained. Figure 11-5 to Figure 11-7 provide examples of resampling sequences for failed blanks analyzed by the AA26 method. At the end of the procedure, none of the blanks failed the process.

InnovExplo is of the opinion that Osisko's quality control results for monitoring contamination using blanks are reliable and valid.

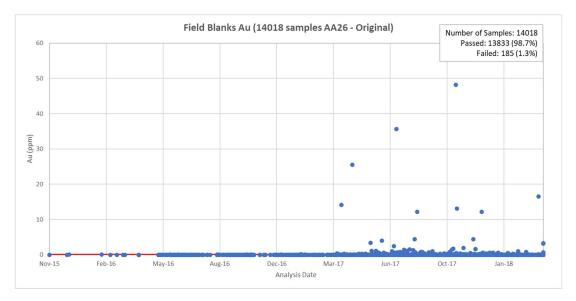


Figure 11-5: Original blank results for AA26 method with statistics Detection limits set at 0.1 g/t Au (10x detection limit)

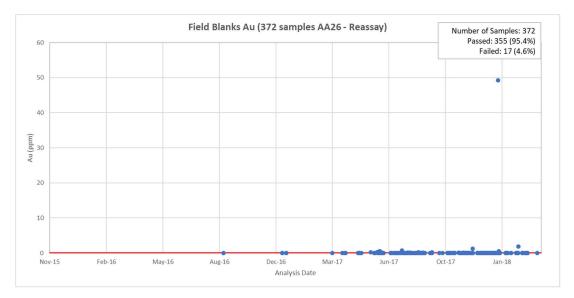
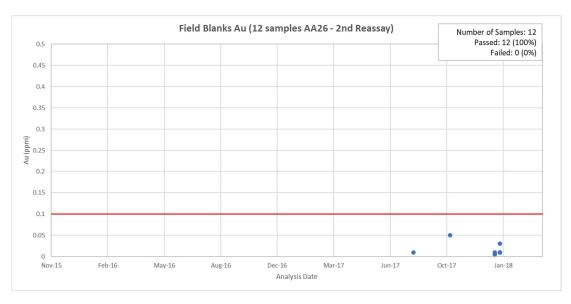



Figure 11-6: Blank first pass re-assay results for AA26 method with statistics Detection limits set at 0.1 g/t Au (10x detection limit)

11.6.1.3 Certified Reference Materials

Accuracy and precision were monitored by the insertion of CRMs at the rate of once every 16 samples, on average. A total of 29 different CRMs were submitted 24,121 times from July 28, 2014 to March 5, 2018 (Table 11-2 and Table 11-5). CRMs cover a range of gold grades from 0.248 g/t to 17.05 g/t. Standards are obtained from Analytical Solutions Ltd. in Toronto, Ontario and prepared by Ore Research & Exploration Pty Ltd ("ORE").

Most CRMs have enough values to be represented on a control chart. Assay results returning "NSA" (not sufficient assay) are not taken into account on the diagrams.

Control charts showing analytical concentration values against warning limits (horizontal lines) have been prepared for each standard. Figure 11-8 shows results for standard OREAS 201 using AA24 method. The most significant charts are provided in Appendix III.

Standard materials were considered failed when a gold result exceeded three standard deviations (\pm 3 SD) beyond the expected value (Table 11-5). A total of 639 events were recorded and commented upon when the analytical values of the CRM fell between the warning limits and the \pm 3 SD control limits (Table 11-6). Failed CRMs are flagged to the lab with instructions to re-assay pulps preceding and succeeding the failed CRMs to the next passed CRM. If the analytical value fell between \pm 2 SD and \pm 3 SD, no re-assaying was performed. If the analytical value exceeded the \pm 3 SD control limits, systematic re-assaying was not always requested, particularly if the value was on the threshold of the limits. However, for mineralized zones, a resampling was systematically performed. In cases where the analytical value clearly exceeded the \pm 3 SD control limit, re-assaying was requested.

Table 11-5: Certified standards values, 95% confidence and tolerance limits for gold reference material (ppm) with fire assay (July 2014 to March 2018)

	0 "	Certified Au	0.5	95% confidence limits					
Constituent (CRM)	Supplier	value (ppm)	SD	Low	High				
GOLD ORE MA-1b	Canmet	17.05	0.41	16.79	17.31				
OREAS 12a	OREAS	11.79	0.24	11.68	11.89				
OREAS 15d	OREAS	1.559	0.04	1.54	1.579				
OREAS 19a	OREAS	5.49	0.1	5.45	5.54				
OREAS 200	OREAS	0.34	0.01	0.336	0.345				
OREAS 201	OREAS	0.514	0.02	0.507	0.521				
OREAS 202	OREAS	0.752	0.03	0.742	0.763				
OREAS 203	OREAS	0.871	0.03	0.859	0.884				
OREAS 205	OREAS	1.244	0.05	1.221	1.267				
OREAS 208	OREAS	9.248	0.44	9.05	9.44				
OREAS 209	OREAS	1.58	0.04	1.56	1.59				
OREAS 210	OREAS	5.49	0.15	5.42	5.55				
OREAS 215	OREAS	3.54	0.1	3.51	3.57				
OREAS 217	OREAS	0.338	0.01	0.334	0.341				
OREAS 218	OREAS	0.531	0.02	0.526	0.536				
OREAS 220	OREAS	0.866	0.02	0.86	0.873				
OREAS 222	OREAS	1.22	0.03	1.21	1.23				
OREAS 223	OREAS	1.78	0.05	1.76	1.79				
OREAS 228	OREAS	8.73	0.28	8.63	8.83				
OREAS 229	OREAS	12.11	0.21	12.05	12.18				
OREAS 501b	OREAS	0.248	0.01	0.244	0.251				
OREAS 502b	OREAS	0.494	0.02	0.489	0.501				
OREAS 504b	OREAS	1.61	0.04	1.59	1.62				
OREAS 60c	OREAS	2.47	0.08	2.439	2.496				
OREAS 61d	OREAS	4.76	0.14	4.69	4.83				
OREAS 61e	OREAS	4.43	0.15	4.38	4.48				

Constituent (CRM)	Cumulian	Certified Au	SD	95% confidence limits				
	Supplier	value (ppm)	50	Low	High			
OREAS 62c	OREAS	8.79	0.21	8.69	8.88			
OREAS 62e	OREAS	9.13	0.41	8.97	9.3			
OREAS H3	OREAS	2	0.08	1.97	2.04			

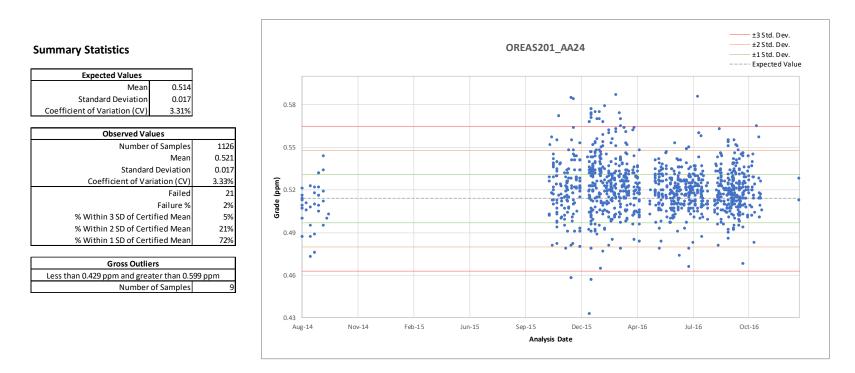
Standard (CRM)	Method	Lab	Quantity inserted	Quantity excluded – Outliers	No of outliers	Certifies gold value (ppm)	Lower process limit (ppm)	Upper process limit (ppm)	OSISKO mean grade (ppm)	Std dev	Failed	% Passing QC	Accuracy (% Error)	Precision (CV%)
GOLD ORE MA-1b	AU_PPM_AA26	ALS	1	0	1	17.050	15.820	18.280	n/a	n/a	0	n/a	n/a	n/a
OREAS 12a	AU_PPM_AA24	ALS	23	23	0	10.000	10.000	10.000	10.000	0.000	0	100	0.00	0.00
OREAS 12a	AU_PPM_AA26	ALS	162	141	21	11.790	11.070	12.510	11.726	0.309	5	96	0.54	2.63
OREAS 12a	AU_PPM_GRA22	ALS	19	19	0	11.790	11.070	12.510	11.724	0.289	1	95	0.56	2.46
OREAS 15d	AU_PPM_AA24	ALS	84	81	3	1.559	1.433	1.685	1.549	0.061	5	94	0.62	3.91
OREAS 15d	AU_PPM_AA26	ALS	6	0	6	1.559	1.433	1.685	n/a	n/a	0	n/a	n/a	n/a
OREAS 19a	AU_PPM_AA24	ALS	482	473	9	5.490	5.190	5.790	5.577	0.132	32	93	1.58	2.37
OREAS 19a	AU_PPM_AA26	ALS	33	31	2	5.490	5.190	5.790	5.533	0.130	0	100	0.78	2.35
OREAS 19a	AU_PPM_AA26D	ALS	27	27	0	5.490	5.190	5.790	5.512	0.109	0	100	0.40	1.99
OREAS 200	AU_PPM_AA24	ALS	385	377	8	0.340	0.304	0.376	0.344	0.008	0	100	1.14	2.38
OREAS 200	AU_PPM_AA26	ALS	174	168	6	0.340	0.304	0.376	0.338	0.013	4	98	0.70	3.99
OREAS 201	AU_PPM_AA24	ALS	1,135	1,126	9	0.514	0.463	0.565	0.521	0.017	21	98	1.30	3.33
OREAS 201	AU_PPM_AA26	ALS	18	17	1	0.514	0.463	0.565	0.523	0.011	0	100	1.74	2.15
OREAS 201	AU_PPM_AA26D	ALS	11	11	0	0.514	0.463	0.565	0.528	0.017	0	100	2.76	3.31
OREAS 202	AU_PPM_AA24	ALS	803	802	1	0.752	0.674	0.830	0.757	0.022	5	99	0.63	2.94
OREAS 202	AU_PPM_AA26	ALS	928	910	18	0.752	0.674	0.830	0.753	0.024	12	99	0.18	3.20
OREAS 202	AU_PPM_AA26D	ALS	9	9	0	0.752	0.674	0.830	0.760	0.018	0	100	1.06	2.32
OREAS 203	AU_PPM_AA24	ALS	436	432	4	0.871	0.781	0.961	0.875	0.025	2	100	0.48	2.82
OREAS 203	AU_PPM_AA26	ALS	92	90	2	0.871	0.781	0.961	0.862	0.026	2	98	1.01	3.06
OREAS 203	AU_PPM_AA26D	ALS	6	6	0	0.871	0.781	0.961	0.870	0.021	0	100	0.11	2.39
OREAS 205	AU_PPM_AA24	ALS	651	648	3	1.244	1.085	1.403	1.241	0.036	3	100	0.21	2.89
OREAS 205	AU_PPM_AA26	ALS	159	153	6	1.244	1.085	1.403	1.234	0.037	1	99	0.77	3.01
OREAS 205	AU_PPM_AA26D	ALS	13	13	0	1.244	1.085	1.403	1.232	0.027	0	100	0.94	2.21
OREAS 208	AU_PPM_AA24	ALS	183	182	1	9.248	7.934	10.562	9.448	0.247	0	100	2.16	2.61
OREAS 208	AU_PPM_AA26	ALS	120	113	7	9.248	7.934	10.562	9.334	0.263	0	100	0.93	2.82

Table 11-6: Summary of CRMs used from July 2014 to March 2018 and their attributes

www.innovexplo.com

Standard (CRM)	Method	Lab	Quantity inserted	Quantity excluded – Outliers	No of outliers	Certifies gold value (ppm)	Lower process limit (ppm)	Upper process limit (ppm)	OSISKO mean grade (ppm)	Std dev	Failed	% Passing QC	Accuracy (% Error)	Precision (CV%)
OREAS 208	AU_PPM_AA26D	ALS	44	44	0	9.248	7.934	10.562	9.388	0.235	0	100	1.51	2.51
OREAS 208	AU_PPM_GRA22	ALS	5	5	0	9.248	7.934	10.562	9.756	0.507	1	80	5.49	5.20
OREAS 209	AU_PPM_AA24	ALS	585	572	13	1.58	1.448	1.712	1.579	0.048	8	99	0.07	3.02
OREAS 209	AU_PPM_AA26	ALS	1,389	1,358	31	1.580	1.448	1.712	1.549	0.044	40	97	1.95	2.87
OREAS 209	AU_PPM_AA26D	ALS	10	9	1	1.580	1.448	1.712	1.567	0.033	0	100	0.84	2.13
OREAS 209	AUTOT_PPM_SCR24	ALS	1	0	1	1.580	1.448	1.712	n/a	n/a	0	n/a	n/a	n/a
OREAS 210	AU_PPM_AA26	ALS	48	39	9	5.490	5.034	5.946	5.372	0.168	2	95	2.14	3.13
OREAS 215	AU_PPM_AA26	ALS	815	790	25	3.540	3.249	3.831	3.478	0.093	16	98	1.75	2.67
OREAS 217	AU_PPM_AA26	ALS	685	673	12	0.338	0.308	0.368	0.334	0.012	26	96	1.10	3.55
OREAS 218	AU_PPM_AA24	ALS	222	221	1	0.531	0.480	0.582	0.534	0.015	4	98	0.52	2.86
OREAS 218	AU_PPM_AA26	ALS	2,087	2,058	29	0.531	0.480	0.582	0.527	0.017	27	99	0.76	3.23
OREAS 220	AU_PPM_AA26	ALS	1,430	1,376	54	0.866	0.806	0.926	0.853	0.024	63	95	1.49	2.87
OREAS 222	AU_PPM_AA24	ALS	160	159	1	1.220	1.121	1.319	1.221	0.033	4	97	0.10	2.69
OREAS 222	AU_PPM_AA26	ALS	259	241	18	1.220	1.121	1.319	1.212	0.033	2	99	0.65	2.69
OREAS 223	AU_PPM_AA26	ALS	777	745	32	1.780	1.645	1.915	1.752	0.051	32	96	1.55	2.90
OREAS 228	AU_PPM_AA26	ALS	506	482	24	8.730	7.893	9.567	8.513	0.274	17	96	2.48	3.22
OREAS 228	AU_PPM_AA26D	ALS	3	3	0	8.730	7.893	9.567	8.823	0.182	0	100	1.07	2.06
OREAS 228	AUTOT_PPM_SCR24	ALS	2	2	0	8.730	7.893	9.567	8.315	0.045	0	100	4.75	0.54
OREAS 229	AU_PPM_AA24	ALS	34	34	0	10.000	10.000	10.000	10.000	0.000	0	100	0.00	0.00
OREAS 229	AU_PPM_AA26	ALS	609	553	56	12.110	11.492	12.728	11.840	0.275	46	92	2.23	2.32
OREAS 229	AU_PPM_AA26D	ALS	10	8	2	12.110	11.492	12.728	11.969	0.152	0	100	1.17	1.27
OREAS 229	AU_PPM_GRA22	ALS	30	30	0	12.110	11.492	12.728	12.027	0.206	0	100	0.69	1.71
OREAS 229	AUTOT_PPM_SCR24	ALS	6	4	2	12.110	11.492	12.728	11.763	0.216	1	75	2.87	1.84
OREAS 501b	AU_PPM_AA26	ALS	240	239	1	0.248	0.218	0.278	0.242	0.011	6	97	2.55	4.55
OREAS 502b	AU_PPM_AA26	ALS	125	122	3	0.494	0.449	0.539	0.489	0.017	4	97	1.01	3.43
OREAS 504b	AU_PPM_AA26	ALS	262	257	5	1.610	1.490	1.730	1.575	0.042	9	96	2.14	2.68
OREAS 60c	AU_PPM_AA24	ALS	1,075	1,063	12	2.470	2.230	2.710	2.496	0.083	22	98	1.03	3.32
OREAS 60c	AU_PPM_AA26	ALS	263	253	10	2.470	2.230	2.710	2.461	0.077	3	99	0.36	3.15
OREAS 60c	AU_PPM_AA26D	ALS	44	43	1	2.470	2.230	2.710	2.501	0.071	0	100	1.27	2.86

🗱 InnovExplo


Standard (CRM)	Method	Lab	Quantity inserted	Quantity excluded – Outliers	No of outliers	Certifies gold value (ppm)	Lower process limit (ppm)	Upper process limit (ppm)	OSISKO mean grade (ppm)	Std dev	Failed	% Passing QC	Accuracy (% Error)	Precision (CV%)
OREAS 60c	AUTOT_PPM_SCR24	ALS	1	0	1	2.470	2.230	2.710	N/A	N/A	0	N/A	N/A	N/A
OREAS 61d	AU_PPM_AA26	ALS	2	2	0	4.760	4.340	5.180	4.470	0.010	0	100	6.09	0.22
OREAS 61e	AU_PPM_AA24	ALS	336	331	5	4.430	3.980	4.880	4.506	0.119	2	99	1.72	2.64
OREAS 61e	AU_PPM_AA26	ALS	1,937	1,850	87	4.430	3.980	4.880	4.418	0.149	28	98	0.26	3.37
OREAS 61e	AU_PPM_AA26D	ALS	29	27	2	4.430	3.980	4.880	4.500	0.114	0	100	1.59	2.54
OREAS 61e	AUTOT_PPM_SCR24	ALS	1	0	1	4.430	3.980	4.880	n/a	n/a	0	n/a	n/a	n/a
OREAS 62c	AU_PPM_AA24	ALS	313	302	11	8.790	8.160	9.420	8.876	0.293	16	95	0.98	3.30
OREAS 62c	AU_PPM_AA26	ALS	34	33	1	8.790	8.160	9.420	8.842	0.286	0	100	0.60	3.23
OREAS 62c	AU_PPM_AA26D	ALS	23	23	0	8.790	8.160	9.420	8.844	0.290	1	96	0.61	3.28
OREAS 62e	AU_PPM_AA24	ALS	589	586	3	9.130	7.900	10.360	9.363	0.269	2	100	2.56	2.87
OREAS 62E	AU_PPM_AA26	ALS	890	876	14	9.130	7.900	10.360	9.127	0.319	9	99	0.03	3.49
OREAS 62E	AU_PPM_AA26D	ALS	122	120	2	9.130	7.900	10.360	9.314	0.202	0	100	2.01	2.17
OREAS 62e	AU_PPM_GRA22	ALS	7	7	0	9.130	7.900	10.360	9.293	0.326	0	100	1.78	3.50
OREAS 62e	AUTOT_PPM_SCR24	ALS	3	2	1	9.130	7.900	10.360	8.945	0.125	0	100	2.03	1.40
OREAS H3	AU_PPM_AA26	ALS	1	0	1	2.000	1.760	2.240	n/a	n/a	0	n/a	n/a	n/a
OREAS 12a	AU_PPM_FA450	BV	2	2	0	10.000	10.00	10.000	10.000	0.000	2	0	0.00	0.00
OREAS 200	AU_PPM_FA450	BV	46	41	5	0.340	0.304	0.376	0.330	0.013	1	98	2.91	4.07
OREAS 201	AU_PPM_FA450	BV	2	0	2	0.514	0.463	0.565	n/a	n/a	0	n/a	n/a	n/a
OREAS 202	AU_PPM_FA450	BV	112	108	4	0.752	0.674	0.830	0.746	0.035	6	94	0.85	4.68
OREAS 203	AU_PPM_FA450	BV	24	20	4	0.871	0.781	0.961	0.861	0.035	1	95	1.15	4.12
OREAS 205	AU_PPM_FA450	BV	16	13	3	1.244	1.085	1.403	1.203	0.046	0	100	3.28	3.84
OREAS 208	AU_PPM_FA450	BV	12	9	3	9.248	7.934	10.562	8.578	0.801	2	78	7.24	9.34
OREAS 209	AU_PPM_FA450	BV	320	315	5	1.580	1.448	1.712	1.556	0.043	3	99	1.49	2.76
OREAS 210	AU_PPM_FA450	BV	5	2	3	5.490	5.034	5.946	5.278	0.021	0	100	3.87	0.39
OREAS 215	AU_PPM_FA450	BV	81	77	4	3.540	3.249	3.831	3.406	0.116	6	92	3.79	3.42
OREAS 217	AU_PPM_FA450	BV	42	41	1	0.338	0.308	0.368	0.331	0.009	0	100	2.09	2.63
OREAS 218	AU_PPM_FA450	BV	285	283	2	0.531	0.480	0.582	0.524	0.023	9	97	1.31	4.39
OREAS 220	AU_PPM_FA450	BV	277	223	54	0.866	0.806	0.926	0.849	0.042	49	78	1.98	4.94
OREAS 222	AU_PPM_FA450	BV	22	17	5	1.220	1.121	1.319	1.199	0.066	3	82	1.73	5.49

Standard (CRM)	Method	Lab	Quantity inserted	Quantity excluded – Outliers		Certifies gold value (ppm)	Lower process limit (ppm)	Upper process limit (ppm)	OSISKO mean grade (ppm)	Std dev	Failed		Accuracy (% Error)	Precision (CV%)
OREAS 223	AU_PPM_FA450	BV	227	203	24	1.780	1.645	1.915	1.694	0.072	54	73	4.80	4.26
OREAS 228	AU_PPM_FA450	BV	7	7	0	8.730	7.893	9.567	8.302	0.382	1	86	4.90	4.60
OREAS 229	AU_PPM_FA450	BV	11	0	11	12.110	11.492	12.728	n/a	n/a	0	n/a	n/a	n/a
OREAS 501b	AU_PPM_FA450	BV	121	119	2	0.248	0.218	0.278	0.241	0.011	3	97	2.84	4.75
OREAS 502b	AU_PPM_FA450	BV	87	85	2	0.494	0.449	0.539	0.490	0.018	0	100	0.74	3.62
OREAS 504b	AU_PPM_FA450	BV	156	150	6	1.610	1.490	1.730	1.559	0.045	1	99	3.14	2.88
OREAS 60c	AU_PPM_FA450	BV	22	17	5	2.470	2.230	2.710	2.374	0.140	3	82	3.90	5.89
OREAS 61e	AU_PPM_FA450	BV	248	234	14	4.430	3.980	4.880	4.279	0.179	10	96	3.42	4.19
OREAS 62e	AU_PPM_FA450	BV	22	21	1	9.130	7.900	10.360	8.909	0.551	1	95	2.42	6.19
Total			2,4121	2,3381	740						639			

www.innovexplo.com

Figure 11-8: Results of standard OREAS 201 using AA24 finish

11.6.1.4 Comments for Monitoring Accuracy and Precision

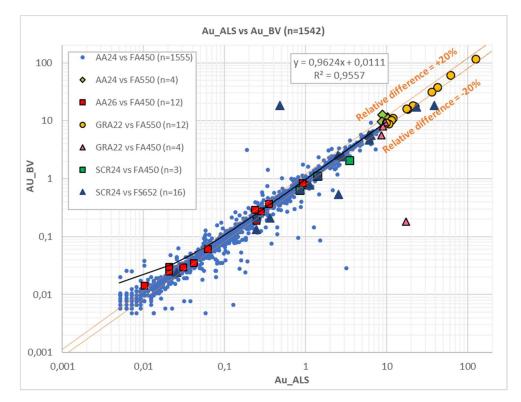
The accuracy of the result (as a percentage of error) is measured as the difference between the average of the standard's samples and the value assigned for the standard; gross outliers are excluded from this operation. For a laboratory, a good accuracy constitutes the ability to give results as near as possible to the expected value.

The author examined the analytical value of CRM issues from July 28, 2014 to March 5, 2018, as supplied by the Client. The CRMs generally report within $\pm 10\%$ of the expected value and within three standard deviations (Table 11-6). Most used reference material (i.e. over 100 insertions) exhibit a slight positive bias in terms of accuracy from 0.03% to 4.38%, for a mean of 1.39% (Table 11-6). Most results for the standards range from precise (<3%) to typical, according to standard industry precision criteria (3–5%). Accuracy over 5% concerns only 3 CRMs with a non-significant number of samples.

The precision of the result (as a percentage) is represented by the dispersion of the standard's samples versus their average. Good precision for a laboratory constitutes the ability to repeat results with the smallest standard deviation possible.

The precision varies from 0% to 9.34%; however, CRMs exceeding over 100 insertions vary from 2.17% to 4.94% for a mean of 3.22% (Table 11-6). These results are considered precise according to the standard industry precision criteria (3% to 5%).

InnovExplo is of the opinion that the quality control in accuracy monitoring for the database submitted by Osisko follows standard procedures and that the data is reliable and valid.


11.6.1.5 Duplicate

A component of the QA/QC program included the determination of the analytical precision (repeatability) of the original gold assay data from the lab. ALS pulps were submitted to BV for inter-laboratory check assays (Figure 11-9). The assays for pulp duplicates provide an estimate of the reproducibility related to the uncertainties inherent in the analytical method and the homogeneity of the pulps. The precision or relative percent difference calculated for the pulp duplicates indicates whether pulverizing specifications should be changed and/or whether alternative methods, such as screened metallics for gold, should be considered.

Prior to statistical analysis and plotting of the duplicates, outliers were removed from the dataset. Outliers are extreme values that can have a disproportionate influence on precision estimates based on duplicate data. In this case, only gross outliers (±300% difference) were manually removed as they could have been the results human error. In addition, in order to prevent unwanted bias due to reproducibility issues on samples with very low grades or grades close to the detection limits, the lower limit value of 0.05 ppm was used.

The original ALS 1542 pulp duplicates and BV duplicate assays are plotted in Figure 11-9. Duplicate sets are presented as log-scaled plots to provide details at lower concentrations. The scatter plot of pulps yielded a linear regression slope of

0.96 and a determination coefficient of 95.6%, which means that the average grade is close to the average original grade, and there is a very good reproducibility.

Figure 11-9: Post 2014 MRE laboratory pulp duplicates for gold. Values < 0.05 ppm and outliers are removed from trend analysis

11.6.1.6 Comments on Duplicates

The pulp duplicate results are good according to standard industry precision. A perfect precision would be 100% at five times detection limit. InnovExplo identifies any accuracy or precision issues and concludes that the analytical data reviewed are acceptable to support mineral resource estimation.

11.6.1.7 Specific Gravity

Specific gravity ("SG") was measured by pycnometry by ALS Minerals in Val-d'Or (ALS code OA-GRA08b) and BV in Timmins (Bureau Veritas code SPG04).

In 2013, Eagle Hill conducted an internal test that compared specific gravity measurements using a water displacement method (GRA08 ALS method) and those obtained from pycnometry (pulverized material). The test results showed some variability when comparing the SG values of approximately 15 cm-long sample pieces. However, when the results from a number of these smaller pieces taken from one sample interval were averaged, the resulting SG data compared favourably to those data obtained from the ALS pycnometry.

In 2018, Osisko Mining began an internal specific gravity measurement program by electronic densimeter method (ELEDEN method described in Section 10.9.4 of this report). The program has been completed on the Lynx zone and is ongoing in the

Main Zone and other sub-zones. Within the database, there are 1,173 internal SG measurements from Eagle Hill and Osisko along with lab SG comparables. Table 11-7 shows basic statistics between methods, with gross outliers removed. Figure 11-10 shows the correlation between lab and internal SG measurements.

Table 11-7: Summary statistics between specific gravity GRA08b and electronic densimeter methods (n=1173)

Statistics	GRA08B (g/cm³)	Densimeter (g/cm³)
Min	2.47	2.02
Max	4.38	4.28
Mean	2.85	2.85
Median	2.82	2.81
Std Dev	0.15	0.15

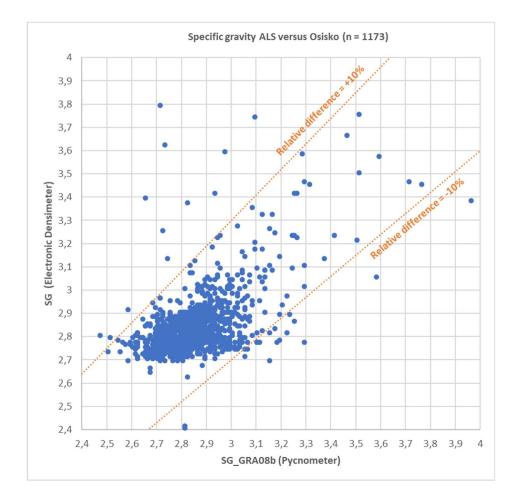


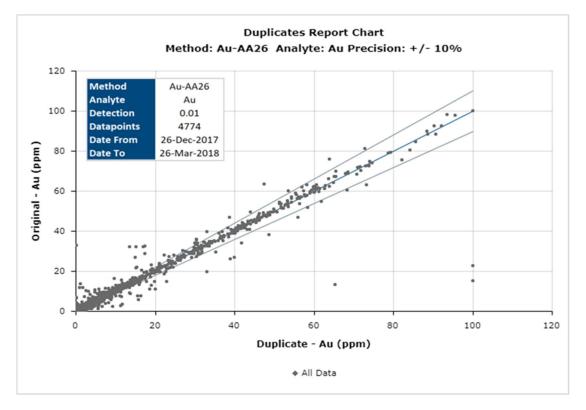
Figure 11-10: Lab (GRA08b) and internal specific gravity (SG) measurement correlation (Eagle Hill and Osisko)

11.6.1.8 Comments on Specific Gravity

The mean SG between the two methods is identical at 2.85 (Table 11-7). The trend on the SG diagram indicates that lab measurements below 3.0 tend to be lower compared to internal measurements (Figure 11-10). As the majority of Osisko Mining SG data is lab sourced, the internal SG measurement program suggests that the lab overestimates SG measurements. Correlation for higher SG is better.

The difference in result between the two methods is not surprising. With the pycnometry method, the material is a homogenized pulp from the entire interval assayed. Electronic densimeter method uses a 10 cm to 15 cm long core sample and takes into consideration the porosity that is destroyed when spaying with the pycnometry method.

InnovExplo considers the results on specific gravity good and adequate.


11.6.2 Laboratory Quality Assurance and Quality Control (QA/QC)

11.6.2.1 ALS Minerals

ALS follows an in-house QA/QC program. To ensure quality control at the sample preparation stage, ALS monitors the fineness of crushing and pulverizing according to the method specifications and inserts one sample preparation duplicates per batch of 50, taken from coarse crushed material. At the analytical stage, ALS runs its own blanks, reference materials, and pulp duplicates. The frequency of analytical quality control can be seen in Table 11-8. Pulp duplicate data from the most frequented assay method, Au-AA26, taken from the ALS WebtrieveTM system, is plotted in Figure 11-11.

Rack size	Methods	Quality control sample allocation
20	Specialty methods including specific gravity, bulk density, and acid insolubility	2 standards, 1 duplicate, 1 blank
28	Specialty fire assay, assay-grade, umpire and concentrate methods	1 standard, 1 duplicate, 1 blank
39	XRF methods 2 standards, 1 duplicate, 1 blank	1 standard, 1 duplicate, 1 blank
40	Regular AAS, ICP-AES and ICP-MS methods	2 standards, 1 duplicate, 1 blank
84	Regular fire assay methods	2 standards, 3 duplicates, 1 blank

Table 11-8: ALS analytical quality control – Reference materials, blanks, and duplicates

Figure 11-11: ALS pulp duplicates

11.6.2.2 Bureau Veritas

BV conducts its own internal laboratory quality control program. Laboratory analytical batches typically consist of 40 or 84 samples, with 10-15% laboratory inserted control materials. At sample preparation stage, rock and drill core submitted, granite or quartz sample-prep blanks are carried through all stages of preparation and analysis to confirm the cleaning protocols suffice. Reject duplicates ("DUP") of -10 mesh are created during the preparation stage and analyzed along with samples. Internal analytical controls include pulp replicates ("REP") to monitor analytical precision, reagent blanks ("BLK") to measure background, and CRMs (STD) (9). Pulp duplicates of FA450 data from December 26 to March 26 from the BV WebAccess system is shown in Table 11-9 and Figure 11-12.

Table 11-9: Bureau	Veritas analytica	I quality contro	I – Reference	materials,
blanks, and duplicat	es			

Internal Quality Control	Analytical Lab batch of 40	Fire Assay Lab batch of 84
Analytical Blank	1	2
Pulp Replicate	1	2
Preparation Duplicate	1	2
Reference Material	2	3

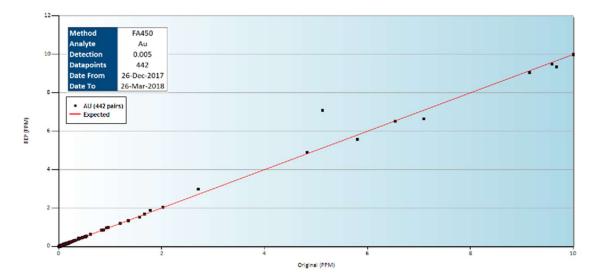


Figure 11-12: Bureau Veritas pulp duplicates (Method FA450)

11.6.3 Final Gold Value

In cases where multiple methods of analyses were used to analyze gold content, a priority sequence was used to identify the final gold value. The ranking priority is listed in Table 11-10 below. In addition, the formula will choose the highest priority rank that has passed QA/QC; i.e., should "AuTotal_ppm_SCR24" fail QA/QC, but the lower ranked "Au_ppm_AA24" passed QA/QC, the final gold value would be sourced from the Au_ppm_AA24 method.

Ranking	Laboratory	Method code	Technique	
1	ALS Minerals	AuTotal_ppm_SCR24	Fire Assay Fusion, Metallic Screen	
2	ALS Minerals	AuTotal_ppm_SCR21	Fire Assay Fusion, Metallic Screen	
3	ALS Minerals	Au_ppm_GRA22	Precious Metals Gravimetric Analysis	
4	ALS Minerals	Au_ppm_GRA21	Precious Metals Gravimetric Analysis	
5	ALS Minerals	Au_ppm_AA26	Fire Assay Fusion, AAS Finish	
6	ALS Minerals	Au_ppm_AA25	Fire Assay Fusion, AAS Finish	
7	ALS Minerals	Au_ppm_AA24	Fire Assay Fusion, AAS Finish	
8	ALS Minerals	Au_ppm_AA23	Fire Assay Fusion, AAS Finish	
9	Bourlemaque	Au_ppm_PyroSAA	Fire Assay Fusion, AAS Finish	
10	Bureau Veritas	AuTotal_gpt_FS652	Fire Assay Fusion, Metallic Screen	
11	Bureau Veritas	Au_gpt_FA550	Fire Assay Fusion, AAS Finish	
12	Bureau Veritas	Au_ppm_FA450	Fire Assay Fusion, AAS Finish	

Table 11-10: Gold method priority ranking

11.7 InnovExplo's Comments and Recommendations

InnovExplo reviewed the field procedures and analytical quality control measures used by Osisko. The data sets examined by InnovExplo do not present evidence of obvious analytical bias and follow generally accepted industry standards.

The level of contamination appears to be low as 98.53% of the blank samples returned values below or equal to the acceptance limit of 10x the detection limit. The statistics on the CRMs (standards) are considered reliable and within acceptable limits of accuracy in the industry.

Pulp duplicates show excellent correspondence between ALS and BV Au assays. InnovExplo identified any accuracy or precision issues.

The results presented and discussed above demonstrate that sample preparation, analysis, QA/QC and security protocols used for the assays obtained after the November 13, 2014 MRE (Tetra Tech, 2015), and before the Osisko database close-out date of March 5, 2018, are appropriate for the 2018 mineral resource estimation.

12. DATA VERIFICATION

The diamond drill hole ("DDH") database used for the mineral resource estimate (the "2018 MRE") was provided by Osisko. The drilling program in the Windfall resource area is still ongoing, and the database close-out date was set at March 5, 2018.

12.1 Site Visit

InnovExplo's data verification included a few site visits to the Windfall Lake Project. Stéphane Faure visited the core logging facilities on March 20 to 22, 2017 and examined the lithologies, mineralization and structural features on selected core intervals. On July 12 and 13, 2017, Judith St-Laurent visited the core logging and storage facilities, and on July 14, 2017, Ms. St-Laurent examined selected drill collars in the field. The July site visit also included a review and independent resampling of selected core intervals as well as a review of assays, the QA/QC program, downhole survey methodologies, and the descriptions of lithologies, alteration and structures.

Most of the database verification took place at the InnovExplo office in Val-d'Or after the site visits.

12.2 Drilling and Sampling Procedure

InnovExplo reviewed several sections of mineralized core while visiting the onsite core logging and core storage facilities. All core boxes were labelled and properly stored outside. Sample tags were still present in the boxes and it was possible to validate sample numbers and confirm the presence of mineralization in witness half-core samples from the mineralized zones (Figure 12-1 and Figure 12-2).

Drilling was underway during InnovExplo's site visit, which provided an opportunity for Osisko personnel to explain the entire path of the drill core, from the drill rig to the logging and sampling facility and finally to the laboratory.

InnovExplo is of the opinion that the protocols in place are adequate.

Figure 12-1: A), B) Photographs of the interior of the core logging facility; C) Photograph of the roofed core racks at the core storage facility

Figure 12-2: A) Photograph of boxes containing pulps; B) Boxes containing standards used during the drilling programs; C) Commercial crushed stones used as blank material during the drilling programs.

12.3 Drill Hole Database

The database provided by Osisko (the "Osisko database") contains 1,869 drill holes from surface including 1,718 drill holes in the resource area. From this, 812 new drill

holes were completed by Osisko and included in the present mineral resource since the database close-out date released in the previous NI 43-101 report (Tetra Tech, 2015).

Drill holes were rejected from the resource database when not sampled, or when assays located inside the mineralization zones were pending. A total of 265 drill holes (15%) were rejected and 1,453 were included in the resource database.

12.4 Historical Work

The historical information used in this report was taken mainly from reports produced before the implementation of NI 43-101. In some cases, little information is available about sample preparation, analytical or security procedures. However, InnovExplo assumes that exploration activities conducted by previous companies were in accordance with prevailing industry standards at the time.

Basic cross-check routines between original logs and drill hole database were performed for approximately 5% of the database.

12.4.1 Drill hole locations

Most of the drill hole collars in the resource database on the Windfall Lake Project were professionally surveyed. The drill holes collars were mostly surveyed by Corriveau J.L. & Assoc. Inc. (Val-d'Or) using a high-precision Leica GPS (precision of ± 0.05 m). An in-house high-precision GPS system was also occasionally used by Osisko Mining's geotechnicians for surveying completed drill holes. The Project coordinate system is NAD83 UTM Zone 18.

Approximately 5% of the drill holes locations recorded in the database were compared to the data on the original certificates provided by the surveyor company.

Some collar coordinates were originally imported in the database using coordinates measured at the top of the casing. These coordinates were corrected in the resource database and replaced by the coordinates measured at ground level. Detailed drilling procedures were written to avoid the confusion at the time of the collar coordinate measurements.

Seven casings were reviewed by the author during the site visit using a GPSMAP 60CSx (Figure 12-3). The differences between the InnovExplo measurements and those recorded in the Osisko database are within the order of precision of the instrument.

The author concluded that the collar locations are adequate and reliable.

Figure 12-3: A) Photograph showing the GPSMAP 60CSx used to verify the location of a drill collar during the site visit – Hole OBM-16-597. B) Photograph showing one of the metal identification labels used for most drill hole collars on the Windfall Lake Project – Hole OBM-16-597.

12.5 Down Hole Survey

Down hole surveying has been performed routinely by Osisko on every drill hole. Only eight historical drill holes measuring more than 100 m were not surveyed.

The survey data were verified for approximately 5% of the drill hole database.

InnovExplo identified a few minor issues that were corrected by Osisko. The survey data are considered valid and reliable.

12.5.1 Assays

InnovExplo was granted access to the original assay certificates for all holes drilled from 2009 to 2018 in the Windfall Lake Project. Assays of Au and SG were verified for 5% of the database. The assays recorded in the database were compared to the original certificates from the different laboratories: ALS Global, Bourlamaque and Veritas laboratories. Assay results are automatically imported by Osisko into the database, which prevent the typing errors. Values below the detection limits are correctly entered into the database as the half of the detection limit.

A total of 5,188 assays located in 604 drill holes that did not pass the current QA/QC criteria were pending at the time of the close-out date of the resource database. InnovExplo included these drill holes into the resource database, but excluded the pending assays during the composite calculation.

Out-of-range lengths in some assays were detected by InnovExplo and immediately corrected by Osisko. No errors were found concerning the assay values. The final database is considered to be of good overall quality.

12.6 Mined-out Voids

The exploration ramp currently in development and surveyed as of March 2018 was provided by Osisko. InnovExplo validated the robustness of the 3D shape.

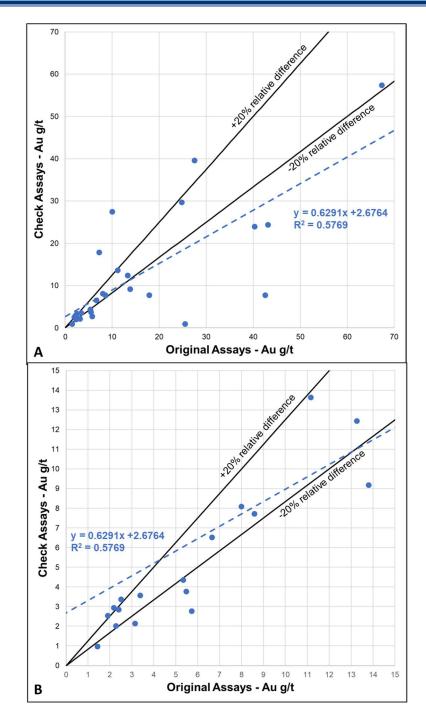
InnovExplo considers the level of detail in the void triangulation to be of good quality and reliable.

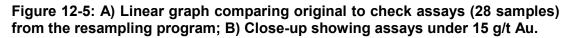
12.7 Independent Resampling

InnovExplo resampled a series of intervals from the 2010-2016 drilling programs. Core intervals were selected by InnovExplo personnel and quarter-splits were sawed by Osisko personnel. Authors selected samples representing different mineralized zones and a range of gold grades to be re-analyzed at the ALS laboratory in Val-d'Or (Figure 12-4). Samples were put into individual plastic bags, grouped in batches, and then placed inside rice bags closed hermetically with tie wraps. Rice bags were taken to the laboratory by InnovExplo personnel with a work order indicating the sample preparation and assay procedures to be followed by the laboratory.

Twenty-eight samples taken from an equal number of drill hole intervals were assayed for gold using fire assay with AA finish (AA-AA24). Samples assaying more than 10 g/t Au with AA were rerun with gravimetric finish (GRA22). One CRM and one field blank were added to the shipment. The field blank for the resampling program is from a gold-barren sample of calcareous rock tested by different laboratories. The ALS assay certificate is presented in Appendix IV.

Table 12-1 shows the resampling results for the 28 samples. Figure 12-5 is a plot of the 28 original-check pairs showing a linear regression slope of 0.63 and a correlation coefficient of 57.69%. The results indicate reasonable reproducibility of the original samples and show acceptable results despite some discrepancies for individual reassays. InnovExplo believes the field duplicate results from the independent resampling program are reliable and valid for a gold project with a certain nugget effect.




Figure 12-4: Photographs of core resampled: A) InnovExplo sample tag – 057002; B) original core: drill hole EAG-10-23.

Drill hole information			Original s	amples	InnovExplo field duplicates		uplicates
Hole ID	From	То	Sample	Au	Sample	Au - AA24	Au - GRA22
	(m)	(m)	ID	(g/t Au)	ID	(g/t Au)	(g/t Au)
FUR-03-05	288.05	289.00	66006	2.27	57001	2.02	
EAG-10-235	74.00	75.00	188007	13.80	57002	9.18	
EAG-10-246	216.00	217.55	190416	6.65	57003	6.53	
EAG-11-251	234.00	235.00	J400401	7.99	57004	8.10	
EAG-11-256	192.00	193.00	398839	1.43	57005	0.97	
EAG-11-257	61.00	62.00	J399137	2.17	57006	2.94	
EAG-11-305	47.00	48.00	M066174	43.10	57007	>10.0	24.40
EAG-11-269	198.00	199.00	K342167	1.90	57008	2.55	
EAG-11-266	34.00	35.00	J401433	5.47	57009	3.77	
EAG-11-262	134.00	135.00	J397034	24.80	57010	>10.00	29.70
EAG-11-284	80.80	82.00	L234788	67.30	57011	>10.00	57.40
EAG-12-333	227.00	228.00	N084758	2.39	57012	2.85	
EAG-12-344	392.00	393.00	N085843	17.85	57013	7.75	
EAG-12-401	260.90	262.00	P282520	25.50	57015	0.98	
EAG-12-427	714.10	715.00	P271977	13.25	57016	>10.0	12.45
EAG-12-446	122.30	122.80	P275408	2.50	57017	3.38	
EAG-12-444	123.00	124.00	P275163	5.34	57018	4.36	
EAG-13-508	407.40	407.80	P080951	27.50	57019	>10.00	39.60

Table 12-1: Gold results from the core resampling program, Windfall Lake project

Drill hole information			Original samples		InnovExplo field duplicates		
Hole ID	From	То	Sample	Au	Sample	Au - AA24	Au - GRA22
Hole ID	(m)	(m)	ID	(g/t Au)	ID	(g/t Au)	(g/t Au)
NOT-07-150	37.14	41.10	115676	10.00	57020	>10.00	27.50
NOT-05-42	108.00	108.60	76377	24.53	57022	>10.00	<0.05
NOT-07-138	72.00	73.00	115380N	8.58	57023	7.72	
OBM-16-625	155.50	156.00	S404225	3.38	57024	3.57	
OBM-16-626	62.60	63.30	S405697	40.30	57025	>10.00	24.00
OBM-16-642	513.00	514.00	S415473	3.14	57026	2.15	
OBM-16-647	101.60	102.10	S438792	11.15	57027	>10.00	13.65
EAG-10-205	244.55	245.10	184000	7.22	57028	>10.00	17.85
OBM-16-696	350.80	351.50	S762748	5.72	57029	2.78	
EAG-13-320-W1	580.00	580.60	R011131	42.50	57030	7.75	

12.8 Conclusion

The databases for the Windfall Lake Project are of good overall quality. Minor variations have been noted during the validation process but have no material impact on the 2018 MRE. The database is of sufficient quality to be used for a resource estimate.

13. MINERAL PROCESSING AND METALLURGICAL TESTING

13.1 Windfall Testwork

The metallurgical test program for the Windfall Lake Project Preliminary Economic Assessment ("PEA") started in June 2017 under the supervision of BBA in collaboration with Osisko. The metallurgical test plan included composite samples from three zones: Zone 27, Caribou and Lynx. No testwork was performed on the Underdog, Mallard and F zones; however, based on mineralization similarities between the Caribou and Zone 27 and Underdog zones, the average Au and Ag recovery for Caribou and Zone 27 was assigned to Underdog. No recovery values were assigned to zones Mallard or F due to the small proportion of those ores in the deposit (see Table 1-2). The test plan aimed to determine an optimal flowsheet and generate engineering data for average ore feed grades.

Table 13-1 indicates the type of tests that were performed. As indicated in the table, SGS's lab in Quéebec City was selected to provide the majority of the metallurgical services required, including:

- Sample and composite preparation and characterization;
- Comminution testing:
 - SAG Mill Comminution (SMC);
 - Bond ball mill work index (BWi);
 - Abrasion index (Ai);
 - Regrind signature plot;
- Gravity testwork;
- Flotation testwork;
- Leaching testwork (whole ore leach ("WOL"), carbon-in-leach ("CIL"), reground flotation concentrate, flotation tails);
- Thickening testwork.

Additional thickening, rheology and filtration tests were performed by Pocock Industrial in Utah, USA.

	Test	Supplier	Composites		
	DWT Abrasion Index	SGS	#9 (waste)		
Grinding	SAG Mill Comminution (SMC)	SGS	P3-B (Caribou) P1-CA-I1P-U P3-G (Zone 27) P1-27-V2-D P3-I (Lynx) P1-27-I1P-D #9 (waste) P1-27-I2P-D P1-CA-V2-D P1-27-V1-U P1-CA-I1P-D P1-27-V2-U P1-CA-I2P-D P1-27-V2-U P1-CA-I2P-D P1-27-V2-U P1-CA-V2-D P1-27-I2P-U P1-CA-V2-U P1-27-I2P-U P1-CA-V2-U P1-27-I2P-U		
	Bond Ball Work Index (BWi)	SGS	P3-B (Caribou) P3-G (Zone 2)		

Table 13-1: Windfall test plan

	Test	Supplier	Composites		
			P3-I (Lynx) #9 (waste) Blended composite		
Regrinding	Isamill Signature plot	SGS	(Zone 27 + Caribou + Lynx)		
Gravity	Gravity	SGS	Zone 27 composite Caribou composite Lynx composite		
Flotation	Rougher kinetics	SGS	Zone 27 comp Caribou compP1-27-V2-D-L P1-27-V2-D-M P1-27-V2-D-HLynx compP1-27-V2-D-HPEA Lynx blend P1-CA-V2-D-LP1-27-I1P-D-L P1-27-I1P-D-HP1-CA-V2-D-H P1-CA-I1P-D-LP1-27-I1P-D-H P1-27-I2P-D-LP1-CA-I1P-D-H P1-CA-I1P-D-HP1-27-I2P-D-L P1-27-I2P-D-HP1-CA-I2P-D-H P1-CA-I2P-D-HP1-27-V1-U-L P1-27-V1-U-LP1-CA-I2P-D-H P1-CA-I2P-D-HP1-27-V1-U-L 		
	Settling rate – flotation conc.	SGS	Plandad composito		
Thickening	Settling rate – flotation tails Settling rate – combined flotation conc.+tails leach residue	SGS SGS	Blended composite (Zone 27 + Caribou + Lynx)		
Thickening, Rheology and Filtration	Settling rate, rheology and filtration – combined flotation conc. + tails leach residue	Pocock	Blended composite (Zone 27 + Caribou)		

13.1.1 Sample Selection and Compositing

Comminution Testwork Composites

Three new composite samples (P3-B, P3-G and P3-I) were prepared from HQ drill hole intervals located within the mineral resource envelope for comminution testing. Composites P3-B and P3 G represent Caribou and Zone 27 material respectively, while the P3-I composite is within the Lynx zone. An additional low grade sample (#9) located within the mineralized zone was also tested in order to be able to represent dilution material that will inevitably report to the plant feed. A total of 37 intervals totalling 119 m of core from 34 different drill holes were selected to prepare four composites, each having a sufficient quantity of material to complete the proposed comminution testwork for each zone. The composites were submitted to SMC for BWi

and Ai testing, the results of which are used for preliminary grinding circuit sizing and estimation of media and liner wear rates.

The hole locations are illustrated in Figure 13-1 and Figure 13-2.

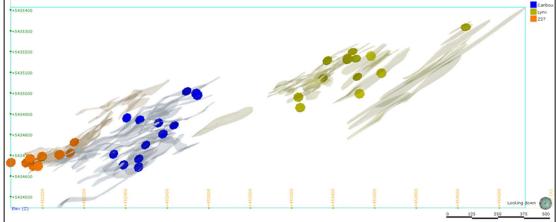
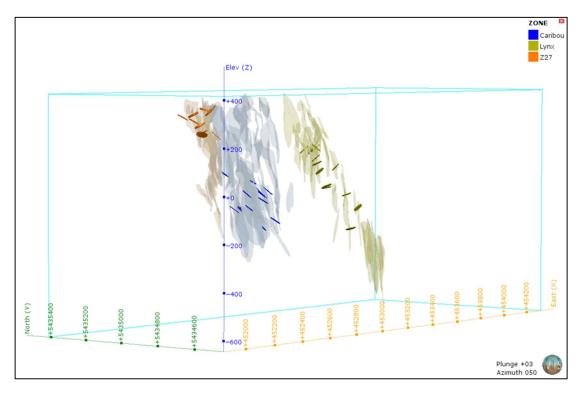



Figure 13-1: Plan view of comminution samples holes locations.

Figure 13-2: Looking N050 view of comminution samples holes locations

Furthermore, 318 intervals deemed relevant for establishing the ore hardness variability were submitted to SMC tests.

Recovery Testwork Composites with Gravity

Intervals from recent NQ drill holes located within the mineralized envelope were used to prepare three composite samples, namely Zone 27, Lynx and Caribou, for recovery testwork (flotation and leaching with and without gravity pre-treatment). Each of the composites was prepared to reflect the life of mine head grade within the resource envelope. A total of 94 m of material was collected from 58 drill holes intersecting the three main zones.

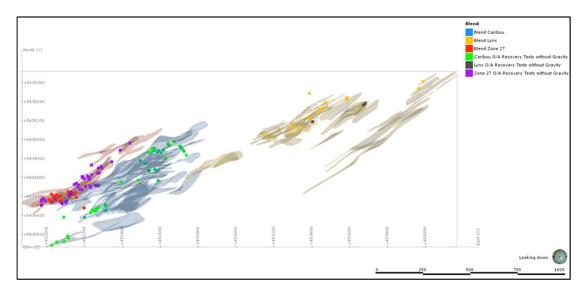


Figure 13-3: Plan view of recovery samples holes locations

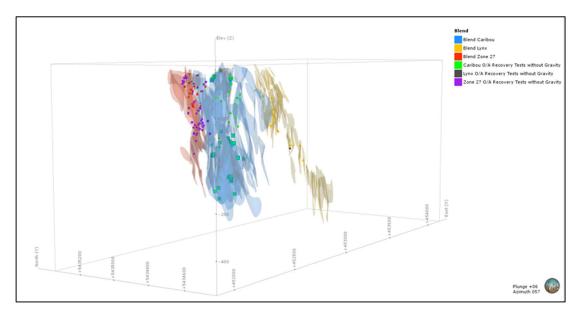


Figure 13-4: Looking N050 view of recovery samples holes locations

During the recovery testing program, some material was set aside to generate a composite of the three zones in order to perform thickening tests, and to generate a

signature plot for fine grinding. The composite was prepared containing equal proportions of material from each of the Caribou, Lynx and 27 zones.

The selected drill hole locations are illustrated in Figure 13-3 and Figure 13-4. The aforementioned samples are labelled "Blend".

In order to test the effect of gold head grade on gold recovery, 36 intervals were collected to prepare three composite samples (one for each Zone 27, Caribou and Lynx).

Recovery Testwork Variability Composites without Gravity

In addition to the recovery work previously described, additional composite samples were prepared to assess gold recovery without gravity pre-treatment. A total of 21 composites were prepared for Zone 27, 17 for Caribou and one for Lynx; 197 intervals were collected from 81 different drill holes. Table 13-2 shows the different variability parameters taken into consideration: Au grade, depth and rock type.

The selected drill hole locations are illustrated in Figure 13-3 and Figure 13-4 and the sample label indicates "Tests without Gravity".

The samples were submitted to flotation and leaching testwork. Due to sample availability, variability was tested to a greater extent on samples from the 27 and Caribou zones. Also, the composite tested at Pocock for thickening, rheology and filtration was composed of products of these Zone 27 and Caribou recovery tests.

Table 13-2: Sample	variability (Au g	rade, location,	rock type,	ore zone)
			,,	

_	Caribou				Zone 27							
Rock Type		Shallow			Deep		Shallow			Deep		
	Low Grade	Med Grade	High Grade	Low Grade	Med Grade	High Grade	Low Grade	Med Grade	High Grade	Low Grade	Med Grade	High Grade
V1	P1-CA-V1-U- L	P1-CA-V1-U- M	P1-CA-V1-U- H	-	-	-	P1-27-V1-U- L	P1-27-V1-U- M	P1-27-V1-U- H	P1-27-V1-D- L	-	-
V2	-	P1-CA-V2-U- L	-	P1-CA-V2-D- L	P1-CA-V2-D- M	P1-CA-V2-D- H	P1-27-V2-U- L	P1-27-V2-U- M	P1-27-V2-U- H	P1-27-V2-D- L	P1-27-V2-D- M	P1-27-V2-D- H
I1P	P1-CA-I1P-U- L	P1-CA-I1P-U- M	P1-CA-I1P-U- H	P1-CA-I1P-D- L	P1-CA-I1P-D- M	P1-CA-I1P-D- H	-	P1-27-I1P-U- M	P1-27-I1P-U- H	P1-27-I1P-D- L	P1-27-I1P-D- M	P1-27-I1P-D- H
I2P	-	P1-CA-I2P-U- H	-	P1-CA-I2P-D- L	P1-CA-I2P-D- M	P1-CA-I2P-D- H	P1-27-I2P-U- L	P1-27-I2P-U- M	P1-27-I2P-U- H	P1-27-I2P-D- L	P1-27-I2P-D- M	P1-27-I2P-D- H

13.1.2 Composite Characterization

Head Assays

Composites for the metallurgical testwork program were submitted to head assays in order to evaluate chemical composition and specific gravity. Gold and silver assays resulted from the analysis of screened metallic products, sulphur content was measured by LECO, copper by XRF, and the concentrations of the remaining elements were measured using ICP. A summary of the analysis results are presented in Table 13-3.

	Assays								
Composite	Au	Ag	Cu	Zn	S	Fe			
	(g/t)	(g/t)	(%)	(g/t)	(%)	(g/t)			
Zone 27	6.00	5.0	<0.01	1,290	5.84	57,600			
Caribou	5.79	13.6	0.063	7,030	9.83	101,000			
Lynx	5.45	6.9	0.031	119	3.23	45,100			
PEA Lynx Blend	~21	-	-	-	3.87	-			
P1-CA-V2-D-L	2.73	<5	0.018	178	2.56	57,600			
P1-CA-V2-D-M	8.25	6.94	0.033	223	6.83	71,900			
P1-CA-V2-D-H	4.12	< 5	0.041	427	9.07	101,000			
P1-CA-I1P-D-L	3.96	6.08	0.023	355	6.48	63,300			
P1-CA-I1P-D-L	5.17	19.0	0.048	301	3.12	33,100			
P1-CA-I1P-D-L	8.24	6.68	0.035	72	4.54	42,600			
P1-CA-I2P-D-L	3.41	6.07	0.020	324	5.30	63,700			
P1-CA-I2P-D-L	5.36	10.1	0.028	433	4.26	41,600			
P1-CA-I2P-D-L	12.3	< 5	0.023	5400	6.75	61,300			
P1-CA-V1-U-L	1.16	< 5	< 0.01	263	2.73	29,800			
P1-CA-V1-U-M	6.84	10.9	0.042	5000	17.3	155,000			
P1-CA-V1-U-H	3.51	10.3	0.031	1460	6.63	63,900			
P1-CA-V2-U-L	12.8	19.4	0.058	2640	5.89	68,100			
P1-CA-I1P-U-L	3.30	23.9	0.034	4460	5.29	49,100			
P1-CA-I1P-U-M	6.08	21.1	0.073	2470	8.53	80,300			
P1-CA-I1P-U-H	9.05	35.3	0.065	3680	5.76	57,000			
P1-CA-I2P-U-H	4.09	12.9	0.042	2420	7.01	75,200			
P1-27-V1-D-L	2.93	< 5	0.020	90	6.41	60,200			
P1-27-V2-D-L	5.41	< 5	0.034	152	6.33	90,000			
P1-27-V2-D-M	6.86	5.52	0.023	153	6.02	65,300			
P1-27-V2-D-H	13.0	15.9	0.030	76	6.05	67,300			
P1-27-I1P-D-L	5.04	5.49	0.030	39	9.52	85,300			
P1-27-I1P-D-M	10.4	8.67	0.025	206	8.49	81,700			
P1-27-I1P-D-H	11.4	25.3	0.034	73	7.01	70,400			
P1-27-I2P-D-L	4.14	< 5	0.017	43	5.60	56,300			
P1-27-I2P-D-M	7.45	5.80	0.038	187	7.04	70,100			
P1-27-I2P-D-H	9.97 ⁽¹⁾	<10 ⁽¹⁾	0.058	143	10.1	89,900			

Table 13-3: Metallurgical testwork composite head assays

			As	says		
Composite	Au (g/t)	Ag (g/t)	Cu (%)	Zn (g/t)	S (%)	Fe (g/t)
P1-27-V1-U-L	2.59	7.50	0.021	134	7.82	71,500
P1-27-V1-U-M	14.8	9.88	0.037	192	18.9	166,000
P1-27-V1-U-H	10.9	8.90	0.021	105	8.16	78,500
P1-27-V2-U-L	3.51	< 5	0.017	176	6.61	76,200
P1-27-V2-U-M	7.61	5.99	0.037	288	7.12	78,000
P1-27-V2-U-H	5.58	< 5	0.017	147	5.07	66,300
P1-27-I1P-U-M	5.57	< 5	0.015	416	5.07	51,500
P1-27-I1P-U-H	9.44	10.4	0.025	709	7.19	66,800
P1-27-I2P-U-L	3.93	5.59	0.019	1992	7.12	64,800
P1-27-I2P-U-M	8.51	5.08	0.016	545	5.88	54,200
P1-27-I2P-U-H	12.4	5.99	0.011	555	12.9	112,000

(1) Au and Ag assays reported were measured by fire assay.

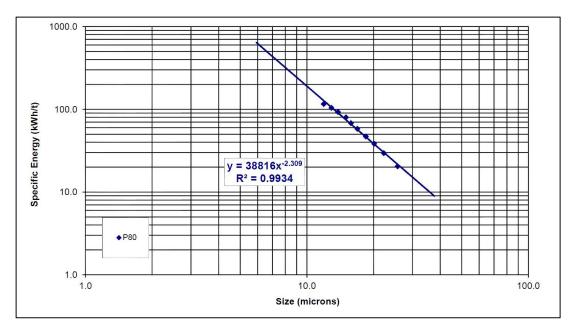
The assays indicate that several variability samples contain high proportions of silver.

13.1.3 Comminution Testwork

Composites representing Zone 27, Caribou, Lynx and waste material, as well as blends of Zone 27 and Caribou were submitted to comminution testing that included SMC, RWi, BWi and Ai. The results of the comminution testwork are presented in Table 13-4.

Table 13-4: Summary of average SMC and Bond comminution test results per zone

Composite	No.	Specific	SN	IC	RWi	BWi	Ai
by zone	samples tested	gravity	Axb	ta	(kWh/t)	(kWh/t)	(g)
Zone 27	8	2.98	32.8	0.3	-	10.7	-
Caribou	7	2.98	32.3	0.3	-	12.5	-
Lynx	1	2.77	22.4	0.2	-	13.5	
#9 (waste)	1	2.82	19.8	0.3	18.9	15.3	0.068


The SMC tests were conducted using particles in the -22.4/+19.0 mm particle size range. All of the composites submitted to SMC testing had Axb values between 22 and 43, and were therefore categorized from "medium hard" to "very hard" according to the JKTech hardness classification scale. The SMC results were calibrated using available DWT results for Windfall material.

The BWi tests were conducted using a closing screen size of 80 mesh targeting a product P_{80} of 130 µm. The results of the individual composites tested from the mineralized zones ranged from 10.7 kWh/t to 13.5 kWh/t, which is considered medium hardness, while the #9 waste sample with a BWi of 15.3 kWh/t is considered to be on the lower end of the hard range, which is 14-20 kWh/t.

A single Ai value of 0.068 g was measured for the #9 waste sample. This sample is considered non-abrasive as it falls below in the 10th percentile of the SGS database.

Fine Regrind

In order to evaluate the fine grinding energy requirements for the flotation/leaching flowsheet option, a bulk pyrite flotation concentrate sample was submitted to a laboratory scale IsaMill test. The sample underwent 11 passes through the mill to reduce the particle size from a feed P_{80} of 150 µm to a produce P_{80} of 11.9 µm. The resulting signature plot is presented in Figure 13-5.

Figure 13-5: Flotation concentrate signature plot

Based on the signature plot generated, it was determined that the energy requirement to regrind the pyrite flotation concentrate to $12 \,\mu m$ prior to leaching would be 125 kWh/t.

13.1.4 Gravity Recovery

Extended Gravity Recoverable Gold Test (e-GRG)

The Zone 27, Lynx and Caribou composites were submitted to e-GRG testing at SGS Lakefield. The results indicated that while the amount of gravity recoverable gold was not significant (low GRG), it was medium to coarse in size with Caribou and Zone 27 grains falling between 120 μ m and 200 μ m, and between 200 μ m and 350 μ m for Lynx. Should further investigation prove that gold is not fully associated with sulphides, there is a potential to lose coarse free gold to the flotation tailings if a flowsheet including flotation was selected. Because the flotation tailings are not reground, there is a risk of insufficient residence time to complete leaching of these coarse gold particles.

The e-GRG test results were used by FLS to simulate potential gold recovery if gravity units were to be installed on either the cyclone feed (ball mill discharge) or on the cyclone underflow ("U/F"). The results of these simulations are presented in Table 13-5.

Composite	Flow treated	Units installed	Circulating load treated (%)	Gravity recovery (% Au)	Concentrate grade (Au, g/t)
	Cyclone feed	1	10	16	5,687
	Cyclone feed	1	21	21	3,599
	Cyclone feed	2	21	21	3,699
Zone 27	Cyclone feed	2	41	26	2,203
Zone 27	Cyclone U/F	1	13	18	6,198
	Cyclone U/F	1	27	22	3,807
	Cyclone U/F	2	27	22	3,913
	Cyclone U/F	2	53	27	2,207
	Cyclone feed	1	10	7	2,140
	Cyclone feed	1	21	11	1,485
	Cyclone feed	2	21	11	1,619
Caribau	Cyclone feed	2	41	14	988
Caribou	Cyclone U/F	1	13	8	2,348
	Cyclone U/F	1	27	11	1,575
	Cyclone U/F	2	27	11	1,619
	Cyclone U/F	2	53	15	1,014
	Cyclone feed	1	10	11	3,019
	Cyclone feed	1	21	15	2,083
	Cyclone feed	2	21	15	2,141
Lypy	Cyclone feed	2	41	20	1,384
Lynx	Cyclone U/F	1	13	12	3,305
	Cyclone U/F	1	27	16	2,207
	Cyclone U/F	2	27	16	2,268
	Cyclone U/F	2	53	21	1,420

Table 13-5: Gravity test results

These simulations indicated that it was possible to generate acceptable concentrate grades via gravity processing. However, given that the average gravity gold recovery did not reach the 25% level, generally considered a minimum requirement for implementation of the technology, and due to the high percentage of the ball mill circuit circulating load that would need to be processed, the economic benefit of implementation of gravity in the Windfall flowsheet is not clear. The benefits of a gravity circuit will be studied further in the next stage of the Project.

The flotation and leaching test results presented in this report were conducted on material with and without gravity pre-treatment.

13.1.5 Recovery Options with Gravity

Bulk Gravity Sample Preparation

Prior to the evaluation of the gold recovery in the flotation and leaching circuits, the Zone 27, Caribou and Lynx composites underwent a gravity pre-treatment. Only the gravity tailings were submitted to flotation testing. The bulk gravity results are presented in Table 13-6.

Composite	Grind size K ₈₀ (µm)	Product	Weight (%)	Au grade (g/t)	Au distribution (%)								
		Head	100.0	5.46	100.0								
Zone 27	110	Concentrate	1.06	100	19.8								
		Tailings	98.9	4.45	80.2								
		Head	100.0	5.63	100.0								
Caribou	97	97	97	97	97	97	97	97	97	Concentrate	0.82	65	9.6
		Tailings	99.2	5.14	90.4								
		Head	100.0	6.01	100.0								
Lynx	121	Concentrate	0.72	186	22.4								
		Tailings	99.3	4.70	77.6								

Table 13-6: Bulk gravity results

Flotation Testwork (with Gravity)

Kinetic rougher pyrite flotation tests were conducted on the Zone 27, Caribou and Lynx composites following a gravity pre-treatment. Each test was conducted over 10 min, with intermittent sampling at 1, 2, 4 and 10 minutes. Both the PAX collector and the MIBC frother were dosed at various points during the test. Flotation test results are presented in Table 13-7. Figure 13-6 shows the rougher weight recovery versus the sulphur grade of the feed for all three zones.

Table 13-7: Flotation test results

	0.1.1/		NA/ * 1 /		Assay		Di	stributio	on
Composite	Grind, K ₈₀ (µm)	Product	Weight (%)	Au (g/t)	Ag (g/t)	S (g/t)	Au (%)	Ag (%)	S (%)
		Head	100.0	4.2	4.6	6.1	100.0	100.0	100.0
Zone 27	97	Flotation Concentrate	23.2	17.5	18.0	26.0	95.9	91.6	98.7
		Flotation Tails	76.8	0.2	0.5	0.1	4.1	8.4	1.3
		Head	100.0	4.9	12.3	9.5	100.0	100.0	100.0
Caribou	121	Flotation Concentrate	28.7	15.5	37.9	32.2	91.6	88.8	97.4
		Flotation Tails	71.3	0.6	1.9	0.3	8.4	11.2	2.6
		Head	100.0	4.7	6.1	2.8	100.0	100.0	100.0
Lynx	110	Flotation Concentrate	15.1	28.2	34.7	18.2	91.0	86.3	97.3
		Flotation Tails	84.9	0.5	1.0	0.1	9.0	13.7	2.7

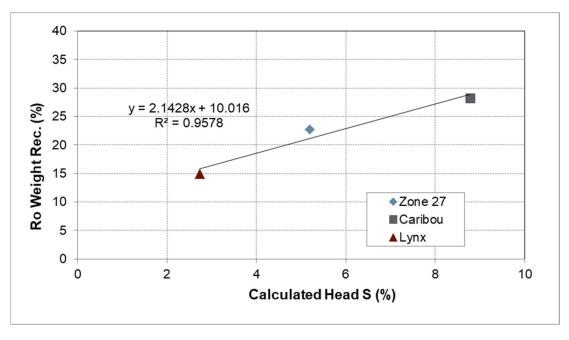
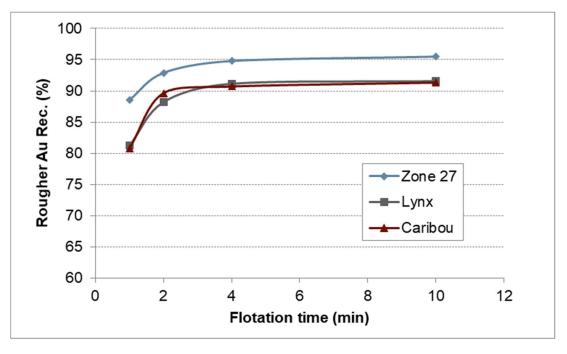



Figure 13-6: Rougher weight recovery vs. %S in feed

Figure 13-7 shows the flotation kinetics results for each ore zone for the Windfall Project.

Figure 13-7: Rougher flotation kinetics

The results of the flotation tests indicated that weight recovery to the rougher concentrate is very well correlated to the sulphur grade in the flotation feed. The kinetics tests showed that flotation was nearly complete after 4 minutes with a slight improvement in gold recovery at 10 min. For all three zones, gold recovery to the

concentrate was 96%, 92% and 91% for the Zone 27, Caribou and Lynx composites respectively. The concentrate represented between 15% and 29% of the initial flotation feed mass for the three composites.

Leaching Testwork (with Gravity)

Two series of leaching tests were conducted on the Windfall composites. The first consisted of whole ore leach ("WOL") of the gravity tailings, while the second involved leaching of both the concentrate and tailings products resulting from flotation of the gravity tails, in turn. The condition for each series of leach tests is presented in Table 13-8.

Table 13-8: Leaching test conditions

		Pulp			Le	eaching parameters		
Test	Feed K ₈₀ (µm)	density (% w/w)	Pre- treatment	Time (h)	Temp. (°C)	NaCN, Initial/maintained (g/L)	DO (ppm)	рН
Whole ore leach	110	40	n/a	72	19	1.2 / 1.6	5-8	10.5
Flotation concentrate	~12	35	n/a	18	32	1.0 / 0.5	3-5	10.5
Flotation tails	104	50	n/a	24	19	0.5 / 0.5	5-8	10.5

Whole Ore Leaching

A single WOL test was performed using the Lynx material gravity tails. The results of this test are presented in Table 13-9.

Table 13-9: Whole ore leach test results

Test	Composite	Reagent coi (kg/		Cyanide cor (mg/l	•	Recovery (%)		
		NaCN	CaO	SCN	WAD	Au	Ag	
CN3	Lynx	0.45	2.13	34	537	85.2	75.8	

Leaching of Pyrite Flotation Concentrate

A series of bottle roll leaching tests was conducted on the Zone 27, Lynx and Caribou pyrite concentrates resulting from the flotation of the gravity tails of each material. Prior to leaching, the pyrite concentrates were reground to and P_{80} of approximately 12 µm in a laboratory scale ball mill. The reground concentrates were then re-pulped to 35% (w/w) solids to be leached for 18 hours with intermittent sample collection. No pre-treatment was applied.

Table 13-10: Flotation concentrate leach test results

Test Composi	Composite	Reagent cor (kg/		Cyanide cor (mg/l	•	Recovery (%)		
		NaCN	CaO	SCN	WAD	Au	Ag	
CN9	Zone 27	1.33	2.76	280	208	83.5	65.1	

Test	Composite	Reagent cor (kg/		Cyanide cor (mg/l		Recovery (%)	
		NaCN	CaO	SCN	WAD	Au	Ag
CN10	Caribou	2.62	3.67	680	400	90.6	58.5
CN8	Lynx	2.03	3.96	290	272	86.7	73.6

Leaching of Pyrite Flotation Tailings

Gold recovery from the flotation tailings was assessed in a series of bottle roll tests conducted on all three composites, Zone 27, Lynx and Caribou. The tailings did not undergo regrinding or pre-treatment prior to cyanidation. The flotation tailings were re-pulped to 50% (w/w) solids and leached for 24 hours with intermittent sample collection. The results, presented as an average per zone are presented in Table 13-11.

Table 13-11: Flotation tailings leach test results

Composite	No. tests	Reagent consumption (kg/t)		Cyanide co (mg		Recovery (%)		
		NaCN	CaO	SCN WAD		Au	Ag	
Zone 27	2	0.05	0.50	5.1	192	78.8	32.3	
Caribou	2	0.06	0.71	13.0	181	74.4	65.6	
Lynx	2	0.04	0.59	3.6	202	62.1	56.8	

13.1.6 Gold Recovery without Gravity

Flotation Testwork (without Gravity)

Kinetic rougher pyrite flotation tests were conducted on the 26 samples from Zone 27, 20 samples from Caribou and two tests on Lynx composites with no gravity pretreatment. Each test was conducted over 10 minutes, with intermittent sampling at 1, 2, 4 and 10 minutes. Both the PAX collector and the MIBC frother were dosed at various points during the test.

The Lynx sample was not considered representative due to very high head grade \sim 21 g/t. Table 13-13 presents the average flotation results for the three types of material.

					Assay		C	Distribution			
Composite Grind, K ₈₀ (µm)	Product	Weight (%)	Au	Ag	S	Au	Ag	s			
	(1)		(,,,)	(g/t)	(g/t)	(g/t)	(%)	(%)	(%)		
		Head	100.0	8.05	6.92	8.48	100.0	100.0	100.0		
Zone 27 129	129	Flotation Concentrate	25.6	28.88	22.61	31.34	92.0	83.8	94.7		
(26 tests)		Flotation Tails	74.4	0.50	1.49	0.20	8.0	16.2	5.3		
Caribou (20	400	Head	100.0	6.01	11.07	6.77	100.0	100.0	100.0		
tests)	136	Flotation	21.6	26.03	45.77	28.79	93.4	89.1	91.7		

Table 13-12: Average flotation test results

🗱 InnovExplo

	0.1.14) A (= i = l = t	Assay				Distribution		
Composite	Composite Grind, K ₈₀ (µm)	Product	Weight (%)	Au (g/t)	Ag (g/t)	S (g/t)	Au (%)	Ag (%)	S (%)	
		Concentrate								
		Flotation Tails	78.4	0.53	1.84	0.25	6.6	10.9	8.3	
		Head	100.0	21.16	-	3.9	100.0	-	100.0	
PEA Lynx Blend	143	Flotation Concentrate	20.8	85.78	-	18.36	84.5	-	99.0	
(2 tests)		Flotation Tails	79.2	4.08	-	0.06	15.5	-	1.0	

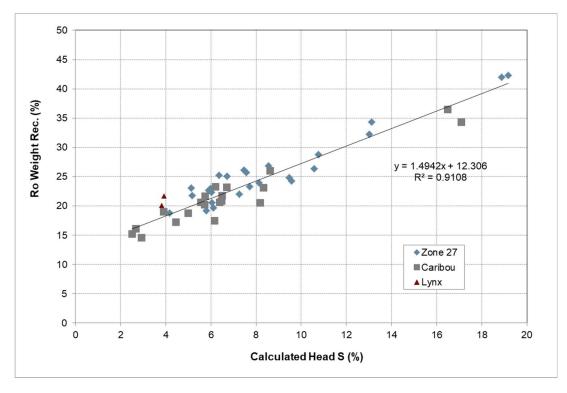
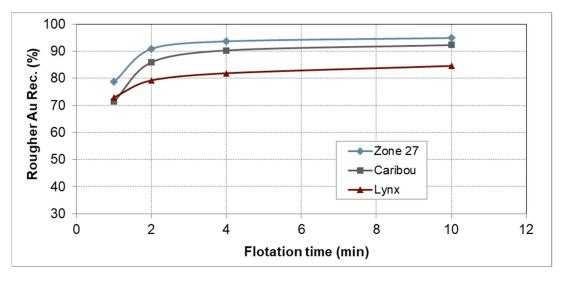



Figure 13-8: Rougher weight recovery vs. %S in feed

Figure 13-9: Average kinetic Au recovery for Zone 27 and Caribou variability flotation tests

For all three zones, the flotation response showed a very strong correlation between sulphur head grade and weight recovery to the concentrate as illustrated in Figure 13-8. The kinetics, as shown in Figure 13-9, were relatively fast with the majority of potential gold recovery reached after 4 minutes, however, some improvement was seen in the final 10 minutes samples for all three materials.

Gold and silver recoveries to the flotation concentrate were 92.0% and 83.8% respectively for Zone 27 and 93.4% and 89.1% for Caribou. Gold recovery to the Lynx concentrate was lower at 84.5%, however, as previously mentioned, the feed was not considered representative of the zone with a head grade of ~21 g/t. Both the flotation concentrate and tailings products had disproportionately high gold grades of ~86 g/t and 4 g/t respectively.

Leaching (without Gravity)

Three types of leaching tests were conducted on samples with no previous gravity pre-treatment: whole ore leach with (CIL) and without carbon, leaching of reground pyrite flotation concentrates and leaching of pyrite flotation tailings. In each series, optimization tests were conducted to determine the ideal conditions for variability testing. Some of the parameters evaluated include the effect of grind size, pulp density, leach time and NaCN dosage as well as leaching with and without carbon. All leaching tests, unless otherwise noted, were conducted as bottle rolls.

The optimized test conditions selected for each type of test are presented in Table 13-13.

Table 13-13: Leaching test conditions

Foot	Feed	Pulp			Leaching pa	arameters		
Test	κ ₈₀ (μm)	density (% w/w)	Time (h)	Carbon (g/L)	Pb(NO ₃) ₂ (g/t)	NaCN (g/L)	DO (ppm)	pН
Whole ore leach	47	40	72	10	500	1.2	8-9	10.5

	Feed	Pulp			Leaching pa	arameters		
Test	K ₈₀ (μm)	density (% w/w)	Time (h)	Carbon (g/L)	Pb(NO ₃) ₂ (g/t)	NaCN (g/L)	DO (ppm)	pН
(CIL)								
Whole ore leach (no carbon)	76	40	72	n/a	n/a	1.2-1.5	6-10	10.5
Flotation concentrate - optimization	11-32	35	18-72	n/a	n/a	0.7-1.50	4-7	10.5
Flotation concentrate - variability	~12	35	18	n/a	n/a	1.5	3.4-4.5	10.5
Flotation tails - optimization	92-170	45-50	24-48	n/a	n/a	0.50	8-11.3	10.5
Flotation tails - variability	156	50	24	n/a	n/a	0.5	5-8	10.5

Whole Ore Leaching (without Gravity)

The average results of the WOL tests conducted on Zone 27 and Caribou composites, both with and without carbon, are presented in Table 13-14 and Figure 13-10. The leach kinetics for Zone 27 and Caribou tests are shows in Figure 13-11.

Table 13-14: Whole ore leach test results

Composite No.		Reagent consumption (kg/t)		Cyanide compounds (mg/L)		Recovery (%)	
•	tests	NaCN	CaO	SCN	WAD	Au	Ag
Zone 27 – CIL	2	1.67	0.45	78	-	90.87	-
Caribou – CIL	2	1.95	0.64	110	-	91.11	-
Zone 27	6	1.19	0.36	69	-	85.66	-
Caribou	2	0.86	0.27	103	-	86.14	-

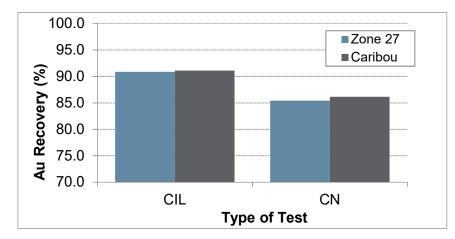


Figure 13-10: Gold recovery from CIL vs. cyanidation without carbon (at 72 hours)

Gold recoveries of 86% to 91% were observed for the 12 WOL tests conducted. A marked improvement of approximately 5% in recovery was observed for the tests conducted with carbon (CIL) when compared to those without carbon. For both the Zone 27 and Caribou materials, the improvement in recovery was accompanied by increases in both NaCN and lime consumption. It should also be noted that lead nitrate was added to the CIL series of tests, and a finer feed size, P₈₀ of 47 micron, was used.

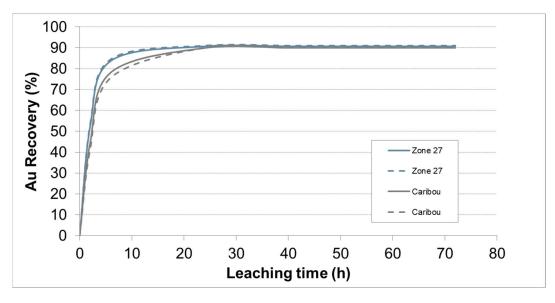


Figure 13-11: Leach kinetics for Zone 27 and Caribou CIL

Leaching of Pyrite Concentrate (without Gravity)

The products of flotation tests with no gravity pre-treatment were reground and submitted to cyanidation. The average results of the pyrite flotation concentrate leach tests per zone are presented in Table 13-15. For all materials tested, gold recoveries ranging from 84% to 98% were observed. Silver recovery values were more variable with a minimum and maximum of 47% and 87% respectively.

Table 13-15: Flotation	concentrate	leach tes	t results

Composite	No.		onsumption g/t)	Cyanide co (mg		Reco (%	2
	tests	NaCN	CaO	SCN	WAD	Au	Ag
Zone 27	3 (optimization)	6.59	2.26	537	-	93.0	-
Zone 27 + Caribou	3 (optimization)	2.41	2.57	713	-	92.8	75.3
Zone 27	21 (variability)	2.00	7.02	479	472	92.0	77.3
Caribou	17 (variability)	2.70	8.20	566	475	92.8	72.6
Lynx Blend	1	1.58	4.90	270	382	96.9	89.6

Leaching of Pyrite Flotation Tailings (without Gravity)

Table 13-16 presents results of optimization tests and subsequent average of variability bottle roll leach tests. The variability tests for Caribou include the results of two stirred reactor tests.

Composite	No.	Reagent co (kg		Cyanide con (mg/l		Reco (%	2
•	tests	NaCN	CaO	SCN	WAD	Au	Ag
Zone 27	6 (optimization)	0.06	0.31	13	-	78.0	56.4
Caribou	2 (optimization)	0.12	0.30	25	-	76.8	
Zone 27	24 (variability)	0.06	0.71	13	269	65.7	46.8
Caribou	19 (variability)	0.08	0.53	16	236	62.1	51.7
Lynx Blend	1	0.07	0.81	4.8	203	84.2	79.8

Table 13-16: Flotation tailings leach test results (without gravity)

While the results presented are averages per zone, the observed gold recoveries from leaching of the flotation tailings in individual tests from the Zone 27 and Lynx zones ranged from 31.3% to 88.8%, while silver recoveries varied between a minimum value of 7.3% and a maximum value of 74.5%.

The recovery for the Lynx blend flotation tails was 84.2% for gold and 79.8% for silver.

13.1.7 Overall Gold Recovery

The overall gold recoveries for the testwork for a flowsheet including gravity and CIL is presented in Table 13-17 for all three zones. No testwork was performed on the Underdog zone; however, based on mineralization similarities between the Caribou and Zone 27 and Underdog zones, the average Au and Ag recovery for zones Caribou and 27 was assigned to Underdog. No recovery values were assigned to zones Mallard or F due to the small proportion of those ores in the deposit.

	Gra	avity	Gravity ta		
Composite	Au distribution (%)	ILR Au recovery (%)	Au distribution (%)	Au recovery (%)	Overall Au recovery (%)
Zone 27	19.8	99.0	80.2	90.9	92.5
Caribou	9.6	99.0	90.4	90.0	90.9
Lynx	22.4	99.0	77.6	92.3	93.8
Underdog	-	99.0	85.3	90.5	91.7

Table 13-17: Overall gold recovery with gravity and CIL

The gold distribution between the gravity concentrate and tailings was based on the results obtained at SGS as presented in Table 13-6. The leach recoveries for each zone were determined by modeling the existing CIL testwork data to predict the gold recovery at the 40 hour retention time used for the process design criteria.

Based on the testwork, overall Au recovery from 90.0% to 93.8% can be achieved depending on the relative proportion of the zones that will feed the beneficiation plant.

13.2 Thickening, Rheology and Filtration Testwork

13.2.1 Thickening

Static settling tests were conducted on blended samples of flotation concentrates, flotation tailings and on the PEA sample leach residue. Initial scoping tests at SGS included flocculant screening, which showed that each sample flocculated and settled

well using the Magnafloc 10 flocculant. Subsequently, two stages of static settling were conducted to optimize solids feed density and flocculant dosage. The tests at Pocock on combined leach residues were conducted using SNF AF910AH. The overall results obtained are summarized in Table 13-18. The results of dynamic settling tests conducted at Pocock are presented in Table 13-19.

Table 13-18: Static thickening results

Composite	D ₈₀ (1) (µm)	Pulp pH	Flocculant dosage (g/t)	Feed solids density (%w/w)	U/F solids density (%w/w)	O/F TSS (mg/L)	Unit area ⁽²⁾ (m²/t/d)
Flotation conc.	46	7.6	20	15	65	32	0.11
Flotation tails	103	7.4	12	10	66	27	0.11
PEA leach residue	56	11.0	6	10	68	25	0.13
Combined leach residues	104	8.0	15	20	62	-	0.20-0.31
Combined leach residues	104	8.0	20	20	62	-	0.20-0.22
Combined leach residues	104	8.0	25	20	61	-	0.20-0.22
Combined leach residues	104	8.0	20	25	63	-	0.27-0.31
Combined leach residues	104	8.0	20	30	64	-	0.34-0.40

(1) The PSD of the flotation conc. and the leach residue were measured by laser, while flotation tails by sieving. The flotation concentrate at 46 μm appears to be too fine (recombined conc + tails is much finer than flotation feed for any of the three composites).

(2) The presented unit areas for testwork conducted at Pocock were calculated using U/F solids densities of 65-69% and include a 1.25 safety factor.

The results indicate that each of the three materials was readily thickened to dense underflow solids content ranging from 61% to 68% with reasonable flocculant dosages. The clarity of the overflow was also relatively clean with very low total suspended solids concentrations ranging from 25 mg/L to 32 mg/L.

Table 13-19: Dynamic thickening results

Composite	D ₈₀ (1) (µm)	Pulp pH	Flocculant dosage (g/t)	Feed solids density (%w/w)	U/F solids density (%w/w)	O/F TSS (mg/L)
Combined reground pyrite conc. and pyrite flotation tailings residues	104	8.0	21 - 47	19.3	58.8 – 73.6	51 - 350

Based on the results of the dynamic thickening results, the recommended design parameters for various thickener types based on the tested conditions are presented in Table 13-20.

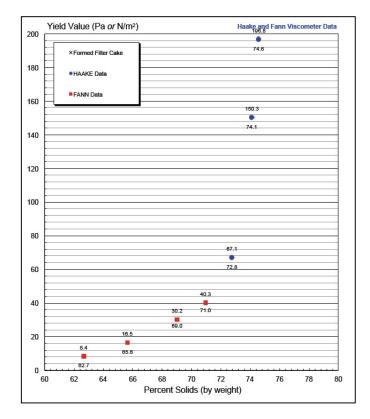

Thickener type	Design basis net feed loading (m ³ /m ² /h) ⁽¹⁾			O/F TSS (mg/L)	
High rate thickener	3.19	69.0			
High density thickener	2.46	71.0	24 - 28	< 250	
Paste thickener	3.75	73.0			

 Table 13-20: Recommended thickener design parameters

(1) The net feed loadings presented were qualified as "moderate", "conservative" and "aggressive" for the highrate, high-density and paste thickeners respectively.

13.2.2 Rheology

The slurry rheology was assessed using Fann and Haake (for paste-range) viscometers to establish the link between spindle speed (shear rate) and slurry density to apparent viscosity. The relationship between shear stress and shear rate also enables to get the yield value over the range of solids content of interest. The results for the combined reground pyrite concentrate and flotation tailings are illustrated in Figure 13-12.

Figure 13-12: Yield stress vs slurry density for combined reground pyrite concentrate and flotation tailings

The rheological testwork is used for estimating torque requirement for thickener rake mechanisms, for determining agitator torque and motor power requirements, as well as for pump sizing.

13.2.3 Filtration

Testing was performed on the thickened blend of flotation concentrate and tailings leach residues. The sample was tested to predict the filtration behaviour of the combined tailings in the event that a dry-stack type of tailings plant was an elected option for the Project.

Based on the filtration results obtained by Pocock, pressure filtration under a variety of conditions yielded cake moistures ranging from 6% to 14%. Several operating conditions were identified under which a dry, stackable cake was produced with good filtrate clarity.

14. MINERAL RESOURCE ESTIMATE

The mineral resource estimate herein (the "2018 MRE") was prepared by Judith St-Laurent, P.Geo. (OGQ #1023) using all available information.

The main objective of the mandate assigned by Osisko Mining Inc. ("Osisko") was to prepare a NI 43 101 compliant mineral resource estimate for the Windfall Lake project, including the Zone 27, Caribou, Lynx, Underdog, Mallard and F Zones mineralization corridors.

The 2018 resource area measures 3.0 km on strike and 1.5 km wide, and is 1.4 km deep.

The mineral resources herein are not mineral reserves as they do not have demonstrated economic viability. The 2018 MRE includes Indicated and Inferred resources and is based on the assumption that the deposit will be potentially developed and mined using underground methods. The close-out date of the database is March 5, 2018 and the effective date of the estimate is May 14, 2018.

14.1 Methodology

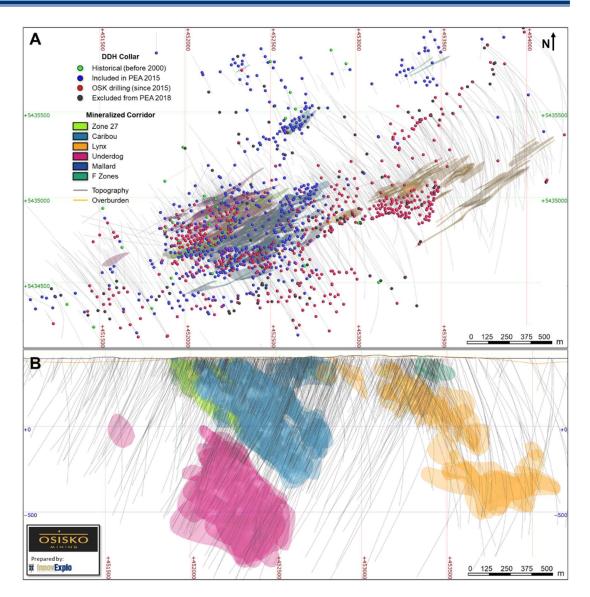
The 2018 MRE detailed in this report was prepared using Leapfrog GEO v.4.1 ("Leapfrog") and GEOVIA GEMS v.6.8 ("GEMS") software. Leapfrog was used for modelling purposes, including the construction of 124 mineralized corridors in Zone 27, Caribou, Underdog, Lynx, Mallard and F Zones areas. Gems was used for the grade estimation and block modelling. Statistical studies were done using Snowden Supervisor v.8.8 and Microsoft Excel software.

The main steps in the methodology were as follows:

- Database compilation and validation for the diamond drill holes used in the mineral resource estimate;
- Modelling of mineralized zones based on metal content, lithological and alteration information;
- Generation of drill hole intercepts for each mineralized zone;
- Grade compositing;
- Capping study on composite data;
- Spatial statistics;
- Grade interpolations;
- Validation of grade interpolations.

Four block models were created including the mineralization corridors of: 1) Main (group of Zone 27, Caribou and Mallard); 2) Lynx; 3) Underdog and 4) F Zones. These four block models were established in four GEMS projects.

14.2 Drill Hole Database


The diamond drill hole database ("DDH") contains 1,718 surface drill holes in the resource area including 490,397 assays, which corresponds to the holes completed on the resource area of the Windfall Lake project as of March 5, 2018. The GEMS databases do not retain every hole drilled on the Property because many holes are too far from the deposit to be of use for the estimation (see Items 6 and 10). Figure

14-1 shows the selection of 1,453 drill holes (in blue, magenta and green) that were used for the resource estimate, including 812 drill holes (in magenta) drilled by Osisko since the database close-out date of the 2015 PEA. A total of 265 drill holes were excluded from the 2018 MRE (shown in Figure 14-1 in black) because they were cancelled, not assayed or included pending assays.

The drill holes cover the strike length of the resource area at a drill spacing ranging from 15 m to 100 m and were drilled at variable orientations. The 1,453 resource drill holes contain a total of 470,258 sampled intervals representing 469,042 m of drill core.

As part of the current mandate, the database was validated before starting the estimation.

In addition to the basic tables of raw data, the GEMS databases contain tables of grade intercepts and the calculated grade composites required for statistical analysis and grade block modelling.

A) Plan view; B) Longitudinal view looking north

Figure 14-1: DDH in the Windfall Lake database used for the resource estimate

14.3 Geological Model

The geological model was developed by the Windfall geologists. The main lithological units of the deposit presented in the model include a series of felsic to mafic dikes cross-cutting volcanic rocks. The geological model, dated March 2018, constitutes the basis for the mineralization interpretation and was included in the Gems block models to help document densities to the blocks. The Red Dog ("I2F") and the I13 Dikes ("I13") post-mineralization dikes (Figure 14-3) were also included in the Gems block models and were treated as barren units during the grade interpolation.

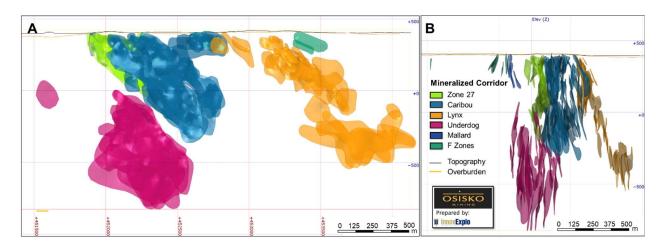
14.4 Interpretation of Mineralized Zones

In order to conduct accurate resource modelling of the deposit, InnovExplo and Osisko based the mineralization wireframe model on the drill hole information and the

geological model developed at Windfall. InnovExplo and Windfall geologists created 124 distinct mineralized solids including 18 in Zone 27, 39 in Caribou, 36 in Lynx, 20 in Underdog, four in Mallard, and seven in the F Zones corridor (F3, F17 and F51).

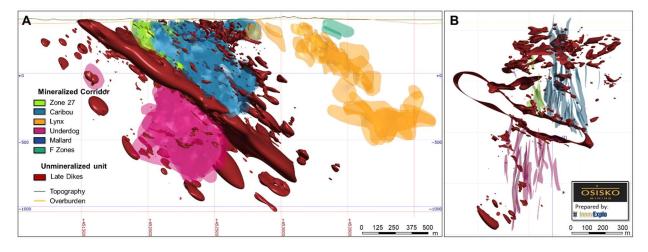
The mineralization modelling was based on lithologies, mineralized shears and the observation that most mineralized domains (>2.0 g/t Au) occur at the contact of productive porphyry dikes and/or silica alteration and volcanic host rocks. Interpretation was initially made from cross-sections at 50 m intervals, and then completed in Leapfrog software where selections of mineralization intervals on cross-sections and plan views were combined to generate 3D wireframes. The wireframes are snapped to drill holes intercepts. A minimum true thickness of 2.0 m was used for the creation of the domains to produce valid solids. The wireframes are approximately 5.0 m apart from each other when parallel to subparallel.

Domains are subvertical, striking NE-SW and plunging approximately 30 degrees towards the northeast.

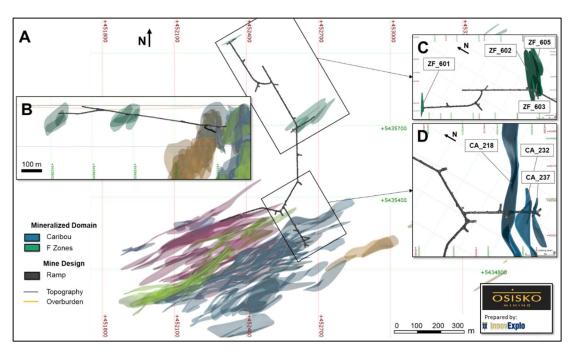

The mineralized zones were defined afterwards in longitudinal view to delineate a high-grade core based on composite grades greater than 2.0 g/t Au. The lateral extensions of the high-grade domains were limited by the shortest distance between 50 m from the last composite or half distance of the surrounding drill hole. A wireframe must be based on at least three drill holes.

The high-grade mineralized domains were clipped onto the overburden surface.

Some isolated gold intercepts exist outside the interpreted mineralized envelopes. Those isolated values are not attributed to any zone given the lack of continuity.


Figure 14-2 and Figure 14-3 show the 124 mineralized domains distributed between the six mineralization corridors and the impact of the post-mineralization dikes (barren units).

A) Longitudinal view looking north; B) Cross-section looking northeast



A) Longitudinal view looking north; B) Coss-section looking northeast

14.5 Voids Model

The 3D wireframe of the exploration ramp was provided by Osisko as of March 2018 intersects three mineralized zones in the Caribou area: CA_218, CA_232 and CA_237 and four mineralized zones in the F Zones area: ZF_601, ZF_602, ZF_603 and ZF_605 (Figure 14-4). The mined-out volume from the ramp was included in the Main and F Zones Gems block models as voids.

A) Plan view; B) Cross-section looking east; C) and D) 3D close-up views of F Zones and Caribou corridor

Figure 14-4: Exploration ramp intersecting F Zones and Caribou mineralization corridors

14.6 Compositing and High-grade Capping

The following steps were conducted on each mineralization corridors (Main, Lynx, Underdog, F Zones) separately.

For drill hole assay intervals intersecting mineralized domains, rock codes were automatically attributed based on the name of the 3D solids, and these coded intercepts were used to generate basic statistics on sample lengths, gold grades of raw assays and composites.

Basic univariate statistics, probability plots and histograms on composites datasets for each mineralized domain were generated and reviewed. The results are presented in Table 14-1 to Table 14-6.

Mineralized domain code	Number of raw assays	Min (g/t Au)	Max (g/t Au)	Uncut mean (g/t Au)
101	1,019	0.00	6,070.00	10.26

Mineralized domain code	Number of raw assays	Min (g/t Au)	Max (g/t Au)	Uncut mean (g/t Au)
102	336	0.01	4,180.00	18.15
103	173	0.00	140.73	3.69
104	124	0.00	298.00	5.08
105	203	0.01	1,260.00	8.81
106	149	0.01	100.00	2.16
107	54	0.01	107.50	5.42
108	358	0.00	139.00	2.94
109	10	0.05	56.37	7.32
110	71	0.00	48.70	3.99
111	25	0.01	2,080.00	84.75
112	80	0.02	120.50	4.52
113	97	0.00	393.00	6.25
114	602	0.01	174.50	6.29
115	1,016	0.01	1,640.00	7.41
116	43	0.03	70.80	6.12
117	90	0.00	65.40	2.08
118	30	0.05	8.95	1.77

Table 14-2: Statistics on raw assays presented by zones – Caribou (Main area)

Mineralized domain code	Number of raw assays	Min (g/t Au)	Max (g/t Au)	Uncut mean (g/t Au)
	5	,		10 7
201	1,199	0.00	101.00	1.96
202	260	0.00	883.00	6.93
203	313	0.00	53.00	1.58
204	109	0.01	63.90	2.83
205	378	0.00	100.00	2.97
206	311	0.00	16.75	1.35
207	775	0.00	379.00	2.16
208	211	0.00	71.90	1.49
209	47	0.00	49.40	2.34
210	729	0.00	486.00	4.62
211	185	0.00	75.50	3.15
212	111	0.01	35.20	2.38
213	190	0.00	4,070.00	23.96
214	166	0.01	59.60	2.28
215	93	0.01	222.00	8.29
216	158	0.01	4,620.00	36.96
217	94	0.00	93.80	2.21
218	323	0.00	162.68	2.96
219	252	0.00	123.00	3.77
220	99	0.00	75.90	3.07
221	59	0.00	27.60	2.14
222	46	0.03	100.00	6.20
223	32	0.06	43.30	4.96
224	181	0.01	346.00	5.16
225	121	0.00	63.50	1.95
226	107	0.00	42.30	2.30

🗱 InnovExplo

Mineralized domain code	Number of raw assays	Min (g/t Au)	Max (g/t Au)	Uncut mean (g/t Au)
227	222	0.01	31.50	1.54
228	213	0.00	618.00	6.70
229	43	0.03	1,979.37	78.11
230	225	0.01	41.30	2.25
231	500	0.00	211.00	2.82
232	313	0.01	4,911.24	23.46
233	189	0.01	172.00	3.78
235	50	0.00	37.40	1.98
236	134	0.00	212.00	4.81
237	87	0.02	52.47	2.45
238	147	0.01	29.40	1.53
239	44	0.01	0.01 176.00 4.	
240	62	0.00	110.50	3.65

Table 14-3: Statistics on raw assays presented by zones – Mallard (Main area)

Mineralized domain code	Number of raw assays	Min (g/t Au)	Max (g/t Au)	Uncut mean (g/t Au)
501	88	0.03	727.00	12.89
502	55	0.01	30.90	2.35
503	34	0.03	57.37	2.81
504	46	0.01	382.36	12.66

Table 14-4: Statistics on raw assays presented by zones – Lynx

Mineralized domain code	Number of raw assays	Min (g/t Au)	Max (g/t Au)	Uncut mean (g/t Au)	
301	182	0.00	145.50	3.05	
302	66	0.00	100.00	6.07	
303	55	0.01	38.10	3.53	
304	367	0.00	591.00	6.01	
305	452	0.00	194.00	5.45	
306	70	0.01	51.50	3.92	
307	176	0.00	170.50	5.27	
308	309	0.01	1,260.00	9.22	
309	157	0.01	236.00	8.46	
310	569	0.00	3,740.00	12.98	
311	220	0.01	375.00	9.06	
312	111	0.01	362.00	7.16	
313	125	0.01	253.00	11.38	
314	42	0.01	16.15	1.94	
315	55	0.00	704.00	18.72	
316	68	0.00	97.70	5.85	
317	92	0.01	1,230.00	31.13	
318	74	0.01	1,060.00	18.77	
319	123	0.01	109.50	4.46	
320	82	0.00	176.00	8.26	
321	82	0.00	25.90	2.42	

🗱 InnovExplo

Mineralized domain code	Number of raw assays	Min (g/t Au)	Max (g/t Au)	Uncut mean (g/t Au)
322	88	0.00	231.00	6.87
323	76	0.01	105.00	3.73
324	55	0.00	213.00	9.93
325	48	0.00	85.10	3.91
326	16	0.00	49.30	6.71
327	40	0.01	126.50	5.25
328	25	0.03	67.10	4.07
329	110	0.00	34.00	1.14
330	50	0.00	60.90	6.53
331	15	0.03	9.86	3.03
332	60	0.01	35.40	2.68
333	58	0.00	8.17	1.15
334	44	0.00	151.00	6.70
335	61 0.00 327.00			
336	41	0.01	41.30	2.59

Table 14-5: Statistics on raw assays presented by zones - Underdog

Mineralized domain code	Number of raw assaysMin (g/t Au)		Max (g/t Au)	Uncut mean (g/t Au)
401	44	0.03	228.00	12.79
402	545	0.00	266.00	6.23
403	160	0.01	167.00	6.08
404	28	0.02	13.60	2.53
405	167	0.00	166.50	8.59
406	80	0.02	34.00	3.06
407	132	0.01	97.70	4.49
408	214	0.01	410.00	8.69
409	34	0.05 28.70		2.41
410	41	0.04 155.00		9.67
411	177	0.01	50.00	1.50
412	142	0.01	123.00	9.12
413	97	0.01	127.00	5.20
414	28	0.03	2,590.00	94.49
415	359	0.00	580.00	11.35
416	110	0.01	65.80	3.36
417	263	0.01	501.00	3.53
419	105	0.02	289.00	6.61
420	282	0.04	1,110.00	10.89
421	152	0.03	75.90	3.91

Table 14-6: Statistics on raw assays presented by zones – F Zones

Mineralized domain code	Number of raw assays	Min (g/t Au)	Max (g/t Au)	Uncut mean (g/t Au)		
601	44	0.00	41.20	2.74		
602	36	0.00	28.53	4.10		
603	148	0.00	97.80	4.88		

Mineralized domain code	Number of raw assaysMin (g/t Au)		Max (g/t Au)	Uncut mean (g/t Au)		
604	53	0.00	430.75	13.25		
605	37	0.00	47.50	2.47		
606	51	0.00	11.70	1.30		
607	34	0.02	87.60	6.29		

14.6.1 Compositing

In order to minimize any bias introduced by the varying sample lengths, the gold assays of the drill hole data were composited within each mineralized zone. The thickness of the mineralized domains, the proposed block size, and the original sample length were taken into consideration for the selected composite length.

Composites of 2.0 m (down hole) with distributed tails were generated for all mineralized zones of the Windfall Lake project. If the last interval was shorter than 2.0 m (tails), composites lengths were adjusted to keep all intervals equal. All intervals within the mineralized zones that are pending or not assayed were given a value of zero during the compositing.

A total of 6,856 composites were generated for Main, 2,012 composites for Lynx, 1,448 composites for Underdog and 223 composites for F Zones in the mineralized zones.

14.6.2 High-grade Capping

High-grade capping values for gold were applied on composites data using a fourstep capping strategy where capping values decreased as interpolation distances increased. The multiple-capping strategy limits the influence of high grade composites during the interpolation at long ranges by using lower capping values.

High grade capping values were established on a per zone basis or on a grouping of zones. Mineralized zones containing less than 300 composites (the "minor zones") have usually been grouped by geographic locations or by grades to facilitate the statistical studies, but have also been examined individually. In some cases, the capping grades determined from grouped zones containing more than 300 composites (the "major zones") were applied to groups of minor zones.

The four capping values were defined by abnormal breaks on probability plot of grade distribution or scattered points outside the main distribution curve (see examples in Figure 14-5 to Figure 14-8). The capping value is often identical in the last two interpolation steps.

The following criteria were also checked to validate the chosen capping value or to adjust it if needed:

- No more than 10% of the overall contained metal must be contained within the first 1% of the highest grade samples;
- The log normal distribution of grades must not show any erratic grade bins or distanced values from the main population;
- The coefficient of variation must be approximately 2.00.

Table 14-7 to Table 14-12 present a summary of the statistical analysis of the composites for each mineralized zone.

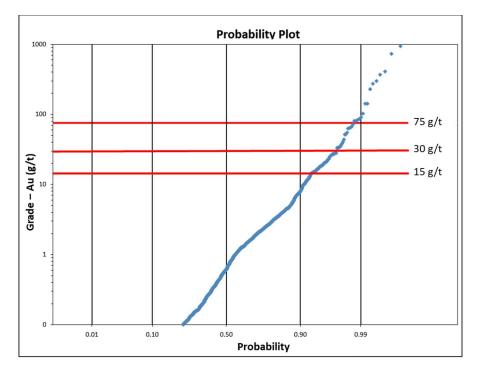
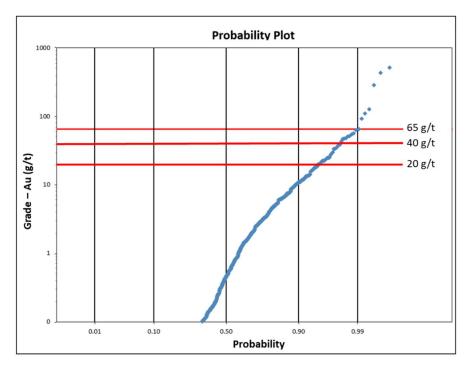
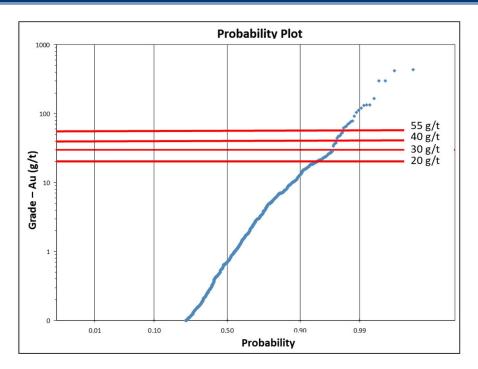
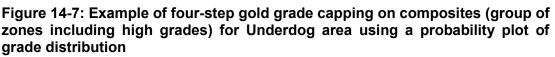





Figure 14-5: Example of four-step gold grade capping on composites from the major zones in Z27 area using a probability plot of grade distribution

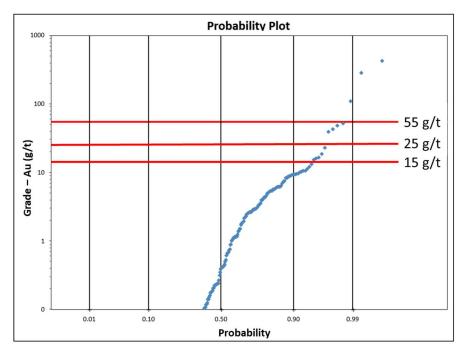


Figure 14-8: Example of four-step gold grade capping on composites from all zones for F Zones area using a probability plot of grade distribution

				-		-		-	•			•	•		
	Comp	osite inforr	nation	Unca	pped comp	osites				Four-st	ep gold grad	le capping			
Domain code	Number	Min (g/t Au)	Max (g/t Au)	Mean (g/t Au)	Standard deviation	CV	Capping pass 1 (g/t Au)	Number capped	Metal loss (%)	Mean (g/t Au)	Standard deviation	CV	Capping pass 2 (g/t Au)	Capping pass 3 (g/t Au)	Capping pass 4 (g/t Au)
101	517	0.003	1 362.58	6.20	62.93	10.15	75	5	54.01	2.98	8.93	3.00	30	15	15
102	158	0.005	938.07	14.98	93.69	6.25	75	2	65.84	5.39	11.11	2.06	30	15	15
103	79	0.007	59.51	2.97	9.17	3.08	50	1	4.16	2.85	8.46	2.97	30	15	15
104	54	0.010	130.87	4.49	17.67	3.93	50	1	34.70	3.00	7.26	2.42	30	15	15
105	97	0.005	257.93	4.64	26.26	5.66	50	1	46.79	2.49	6.68	2.68	30	15	15
106	71	0.015	20.37	1.54	3.64	2.37	50	0	0.00	1.54	3.64	2.37	30	15	15
107	25	0.007	46.46	4.53	9.41	2.08	50	0	0.00	4.53	9.41	2.08	30	15	15
108	171	0.004	92.68	2.78	9.00	3.24	75	1	3.02	2.68	8.02	2.99	30	15	15
109	33	0.019	162.63	8.67	29.22	3.37	50	2	42.72	4.90	11.83	2.41	30	15	15
110	34	0.013	48.20	4.36	9.23	2.12	50	0	0.00	4.36	9.23	2.12	30	15	15
111	12	0.003	402.74	34.71	110.98	3.20	50	1	83.70	5.31	13.62	2.56	30	15	15
112	41	0.021	31.88	3.56	6.45	1.82	50	0	0.00	3.56	6.45	1.82	30	15	15
113	53	0.004	261.04	6.40	35.48	5.54	50	1	62.96	2.42	7.46	3.08	30	15	15
114	294	0.009	174.50	6.86	19.35	2.82	75	4	14.65	5.88	12.53	2.13	30	15	15
115	495	0.002	367.29	6.58	29.51	4.48	75	9	31.48	4.51	12.80	2.84	30	15	15
116	20	0.074	35.77	6.49	8.28	1.28	50	0	0.00	6.49	8.28	1.28	30	15	15
117	37	0.007	27.00	1.98	4.78	2.41	50	0	0.00	1.98	4.78	2.41	30	15	15
118	75	0.016	21.44	2.11	3.93	1.86	50	0	0.00	2.11	3.93	1.86	30	15	15

Table 14-7: Summary statistics for the capping on composites by zone - Zone 27 (Main area)

Table 14-8: Summary statistics for the capping on composites by zone – Caribou (Main area)

	Compo	site infor	mation	Unca	apped comp	osites				Four-st	ep gold grac	le cappir	ng		
Domain code	Number	Min (g/t Au)	Max (g/t Au)	Mean (g/t Au)	Standard deviation	CV	Capping pass 1 (g/t Au)	Number capped	Metal loss (%)	Mean (g/t Au)	Standard deviation	CV	Capping pass 2 (g/t Au)	Capping pass 3 (g/t Au)	Capping pass 4 (g/t Au)
201	582	0.005	59.69	1.73	4.62	2.66	65	0	0.00	1.73	4.62	2.66	30	15	15
202	123	0.005	205.73	4.55	18.93	4.16	65	1	23.68	3.41	7.59	2.23	30	15	15
203	168	0.003	13.32	1.20	2.23	1.86	40	0	0.00	1.20	2.23	1.86	20	15	15

	Composite information Uncapped composite					osites				Four-st	ep gold grac	le cappir	ng		
Domain code	Number	Min (g/t Au)	Max (g/t Au)	Mean (g/t Au)	Standard deviation	CV	Capping pass 1 (g/t Au)	Number capped	Metal loss (%)	Mean (g/t Au)	Standard deviation	CV	Capping pass 2 (g/t Au)	Capping pass 3 (g/t Au)	Capping pass 4 (g/t Au)
204	47	0.008	26.16	2.46	5.06	2.06	65	0	0.00	2.46	5.06	2.06	30	15	15
205	189	0.001	28.42	2.34	4.62	1.98	65	0	0.00	2.34	4.62	1.98	30	15	15
206	142	0.005	13.85	1.16	1.85	1.59	40	0	0.00	1.16	1.85	1.59	20	15	15
207	407	0.001	80.81	1.45	5.75	3.96	65	2	3.44	1.40	5.09	3.63	30	15	15
208	122	0.002	39.34	1.20	3.95	3.30	40	0	0.00	1.20	3.95	3.30	20	15	15
209	27	0.003	17.35	1.81	3.90	2.15	40	0	0.00	1.81	3.90	2.15	20	15	15
210	365	0.002	245.02	3.95	16.77	4.25	65	4	19.61	3.21	9.51	2.96	30	15	15
211	99	0.003	32.36	2.11	4.33	2.05	65	0	0.00	2.11	4.33	2.05	30	15	15
212	55	0.005	15.42	2.00	3.21	1.60	65	0	0.00	2.00	3.21	1.60	30	15	15
213	92	0.004	621.21	8.63	64.36	7.46	65	1	69.45	2.58	7.82	3.03	30	15	15
214	89	0.005	14.32	1.80	2.76	1.54	65	0	0.00	1.80	2.76	1.54	30	15	15
215	44	0.037	55.30	6.99	12.12	1.73	65	0	0.00	6.99	12.12	1.73	30	15	15
216	73	0.005	1 217.97	20.66	141.80	6.86	65	2	79.05	4.15	11.05	2.67	30	15	15
217	58	0.002	15.52	0.99	2.27	2.29	40	0	0.00	0.99	2.27	2.29	20	15	15
218	175	0.005	64.56	2.27	7.26	3.19	50	2	5.41	2.15	6.30	2.93	30	15	15
219	123	0.005	55.16	3.27	7.88	2.41	65	0	0.00	3.27	7.88	2.41	30	15	15
220	78	0.004	27.50	1.51	4.16	2.75	40	0	0.00	1.51	4.16	2.75	20	15	15
221	27	0.012	13.36	1.71	3.00	1.75	65	0	0.00	1.71	3.00	1.75	30	15	15
222	21	0.005	38.44	5.58	10.85	1.94	40	0	0.00	5.58	10.85	1.94	20	15	15
223	15	0.190	27.83	4.51	6.95	1.54	65	0	0.00	4.51	6.95	1.54	30	15	15
224	92	0.005	70.56	2.83	8.85	3.13	50	1	7.94	2.61	7.26	2.78	30	15	15
225	65	0.005	13.53	1.56	2.62	1.68	65	0	0.00	1.56	2.62	1.68	30	15	15
226	72	0.005	28.08	1.35	3.85	2.86	65	0	0.00	1.35	3.85	2.86	30	15	15
227	97	0.020	14.73	1.46	2.63	1.80	40	0	0.00	1.46	2.63	1.80	20	15	15
228	113	0.003	131.23	4.34	13.75	3.17	65	1	11.89	3.76	8.88	2.36	30	15	15
229	39	0.005	376.24	11.91	60.11	5.05	40	2	78.07	2.53	8.75	3.46	20	15	15
230	116	0.005	22.66	1.92	3.47	1.81	65	0	0.00	1.92	3.47	1.81	30	15	15
231	239	0.003	158.28	2.43	11.71	4.83	65	2	17.00	2.02	7.02	3.48	30	15	15
232	153	0.005	2 867.80	22.24	231.95	10.43	50	3	90.28	2.21	7.88	3.57	30	15	15

	Compo	site infor	mation	Unca	apped comp	osites				Four-st	ep gold grac	le cappir	ıg		
Domain code	Number	Min (g/t Au)	Max (g/t Au)	Mean (g/t Au)	Standard deviation	CV	Capping pass 1 (g/t Au)	Number capped	Metal loss (%)	Mean (g/t Au)	Standard deviation	CV	Capping pass 2 (g/t Au)	Capping pass 3 (g/t Au)	Capping pass 4 (g/t Au)
233	111	0.005	65.32	2.38	7.47	3.13	65	1	0.12	2.38	7.45	3.13	30	15	15
235	25	0.011	22.51	2.01	4.53	2.25	40	0	0.00	2.01	4.53	2.25	20	15	15
236	58	0.005	41.55	3.80	7.17	1.89	65	0	0.00	3.80	7.17	1.89	30	15	15
237	54	0.005	13.08	1.40	2.68	1.92	50	0	0.00	1.40	2.68	1.92	30	15	15
238	82	0.003	15.11	0.95	2.47	2.59	40	0	0.00	0.95	2.47	2.59	20	15	15
239	24	0.005	36.49	2.15	7.26	3.38	40	0	0.00	2.15	7.26	3.38	20	15	15
240	31	0.003	42.50	3.21	9.30	2.90	40	1	2.57	3.13	8.97	2.86	20	15	15

Table 14-9: Summary statistics for the capping on composites by zone – Lynx

	Compo	site infor	mation	Unca	apped comp	osites				Four-st	ep gold grac	le cappir	ng		
Domain code	Number	Min (g/t Au)	Max (g/t Au)	Mean (g/t Au)	Standard deviation	CV	Capping pass 1 (g/t Au)	Number capped	Metal loss (%)	Mean (g/t Au)	Standard deviation	CV	Capping pass 2 (g/t Au)	Capping pass 3 (g/t Au)	Capping pass 4 (g/t Au)
301	86	0.007	48.24	1.86	6.17	3.32	65	0	0.00	1.86	6.17	3.32	40	20	20
302	34	0.005	50.10	4.85	10.56	2.18	65	0	0.00	4.85	10.56	2.18	40	20	20
303	24	0.016	8.80	2.68	2.65	0.99	65	0	0.00	2.68	2.65	0.99	40	20	20
304	172	0.002	287.63	5.09	24.19	4.75	65	2	31.81	3.43	8.51	2.48	40	20	20
305	205	0.002	62.95	3.97	8.85	2.23	65	0	0.00	3.97	8.85	2.23	40	20	20
306	31	0.007	51.50	3.74	9.18	2.46	65	0	0.00	3.74	9.18	2.46	40	20	20
307	85	0.004	43.36	4.06	8.76	2.16	65	0	0.00	4.06	8.76	2.16	40	20	20
308	141	0.006	428.57	6.57	36.72	5.59	65	2	36.94	3.99	10.12	2.54	40	20	20
309	87	0.005	132.93	7.98	21.83	2.74	65	4	19.24	6.55	15.38	2.35	40	20	20
310	272	0.002	3 740.00	20.05	228.38	11.39	65	4	76.63	4.61	10.91	2.37	40	20	20
311	110	0.007	132.73	6.52	18.21	2.79	65	3	15.04	5.56	13.03	2.34	40	20	20
312	53	0.010	59.63	4.23	9.48	2.24	65	0	0.00	4.23	9.48	2.24	40	20	20
313	62	0.005	185.82	10.43	28.61	2.74	65	4	23.30	7.97	17.41	2.18	40	20	20
314	19	0.005	12.53	1.90	3.36	1.77	65	0	0.00	1.90	3.36	1.77	40	20	20

	Compo	site infor	mation	Unca	apped compo	osites				Four-st	ep gold grad	le cappir	ng		
Domain code	Number	Min (g/t Au)	Max (g/t Au)	Mean (g/t Au)	Standard deviation	CV	Capping pass 1 (g/t Au)	Number capped	Metal loss (%)	Mean (g/t Au)	Standard deviation	CV	Capping pass 2 (g/t Au)	Capping pass 3 (g/t Au)	Capping pass 4 (g/t Au)
315	26	0.015	211.76	15.46	46.61	3.02	65	2	51.59	7.42	18.28	2.46	40	20	20
316	34	0.012	39.18	4.74	8.50	1.79	65	0	0.00	4.74	8.50	1.79	40	20	20
317	38	0.005	474.96	33.98	105.46	3.10	65	4	64.68	11.75	20.83	1.77	40	20	20
318	33	0.006	186.65	9.95	32.28	3.24	65	1	39.40	6.26	13.20	2.11	40	20	20
319	61	0.010	109.50	4.43	14.76	3.33	65	1	15.37	3.70	9.82	2.65	40	20	20
320	34	0.013	34.69	6.32	8.79	1.39	65	0	0.00	6.32	8.79	1.39	40	20	20
321	34	0.020	10.16	1.74	2.30	1.32	65	0	0.00	1.74	2.30	1.32	40	20	20
322	41	0.002	63.64	3.76	11.58	3.08	65	0	0.00	3.76	11.58	3.08	40	20	20
323	34	0.013	25.00	2.36	4.64	1.96	65	0	0.00	2.36	4.64	1.96	40	20	20
324	24	0.005	45.52	5.91	10.73	1.81	65	0	0.00	5.91	10.73	1.81	40	20	20
325	21	0.022	12.86	2.07	3.60	1.74	65	0	0.00	2.07	3.60	1.74	40	20	20
326	8	0.070	23.96	6.24	9.11	1.46	65	0	0.00	6.24	9.11	1.46	40	20	20
327	18	0.068	18.35	2.96	4.85	1.64	65	0	0.00	2.96	4.85	1.64	40	20	20
328	11	0.062	32.83	4.11	9.16	2.23	65	0	0.00	4.11	9.16	2.23	40	20	20
329	57	0.006	23.93	1.10	3.57	3.24	65	0	0.00	1.10	3.57	3.24	40	20	20
330	20	0.002	40.99	4.54	9.19	2.02	65	0	0.00	4.54	9.19	2.02	40	20	20
331	7	0.076	6.05	2.27	2.48	1.09	65	0	0.00	2.27	2.48	1.09	40	20	20
332	29	0.012	20.04	1.92	4.40	2.29	65	0	0.00	1.92	4.40	2.29	40	20	20
333	25	0.005	5.65	1.13	1.41	1.24	65	0	0.00	1.13	1.41	1.24	40	20	20
334	20	0.019	113.36	7.83	24.76	3.16	65	1	32.21	5.41	14.61	2.70	40	20	20
335	36	0.008	70.74	2.69	11.62	4.32	65	1	5.83	2.53	10.69	4.22	40	20	20
336	20	0.010	10.26	1.83	2.93	1.60	65	0	0.00	1.83	2.93	1.60	40	20	20

	Compos	site inforr	mation	Unca	pped compo	sites				Four-st	ep gold grad	le cappir	na		
Domain code	Number	Min	Max (g/t Au)	Mean	Standard deviation	CV	Capping pass 1 (g/t Au)	Number capped	Metal loss (%)	Mean	Standard deviation	CV	Capping pass 2 (g/t Au)	Capping pass 3 (g/t Au)	Capping pass 4 (g/t Au)
401	18	0.062	38.23	8.38	11.13	1.33	40	0	0.00	8.38	11.13	1.33	20	15	15
402	243	0.008	72.82	4.66	9.97	2.14	55	3	3.00	4.52	9.13	2.02	40	30	20
403	73	0.025	91.50	4.87	12.19	2.50	55	1	9.75	4.37	8.94	2.04	40	30	20
404	14	0.075	6.90	2.47	2.41	0.98	40	0	0.00	2.47	2.41	0.98	20	15	15
405	78	0.004	56.11	6.76	10.19	1.51	40	1	2.78	6.55	9.32	1.42	20	15	15
406	43	0.005	15.76	2.35	3.37	1.43	40	0	0.00	2.35	3.37	1.43	20	15	15
407	60	0.009	20.80	3.66	5.18	1.41	40	0	0.00	3.66	5.18	1.41	20	15	15
408	95	0.015	134.12	6.50	18.14	2.79	55	3	19.95	5.20	11.16	2.15	40	30	20
409	16	0.076	6.00	1.91	2.08	1.09	40	0	0.00	1.91	2.08	1.09	20	15	15
410	20	0.160	104.56	9.62	22.69	2.36	55	1	23.62	7.14	12.68	1.78	40	30	20
411	81	0.023	11.18	1.08	2.32	2.16	40	0	0.00	1.08	2.32	2.16	20	15	15
412	63	0.027	56.10	6.15	10.00	1.63	40	1	4.36	5.90	8.86	1.50	20	15	15
413	50	0.005	41.02	3.71	7.31	1.97	40	1	0.54	3.69	7.21	1.96	20	15	15
414	12	0.054	432.16	37.80	118.92	3.15	55	1	83.72	6.37	14.83	2.33	40	30	20
415	154	0.005	299.12	9.14	29.08	3.18	55	5	26.93	6.61	13.01	1.97	40	30	20
416	52	0.010	36.77	3.30	7.18	2.18	40	0	0.00	3.30	7.18	2.18	20	15	15
417	128	0.001	300.65	3.47	26.51	7.65	55	1	52.51	1.55	5.48	3.54	40	30	20
419	49	0.016	134.85	5.88	19.14	3.25	55	1	27.29	4.25	8.58	2.02	40	30	20
420	137	0.005	417.03	8.72	39.46	4.53	55	3	45.32	4.71	9.07	1.92	40	30	20
421	67	0.038	16.32	3.03	3.68	1.21	40	0	0.00	3.03	3.68	1.21	20	15	15

Table 14-10: Summary statistics for the capping on composites by zone – Underdog

	Compos	site inform	nation	Unca	pped compo	sites				Four-st	ep gold grad	le cappir	ng		
Domain code	Number	Min (g/t Au)	Max (g/t Au)	Mean (g/t Au)	Standard deviation	CV	Capping pass 1 (g/t Au)	number	Metal loss (%)	Mean (g/t Au)	Standard deviation	CV	Capping pass 2 (g/t Au)	Capping pass 3 (g/t Au)	Capping pass 4 (g/t Au)
501	39	0.022	184.77	9.42	29.59	3.14	30	2	38.88	5.30	8.59	1.62	30	15	15
502	24	0.002	6.64	1.65	2.18	1.32	30	0	0.00	1.65	2.18	1.32	30	15	15
503	16	0.044	21.66	3.09	5.98	1.94	30	0	0.00	3.09	5.98	1.94	30	15	15
504	19	0.005	112.17	9.39	24.82	2.64	30	1	50.20	5.06	8.00	1.58	30	15	15

Table 14-12: Summary statistics for the capping on composites by zone – F Zones

	Compos	ite inforr	mation	Unca	pped compo	sites				Four-st	ep gold grac	le cappir	ng		
Domain code	Number	Min (g/t)	Max (g/t)	Mean (g/t)	Standard deviation	CV	Capping pass 1 (g/t)	Number capped	Metal loss (%)	Mean (g/t)	Standard deviation	CV	Capping pass 2 (g/t)	Capping pass 3 (g/t)	Capping pass 4 (g/t)
601	16	0.024	10.77	3.01	3.31	1.10	55	0	0.00	3.01	3.31	1.10	25	15	15
602	20	0.005	16.36	3.52	4.39	1.24	55	0	0.00	3.52	4.39	1.24	25	15	15
603	91	0.002	49.26	3.79	8.63	2.28	55	0	0.00	3.79	8.63	2.28	25	15	15
604	36	0.005	430.75	25.15	84.80	3.37	55	3	73.81	6.68	15.11	2.26	25	15	15
605	17	0.000	6.28	1.47	1.92	1.30	55	0	0.00	1.47	1.92	1.30	25	15	15
606	24	0.005	8.51	1.52	2.47	1.62	55	0	0.00	1.52	2.47	1.62	25	15	15
607	19	0.003	52.86	5.03	11.79	2.34	55	0	0.00	5.03	11.79	2.34	25	15	15

14.7 Density

Densities are used to calculate tonnages for the estimated volumes derived from the resource-grade block model.

For the 2018 MRE, a total of 152,303 bulk specific gravity ("SG") measurements were provided by Osisko and integrated into the database. Most of the SG measurements were determined by the pycnometer method on pulps by ALS Minerals in Val-d'Or and Bureau Veritas in Timmins.

A fixed density value was applied to each lithological domain, corresponding to the median of the SG data for the matching lithology for each area. For the F Zones, due to insufficient data, each lithology present in the area (V1 and V2_LOW) was attributed an average density value of the same lithology observed in Main and Lynx areas (Table 14-16).

A density of 2.00 g/cm³ was assigned to the overburden and 0.00 g/cm³ to the exploration ramp.

Summary statistics of the SG data are presented by area in Table 14-13 to Table 14-16.

Lithology	Number of samples	Lithology code	Density (g/cm ³)
113	1043	801	2.70
I2F	6716	802	2.74
Lynx_Up_Lynx	76	803	2.83
I1P_Unm	1389	815	2.75
127	2230	821	2.79
110	2622	822	2.77
125	70	823	2.80
140	679	824	2.74
170-110	6287	830	2.76
150-180	900	831	2.78
130	5851	832	2.77
160-165	437	833	2.80
I3A	3971	840	2.78
Foliated Volcanics	9617	850	2.84
V1	32997	851	2.77
V2 Lower	8049	852	2.84
V2 Upper	56614	853	2.79
WASTE-MAIN	na	998	2.78

 Table 14-13: Specific gravity compilation for lithologies used for the density

 model in Main area (Zone 27, Caribou, Mallard)

Table 14-14: Specific gravity compilation for lithologies used for the	density
model in Lynx area	

Lithology	Number of samples	Lithology code	Density (g/cm ³)
113	359	801	2.70
I2F	2319	802	2.73
Lynx_Up_Lynx_Feb	76	803	2.83
I1P	713	810	2.77
I1P Unmineralized	1324	815	2.75
I1FRG	1455	816	2.78
I2P	781	820	2.73
I70-I10 (Caribou)	3301	830	2.76
I3A	4299	840	2.78
Foliated Volcanics	2945	850	2.86
V1	7382	851	2.76
V2 Upper	1802	852	2.86
V2 Lower	12859	853	2.81
WASTE-LYNX	na	999	2.80

Table 14-15: Specific gravity compilation for lithologies used for the density model in Underdog area

Lithology	Number of samples	Lithology code	Density (g/cm ³)
113	9729	801	2.73
I2F	591	802	2.74
I1P	6972	810	2.74
I1PYB	3076	817	2.73
I2P	6779	820	2.76
FOL_VOLC	15751	850	2.84
V1	48780	851	2.77
V2_UP	39785	852	2.84
V2_LOW	8085	853	2.81
WASTE-UNDERDOG	n/a	997	2.78

Table 14-16: Specific gravity compilation for lithologies used for the density model in F Zones area

Lithology	Lithology code	Density (g/cm ³)
V1	851	2.76
V2_LOW	853	2.80

14.8 Block Model

Four block models were created for Main (group of Zone 27, Caribou and Mallard), Lynx, Underdog, and F Zones for the purpose of the current resource estimate.

The block models were rotated 25° counter-clockwise (Y-axis oriented along N335°). Individual block cells have dimensions of 5 m long (X-axis) by 2 m wide (Y) by 5 m vertical (Z). The block dimensions reflect the sizes of the mineralized zones and plausible underground mining methods. The block models are coded using the percent model method for rock code identification and contain multiple folders.

Table 14-17 to Table 14-20 present the properties of the four block models. Figure 14-9 shows the geographical distribution of the four block models in the Windfall Lake Project.

Properties	X (Column)	Y (Row)	Z (Level)		
Origin Coordinates	451,979.985	5,434,294.120	415.000		
Number of Blocks	240	330	165		
Block Extent (m)	1,200	660	825		
Block Size (m)	5	2	5		
Rotation	25°				

Table 14-17: Block model properties – Main (Zone 27, Caribou, Mallard)

Table 14-18: Block model properties – Lynx

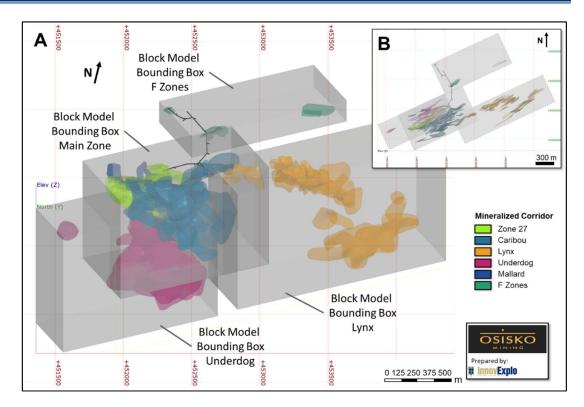

Properties	X (Column)	Y (Row)	Z (Level)		
Origin Coordinates	452,837.569	5,434,407.140	415.000		
Number of Blocks	337	255	196		
Block Extent (m)	1,685	510	980		
Block Size (m)	5	2	5		
Rotation	25°				

Table 14-19: Block model properties – Underdog

Properties	X (Column)	Y (Row)	Z (Level)		
Origin Coordinates	451,559.822	5,434,307.840	105.000		
Number of Blocks	250	235	195		
Block Extent (m)	1,250	470	975		
Block Size (m)	5	2	5		
Rotation	25°				

Table 14-20: Block model properties – F Zones

Properties	X (Column)	Y (Row)	Z (Level)		
Origin Coordinates	452,502.529	5,435,243.950	415.000		
Number of Blocks	250	285	35		
Block Extent (m)	1,250	570	175		
Block Size (m)	5	2	5		
Rotation	25°				

(A) 3D view; (B) Plan view

Figure 14-9: Bounding box of the block models

14.9 Rock Coding

All blocks falling within a selected solid were assigned the corresponding solid block code in their respective folder. Percent block models were generated, reflecting the proportion of each block inside every solid (i.e., individual mineralized zones, individual lithology domains, overburden, and ramp for Main and F Zones).

Overlaps between solids were handled by the "precedence" system used by GEMS for coding the block model. The ramp and the post-mineralization dikes (when present) had priority over the mineralization zones and lithology wireframes.

Table 14-21 to Table 14-24 provide details about the naming convention for the corresponding GEMS solids, as well as the rock codes and block codes assigned to each individual solid. The multi-folder percent block models generated were used for the resource estimate.

Table 14-21: Main area (Zone 27, Caribou, Mallard) block model and associated	
solids	

Falden Daak aada		Dia ak an da	GEN	Dressdanas		
Folder	Folder Rock code	Block code	Name 1	Name 2	Name 3	Precedence
	LYNX_UP	803	LYNX_UP	803	20180409	803
Standard	I1P_UNM	815	I1P_UNM	815	20180409	815
	127	821	127	821	20180409	821

🗱 InnovExplo

			GEI			
Folder	Rock code	Block code	Name 1	Name 2	Name 3	Precedence
	110	822	I10	822	20180409	822
	125	823	125	823	20180409	823
	140	824	140	824	20180409	824
	170-110	830	170-110	830	20180409	830
	150-180	831	150-180	831	20180409	831
	130	832	130	832	20180409	832
	160-165	833	160-165	833	20180409	833
	I3A	840	I3A	840	20180409	840
	FOL_VOLC	850	FOL_VOLC	850	20180409	850
	 V1	851	V1	851	20180409	851
	V2_UP	852	V2_UP	852	20180409	852
	V2_LOW	853	V2_LOW	853	20180409	853
	WASTE-MN	998	WASTE-MN	998	20180404	998
Ramp	RAMP	5	RAMP	5	20180406	5
OVB	OVB	10	OVB	10	20180403	10
	Z27_104	104	Z27	104	20180407	104
	Z27_110	110	Z27	110	20180407	110
	Z27 115	115	Z27	115	20180407	115
	CA 201	201	Caribou	201	20180409	201
	CA 209	209	Caribou	209	20180409	209
	CA_214	214	Caribou	214	20180409	214
Zone 1	CA_216	216	Caribou	216	20180409	216
	CA_219	219	Caribou	219	20180409	219
	CA 223	223	Caribou	223	20180409	223
	 CA_226	226	Caribou	226	20180409	226
	 CA_227	227	Caribou	227	20180409	227
	CA_236	236	Caribou	236	20180409	236
	ML 502	502	Mallard	502	20180407	502
	Z27 105	105	Z27	105	20180407	105
	Z27 107	107	Z27	107	20180407	107
	Z27 108	108	Z27	108	20180407	108
	Z27 113	113	Z27	113	20180407	113
	Z27 116	116	Z27	116	20180407	116
	CA 205	205	Caribou	205	20180409	205
	CA_208	208	Caribou	208	20180409	208
Zone 2	 CA_211	211	Caribou	211	20180409	211
	 CA_221	221	Caribou	221	20180409	221
	 CA_224	224	Caribou	224	20180409	224
	 CA_225	225	Caribou	225	20180409	225
	CA 232	232	Caribou	232	20180409	232
	CA 238	238	Caribou	238	20180409	238
	CA 239	239	Caribou	239	20180409	239
	CA 240	240	Caribou	240	20180409	240

			GEI	VS solid na	mes	
Folder	Rock code	Block code	Name 1	Name 2	Name 3	Precedence
	ML_501	501	Mallard	501	20180407	501
	Z27_101	101	Z27	101	20180407	101
	Z27_103	103	Z27	103	20180407	103
	Z27_112	112	Z27	112	20180407	112
	Z27_118	118	Z27	118	20180509	118
	CA_202	202	Caribou	202	20180409	202
	CA_204	204	Caribou	204	20180409	204
	CA_206	206	Caribou	206	20180409	206
	CA_207	207	Caribou	207	20180409	207
Zone 3	CA_213	213	Caribou	213	20180409	213
	CA_215	215	Caribou	215	20180409	215
	CA_217	217	Caribou	217	20180409	217
	CA_222	222	Caribou	222	20180409	222
	CA_228	228	Caribou	228	20180409	228
	CA_229	229	Caribou	229	20180409	229
	CA_230	230	Caribou	230	20180409	230
	CA_235	235	Caribou	235	20180409	235
	ML_503	503	Mallard	503	20180407	503
	Z27_102	102	Z27	102	20180407	102
	Z27_106	106	Z27	106	20180407	106
	Z27_109	109	Z27	109	20180509	109
	Z27_111	111	Z27	111	20180407	111
	Z27_114	114	Z27	114	20180407	114
	Z27_117	117	Z27	117	20180407	117
	CA_203	203	Caribou	203	20180409	203
Zone 4	CA_210	210	Caribou	210	20180409	210
	CA_212	212	Caribou	212	20180409	212
	CA_218	218	Caribou	218	20180409	218
	CA_220	220	Caribou	220	20180409	220
	CA_231	231	Caribou	231	20180409	231
	CA_233	233	Caribou	233	20180409	233
	CA_237	237	Caribou	237	20180409	237
	ML_504	504	Mallard	504	20180407	504
	113	801	113	801	20180412	81
	I2F	802	I2F_MnZn	802	20180412	82
Late Dikes	I2F	802	I2F_MnZn2	802	20180412	82
	I2F	802	I2F_Upper	802	20180412	82

Table 14-22: Lynx area block model and associated solids

Estdan	Deals and a Diask and a		GEN	Drawadawaa		
Folder Rock co	ROCK CODE	Rock code Block code	Name 1	Name 2	Name 3	Precedence
Standard	LYNX_UP	803	LYNX_UP	803	20180405	803

🗱 InnovExplo

			GEN	VS solid na	mes	
Folder	Rock code	Block code	Name 1	Name 2	Name 3	Precedence
	I1P_1	810	I1P_1	810	20180405	810
	I1P_2	810	l1P_2	810	20180405	810
	I1P_3	810	l1P_3	810	20180405	810
	I1P_4	810	l1P_4	810	20180405	810
	I1P_HW	814	I1P_HW	814	20180405	814
	I1P_UNM	815	I1P_UNM	815	20180405	815
	I1FRG	816	I1FRG	816	20180405	816
	I2P	820	I2P	820	20180405	820
	170-110	830	170-110	830	20180405	830
	I3A	840	I3A	840	20180405	840
	FOL_VOLC	850	FOL_VOLC	850	20180405	850
	V1	851	V1	851	20180405	851
	V2_UP	852	V2_UP	852	20180405	852
	V2_LOW	853	V2_LOW	853	20180405	853
	WASTE-LX	999	WASTE-LX	999	20180404	999
OVB	OVB	10	OVB	10	20180403	10
	LX_301	301	Lynx	301	20180328	301
	LX_302	302	Lynx	302	20180328	302
	LX_304	304	Lynx	304	20180328	304
	LX_308	308	Lynx	308	20180328	308
	LX_309	309	Lynx	309	20180328	309
	LX_312	312	Lynx	312	20180328	312
Lypy 1	LX_314	314	Lynx	314	20180328	314
Lynx 1	LX_323	323	Lynx	323	20180328	323
	LX_326	326	Lynx	326	20180328	326
	LX_328	328	Lynx	328	20180328	328
	LX_330	330	Lynx	330	20180328	330
	LX_333	333	Lynx	333	20180328	333
	LX_334	334	Lynx	334	20180328	334
	LX_335	335	Lynx	335	20180328	335
	LX_303	303	Lynx	303	20180328	303
	LX_306	306	Lynx	306	20180328	306
	LX_307	307	Lynx	307	20180328	307
	LX_310	310	Lynx	310	20180328	310
	LX_311	311	Lynx	311	20180328	311
	LX_313	313	Lynx	313	20180328	313
Lynx 2	LX_315	315	Lynx	315	20180328	315
	LX_316	316	Lynx	316	20180328	316
	LX_317	317	Lynx	317	20180328	317
	LX_318	318	Lynx	318	20180328	318
	LX_321	321	Lynx	321	20180328	321
	LX_322	322	Lynx	322	20180328	322
	LX_324	324	Lynx	324	20180328	324

Estdan	Dealereda	Dia da se da	GEM	//S solid na	mes	Describer
Folder	Rock code	Block code	Name 1	Name 2	Name 3	Precedence
	LX_329	329	Lynx	329	20180328	329
	LX_331	331	Lynx	331	20180328	331
	LX_332	332	Lynx	332	20180328	332
	LX_336	336	Lynx	336	20180328	336
	LX_305	305	Lynx	305	20180328	305
	LX_319	319	Lynx	319	20180328	319
Lynx 3	LX_320	320	Lynx	320	20180328	320
	LX_325	325	Lynx	325	20180328	325
	LX_327	327	Lynx	327	20180328	327
Lata Dikaa	I13	801	I13	801	20180410	81
Late Dikes	I2F	802	I2F	802	20180405	82

Table 14-23: Underdog area block model and associated solids

Falder	Dealereda	Dia di sa da	GEN	/IS solid na	mes	Deservations
Folder	Rock code	Block code	Name 1	Name 2	Name 3	Precedence
	l1P	810	l1P	810	20180426	810
	I1PYB	817	I1PYB	817	20180426	817
	I2P	820	I2P	820	20180426	820
Oten dend	FOL_VOLC	850	FOL_VOLC	850	20180409	850
Standard	V1	851	V1	851	20180409	851
	V2_UP	852	V2_UP	852	20180409	852
	V2_LOW	853	V2_LOW	853	20180409	853
	WASTE-UD	997	WASTE-UD	997	20180404	997
	UD_402	402	Underdog	402	20180430	402
	UD_404	404	Underdog	404	20180430	404
	UD_405	405	Underdog	405	20180430	405
Underdog 1	UD_408	408	Underdog	408	20180430	408
	UD_410	410	Underdog	410	20180430	410
	UD_413	413	Underdog	413	20180430	413
	UD_415	415	Underdog	415	20180430	415
	UD_407	407	Underdog	407	20180430	407
	UD_409	409	Underdog	409	20180430	409
	UD_411	411	Underdog	411	20180430	411
Underdog 2	UD_412	412	Underdog	412	20180430	412
	UD_414	414	Underdog	414	20180430	414
	UD_419	419	Underdog	419	20180430	419
	UD_420	420	Underdog	420	20180430	420
	UD_401	401	Underdog	401	20180430	401
	UD_403	403	Underdog	403	20180430	403
Underdog 3	UD_406	406	Underdog	406	20180430	406
	UD_416	416	Underdog	416	20180430	416
	UD_417	417	Underdog	417	20180430	417

	UD_421	421	Underdog	421	20180430	421
	113	801	I13	801	20180502	81
	113	801	I13_MN	801	20180502	81
Late Dikes	I2F	802	I2F	802	20180502	82
	I2F	802	I2F_MN	802	20180502	82
	I2F	802	I2F_MN2	802	20180502	82

Table 14-24: F Zones area block model and associated solids

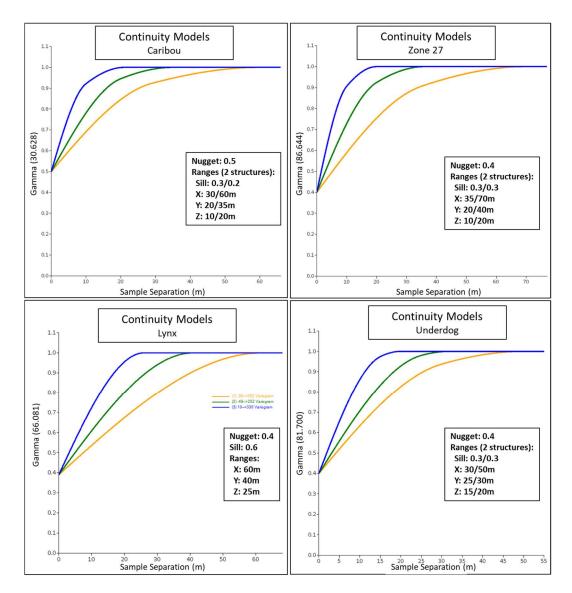
E e lele a	Deskards	Block code		MS solid na	mes	Das es demos
Folder	Folder Rock code		Name 1	Name 2	Name 3	Precedence
	V1	851	V1	851	20180409	851
Standard	V2_LOW	853	V2_LOW	853	20180409	853
	WASTE-ZF	996	WASTE-ZF	996	20180510	996
Ramp	RAMP	5	RAMP	5	20180406	5
OVB	OVB	10	OVB	10	20180403	10
	F_601	601	ZF	601	20180329	601
	F_602	602	ZF	602	20180329	602
Zone 1	F_604	604	ZF	604	20180329	604
	F_605	605	ZF	605	20180329	605
	F_606	606	ZF	606	20180329	606
7 0	F_603	603	ZF	603	20180329	603
Zone 2	F_607	607	ZF	607	20180329	607

14.10 Variography and Search Ellipsoids

14.10.1 Variography

Three dimensional (3D) directional variography was performed on the 2.0 m gold grade composites on major mineralized zones (containing more than 300 composites) and/or geographical groups of zones for each area. The studies were carried out in the software Supervisor. The overall approach to model the variography is described below:

- Examination of the strike and dip of the mineralized zones to help in the determination of the axes of better continuity;
- Estimation of the nugget effect (C₀) based on the down hole variogram;
- Modelling of the major, semi-major and minor axes of continuity.

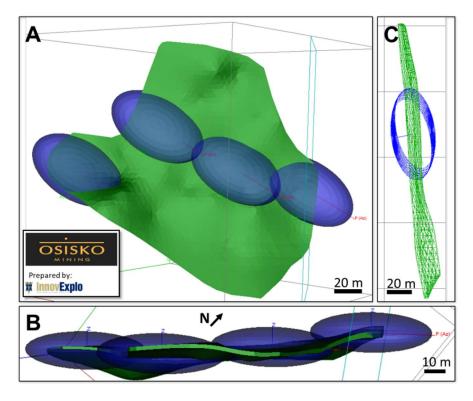

Due to the variability of the grades within the mineralized zones, the moderately high nugget effect and the lack of information in some zones or groups of zones, it was decided to use the variography analysis based on the most representative group of zones of each area. Figure 14-10 shows the continuity models obtained for Lynx, Caribou, Zone 27 and Underdog. The chosen variogram model parameters are presented in Table 14-25.

The down hole variograms suggest a nugget effect of 40% for Zone 27, Lynx and Underdog and a nugget effect of 50% for Caribou.

The variography was not conclusive for F Zones and Mallard, and therefore, InnovExplo decided to use variogram results from Zone 27.

		Variography components									
				First	structure			Secon	d structur	е	
Area	Nuggot	Model		Range	Range	Range		Range	Range	Range	
	Nugget	type	Sill	Х	Y	Z	Sill	Х	Y	Z	
				(m)	(m)	(m)		(m)	(m)	(m)	
Main (Zone 27)	0.4	Spherical	0.3	35	20	10	0.3	70	40	20	
Main (Caribou)	0.5	Spherical	0.3	30	20	10	0.2	60	35	20	
Main (Mallard)	0.4	Spherical	0.3	35	20	10	0.3	70	40	20	
Lynx	0.4	Spherical	0.6	60	40	25	-	-	-	-	
Underdog	0.4	Spherical	0.3	30	25	15	0.3	50	30	20	
F Zone	0.4	Spherical	0.3	35	20	10	0.3	70	40	20	

14.10.2 Search Ellipsoids


The 3D directional-specific investigations yielded the best-fit model along an orientation that corresponds to the strike, dip and plunge of the most representative group of zones.

The best-fit model of each area was adjusted to fit the orientation of each mineralized zone individually; the long axis was set parallel to the direction of discernible high-grade trend at the scale of the mineralized zone, which is approximately 30 degrees plunge to the northeast.

The ellipsoid ranges were based on the variography study. The ranges of the ellipsoids for the first interpolation pass correspond to 0.75 x the variography range results (0.5 x for Main), to 1 x the variography results for the second pass, to 1.5 x the variography results for the third pass, and to 3 x the variography results (5 x in Underdog) for the fourth pass. The search and grade interpolations are a four-pass process. Four sets of search ellipsoids were built using the ranges of the best fit variogram model for each mineralized zone.

Figure 14-11 illustrates example of shapes and ranges of the search ellipsoids for Pass 1.

Table 14-26 to Table 14-32 summarize the parameters of the ellipsoids used for interpolation.

A) Longitudinal view; B) Plan view; C) Cross-section view

Figure 14-11: Seach ellipsoid used for the first interpolation pass for the Zone 27 Corridor (Zone 102)

Table 14-26: Search ellipsoid ranges by interpolation pass

		Pass 1			Pass 2			Pass 3		Pass 4		
Area	(excep	x Variogra t for Main = ariography	= 0.5x	1.0x Variography		graphy 1.5x		1.5x Variography		3.0x Variography (except for Underdog = 5x Variography)		dog = 5x
	Х	Y	Z	X	Y	Z	Х	Y	Z	Х	Y	Z
	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)
Main (Zone 27)	35	20	10	70	40	20	105	60	30	210	120	60
Main (Caribou)	30	20	10	60	35	20	90	55	30	180	105	60
Main (Mallard)	35	20	10	70	40	20	105	60	30	210	120	60
Lynx	45	30	20	60	40	25	90	60	40	180	120	75
Underdog	40	25	15	50	30	20	75	45	30	250	150	100
F Zone	35	20	10	70	40	20	105	60	30	210	120	60

Block code	EI	lipsoid orienta	tion
	Azimuth (GEMS)	Dip (GEMS)	Azimuth (GEMS)
101, 102, 104, 105, 110, 111, 112, 113, 116, 117	55	-30	210
103	75	-20	260
106	80	-20	270
107	65	-30	220
108	60	-30	260
109, 118	45	-30	250
114	60	-20	270
115	75	-30	220

Table 14-27: Search ellipsoid orientation for Zone 27 (Main area)

Table 14-28: Search ellipsoid orientation for Caribou (Main area)

Block code	El	lipsoid orientat	ion
Block code	Azimuth (GEMS)	Dip (GEMS)	Azimuth (GEMS)
101, 102, 104, 105, 110, 111, 112, 113, 116, 117	55	-30	210
103	75	-20	260
106	80	-20	270
107	65	-30	220
108	60	-30	260
109, 118	45	-30	250
114	60	-20	270
115	75	-30	220

Table 14-29: Search ellipsoid orientation for Mallard (Main area)

	Ellipsoid orientation				
Block code	Azimuth (GEMS)	Dip (GEMS)	Azimuth (GEMS)		
501, 503	70	-30	230		
503	70	-30	230		
504	85	-30	220		

Table 14-30: Search ellipsoid orientation for Lynx

	Ellip	soid orientation	
Block code	Azimuth (GEMS)	Dip (GEMS)	Azimuth (GEMS)
301, 315, 316, 322, 331	60	-30	210
302, 332	87	-39	222
303, 304, 305, 310, 311, 318, 319, 320	52	-39	252
306	70	-30	44
307, 308	65	-39	252
309	58	-13	240
312, 313, 314, 317, 324, 326, 327, 330	52	-15	20

	Ellip	soid orientation	
Block code	Azimuth (GEMS)	Dip (GEMS)	Azimuth (GEMS)
323, 328	100	-52	50
325	89	-38	209
329	80	-31	200
321, 333, 336	60	-30	60
334	72	-15	220
335	75	-40	60

Table 14-31: Search ellipsoid orientation for Underdog

	Ellips	soid orientation	
Block code	Azimuth (GEMS)	Dip (GEMS)	Azimuth (GEMS)
401, 402, 403, 405, 407, 408, 411, 412, 413, 414, 419, 421	65	-30	240
404, 410	60	-30	210
406, 409, 415, 416, 417, 420	65	-30	260

Table 14-32: Search ellipsoid orientation for F Zones

	Ellipsoid orientation		
Block code	Azimuth (GEMS)	Dip (GEMS)	Azimuth (GEMS)
601	60	-30	240
602	50	-20	280
603, 604	45	-30	270
605	20	-60	240
606	65	-20	250
607	55	-20	250

14.11 Grade Interpolation

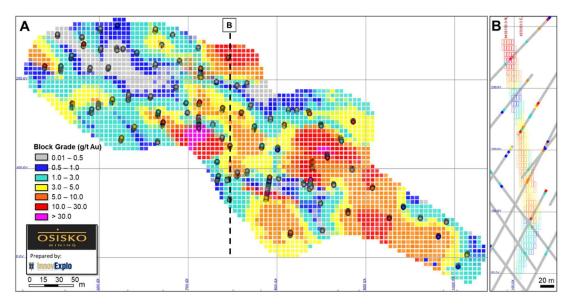
The parameters for interpolating the grade models were derived from the variographic study on the capped composites. The interpolation was run on a set of points providing the locations X, Y, Z and gold data grades extracted from the 2.0 m capped composites.

The composite points were assigned block codes corresponding to the mineralized zone in which they occur. The interpolation profiles specify a single composite block code for each mineralized-zone solid, thus establishing hard boundaries between the mineralized zones and preventing block grades from being estimated using composite points with different block codes than the block being estimated.

The interpolation profiles were customized to estimate grades separately for each folder in the block model. Two interpolation methods were investigated (ID² and OK). The Ordinary Kriging ("OK") method was selected for the final resource estimate for all areas of the Windfall Lake project except for Underdog where an Inverse Distance

Squared ("ID²") interpolation was preferred due to the larger drill spacing and smaller density of drill holes informing the mineralization wireframes.

In the process of limiting the over distribution of high grades during the interpolation, the four-step capping on composites was used: the first interpolation pass applied the highest capping value, the second interpolation pass applied a lower capping value, and the third and fourth interpolation passes applied the lowest selected capping values. For example, in Zone 101 from Zone 27 (Main), the first interpolation pass used composites capped at 75 g/t Au, the second interpolation pass used composites capped at 30 g/t Au and the two last passes used composites capped at 15 g/t Au (Table 14-7).


The interpolations were run in four cumulative passes characterized by increasing search ranges (Table 14-26). The first pass used a relatively small radius search ellipsoid to interpolate the mineralized blocks close to the drill holes. The second and third passes interpolated the blocks which were not interpolated during the previous pass. The fourth pass was defined to populate the remaining blocks within the mineralized zones.

The composite search specifications are presented in Table 14-33.

Interpolation parameters	Passes 1 to 4
Minimum number of composites	3
Maximum number of composites per drill hole	2
Maximum number of composites	12
Minimum number of drill hole	2

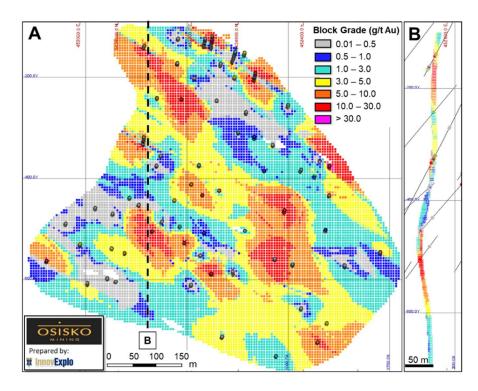

Table 14-33: Composite search specifications

Figure 14-12 and Figure 14-13 illustrate examples of grade distribution on typical cross-section and longitudinal views.

A) Longitudinal view looking NNW – the dash line shows the location of the cross-section; B) Cross-section looking NE – column 151 (\pm 10 m)

Figure 14-12: Gold grade distribution for the mineralized Zone 310 in Lynx corridor

A) Longitudinal view looking NNW – the dash line shows the location of the cross-section; B) Cross-section looking NE – column 146 (\pm 20 m)

Figure 14-13: Gold grade distribution for the mineralized Zone 402 in Underdog corridor

14.12 Block Model Validation

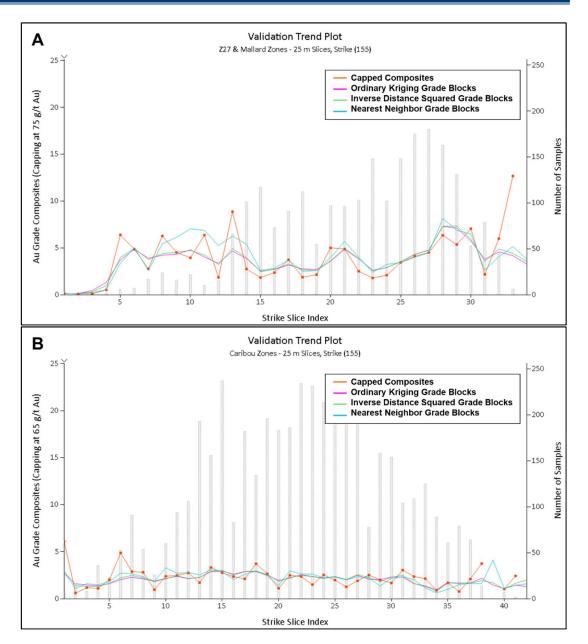
14.12.1 Visual Validation

A visual comparison between block model grades, composite grades and gold assays was conducted on sections, plans and longitudinal views for both densely and sparsely drilled areas. No significant differences were observed during the comparison and it generally provided a good match in grade distribution without excessive smoothing in the block model.

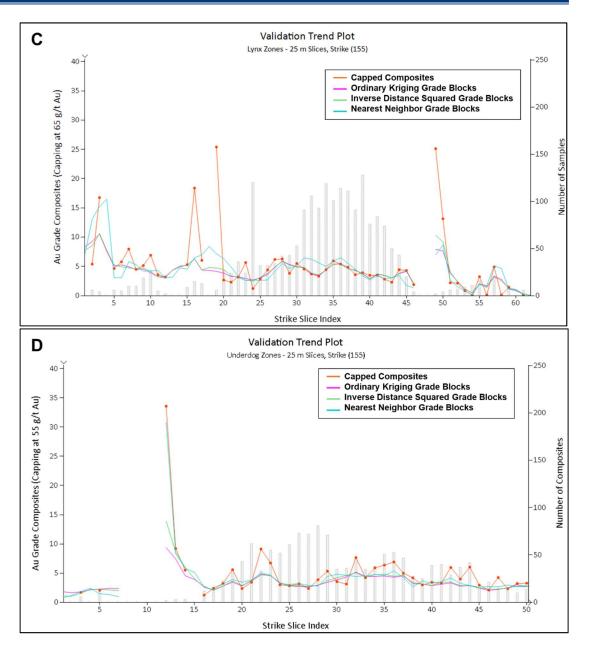
Visual comparisons were also conducted between ID², OK and Nearest Neighbour ("NN") interpolation scenarios. The scenarios used for the resource estimate (OK for all areas except for Underdog (ID²)) produced a block grade distribution representative of the mineralization style observed in the deposit.

14.12.2 Statistical Validation

Table 14-34 compares the global mean block for three interpolation scenarios (all classification blocks with >50% of their volume inside a mineralized zone) and the composite grades for each mineralized corridor at a zero cut-off. The comparison was done using the composite grades capped at the highest capping value.


Cases in which the composite mean is higher than the block mean are often a consequence of clustered drilling patterns in high-grade areas. The differences in mean grades can also be explained by the use of a single composite set in the comparison study (i.e. composites with the highest capping value) while blocks were estimated using a total of four sets of composites and four decreasing levels of cappings.

Area	Number of composites		Number of blocks	OK Grade model (g/t Au)	ID ² Grade model (g/t Au)	NN Grade model (gt Au)
Main	6,856	2.71	123,299	2.62	2.64	2.76
Lynx	2,012	4.26	55,240	4.08	4.12	4.54
Underdog	1,448	4.33	94,295	3.43	3.51	3.67
F Zones	223	3.86	4,272	3.26	3.31	3.23


Table 14-34: Comparison of the block and composite mean grades at a zero cutoff grade for blocks of all resource classes.

The comparison between composite and block grade distributions did not identify significant issues. As expected, the block grades are generally lower than the composite grades.

Figure 14-14 illustrates the cross-section swath plots to compare the block model grades with the composite grades for each major mineralized corridor. In general, the model correctly reflects the trends shown by the composites with the expected smoothing effect.

A) Z27 and Mallard; B) Caribou; C) Lynx and D) Underdog

A) Z27 and Mallard; B) Caribou; C) Lynx and D) Underdog

Figure 14-14: Cross-section (slicing at 155 deg) swath plots by mineralization corridor

14.13 Cut-off Parameters

The selected cut-off grade of 3.0 g/t Au was used to determine the mineral potential of the deposit. The underground cut-off grade ("UCoG") determination was based on the parameters presented in Table 14-35.

Parameters	Unit	Value
Gold price	USD/oz	1,300
Exchange rate	USD/CAD	1.28
Mill recovery	%	90
Selling cost	\$/oz	5.00
Royalties	%	2.5
Mining cost	\$/t milled	70.00
G&A cost	\$/t milled	18.00
Processing cost	\$/t milled	30.00
Transportation	\$/t milled	18.00
Environment	\$/t milled	3.00
Calculated cut-off grade	g/t Au	2.96

Table 14-35: Parameters used to estimate the UCoG for the 2018 MRE

In the author's opinion, the selected cut-off grade of 3.0 g/t Au provides an adequate estimate based on current knowledge and is instrumental in outlining the mineral potential of the deposit for an underground mining scenario.

14.14 Mineral Resource Classification

14.14.1 Mineral Resource Classification Definition

The resource classification definitions used for this report are those published by the Canadian Institute of Mining, Metallurgy and Petroleum in their document "CIM Definition Standards for Mineral Resources and Reserves."

Measured Mineral Resource: that part of a Mineral Resource for which quantity, grade or quality, densities, shape, physical characteristics are so well established that they can be estimated with confidence sufficient to allow the appropriate application of technical and economic parameters, to support production planning and evaluation of the economic viability of the deposit.

The estimate is based on detailed and reliable exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough to confirm both geological and grade continuity.

Indicated Mineral Resource: that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics can be estimated with a level of confidence sufficient to allow the appropriate application of technical and economic parameters, to support mine planning and evaluation of the economic viability of the deposit.

The estimate is based on detailed and reliable exploration and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough for geological and grade continuity to be reasonably assumed.

Inferred Mineral Resource: that part of a Mineral Resource for which quantity and grade or quality can be estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not verified, geological and grade continuity. The estimate is based on limited information and sampling gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes.

Due to the uncertainty that may be attached to Inferred Mineral Resources, it cannot be assumed that all or any part of an Inferred Mineral Resource will be upgraded to an Indicated or Measured Mineral Resource as a result of continued exploration. Confidence in the estimate is insufficient to allow the meaningful application of technical and economic parameters or to enable an evaluation of economic viability worthy of public disclosure. Inferred Mineral Resources must be excluded from estimates forming the basis of feasibility or other economic studies.

14.14.2 Mineral Resource Classification for the Windfall Lake Project

By default, all interpolated blocks were assigned to the Inferred category during the creation of the grade block model.

Several criteria were considered for the resource classification to inferred and indicated category:

- the interpolation pass;
- the distance to closest information;
- the number of holes informing a grade block;
- the variogram ranges;
- the level of confidence in the continuity of the dikes and in the geological understanding of the mineralized zones.

Table 14-36 presents the main criteria that were used to categorize the blocks in each resource class.

A series of outline rings (clipping boundaries) were created manually for each mineralized zone individually in longitudinal views using the criteria described above, The resource boundaries were drawn keeping in mind that a significant cluster of blocks is necessary to delineate a resource group. In some cases, blocks that did not meet the criteria of a category were upgraded to that category to homogenize and avoid isolated blocks of lower category within the classification group. InnovExplo is of the opinion that these blocks have a sufficient level of confidence to be upgraded because many of these blocks are aligned along the mineralization plunge.

Blocks were assigned to the chosen category based on the classification clipping boundaries.

In some areas, interpolated blocks remained unclassified due to the lack of confidence in grade and/or continuity. This mainly occurs where drill hole spacing is wide. Measured resources were not defined for the Project.

Figure 14-15 shows an example of a mineral resource classification in a mineralization domain in Z27 Corridor.

Resource category	Drill hole spacing (m)	Number of holes informing a block	Interpolation pass	Slope of regression	Geological continuity and confidence in geological model
Indicated	≤ 25	≥ 3	First	Mostly > 0.4	Good geological understanding
Inferred	≤ 100	≥2	Most from the first 3 passes	-	Need more drilling/work to upgrade geological understanding

 Table 14-36: Main criteria for resource classification

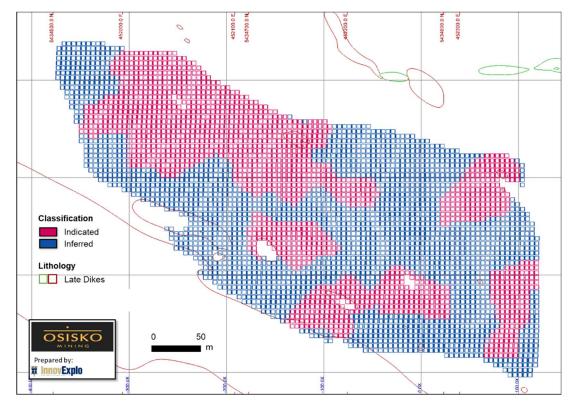


Figure 14-15: Example of resource classification for blocks in Zone 101 in Zone 27 corridor

14.15 Mineral Resource Estimate

Given the density of the processed data, the search ellipse criteria, the drilling density and the specific interpolation parameters, InnovExplo is of the opinion that the current mineral resource estimate can be classified as Indicated and Inferred resources. InnovExplo considers the 2018 MRE to be reliable and based on quality data, reasonable hypotheses and parameters that follow CIM Definition Standards.

Table 14-37 displays the results of the In Situ 2018 Mineral Resource Estimate for Windfall Lake project at the 3.0 g/t Au cut-off grade. Table 14-38 displays the in situ resource and sensitivity at other cut-off grade scenarios for all areas. The reader should be cautioned that the figures provided in Table 14-38 should not be interpreted

as a mineral resource statement. The reported quantities and grade estimates at different cut-off grades are presented with the sole purpose of demonstrating the sensitivity of the resource model to the selection of a reporting cut-off grade.

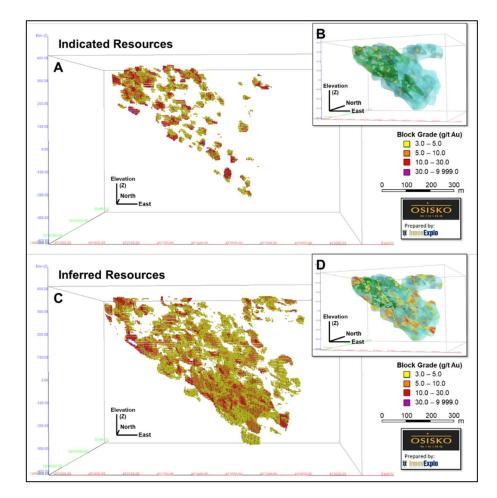
Figure 14-16 to Figure 14-19 show the grade distribution of the four (4) mineralized Corridors above the official UCoG (>3.0 g/t Au) for blocks classified as Indicated and Inferred resources.

	Windfall Lake project (cut-off grade 3.0 g/t Au)							
Mineralization	Indi	cated resour	rces	I	nferred resource	s		
corridor	Tonnes (000 t)	Grade (g/t Au)	Ounces Au (000 oz)	Tonnes (000 t)	Grade (g/t Au)	Ounces Au (000 oz)		
Lynx	1,254	7.51	303	2,257	7.48	543		
Zone 27	628	8.69	175	852	7.28	199		
Caribou	318	7.12	73	2,767	5.80	516		
Underdog	147	9.00	43	4,380	6.77	953		
Mallard	-	-	-	145	7.13	33		
F Zones	34	6.58	7	204	5.82	38		
Total	2,382	7.85	601	10,605	6.70	2,284		

Table 14-37: Windfall Lake project Indicated and Inferred mineral resources by area (3.0 g/t Au UCoG)

Mineral Resource Estimate notes:

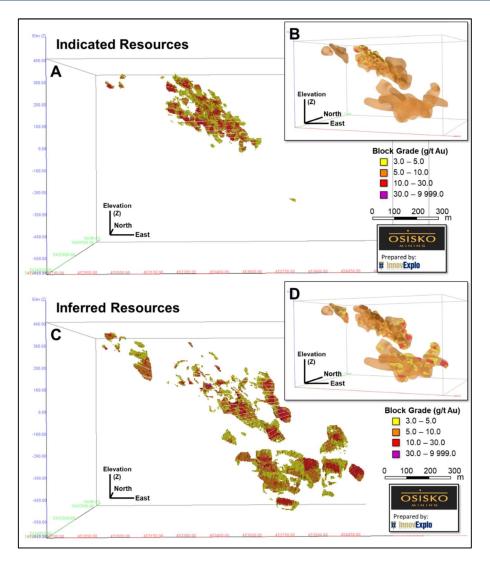
1. The QP of the 2018 MRE, as defined by NI 43-101, is Judith St-Laurent, P. Geo, of InnovExplo Inc. The effective date of the estimate is May 14, 2018.


- 2. The Windfall mineral resource estimate is compliant with CIM standards and guidelines for reporting mineral resources and reserves.
- 3. Resources are presented undiluted and in situ and are considered to have reasonable prospects for economic extraction.
- 4. The mineral resource estimate encompasses a total of 124 tabular, subvertical gold-bearing domains each defined by individual wireframes with a minimum true thickness of 2.0 m.
- 5. Samples were composited within the mineralization domains into 2.0 m length composites. A value of zero grade was applied in cases of core not assayed.
- 6. High grade capping was done on composite data, and established using a statistical analysis on a per-zone basis for gold. Capping varied from 15 g/t Au to 75 g/t Au and was applied using a four-step capping strategy where capping values decreased as interpolation distances increased.
- 7. Density values were applied on the following lithological basis (t/m3): mafic volcanic host rocks varied from 2.78 to 2.86; felsic volcanic host rocks varied from 2.76 to 2.77; porphyries varied from 2.70 to 2.83.
- 8. Ordinary Kriging (OK) based interpolation was used for the estimation of all zones of the Windfall Lake project except for the Underdog zone where an Inverse Distance Squared (ID²) interpolation was preferred due to the larger drill spacing and smaller density of drill holes informing the mineralization wireframes. All estimates are based on a block dimension of 5 m NE, 2 m NW and 5 m height and estimation parameters determined by variography.
- Estimates use metric units (metres, tonnes and g/t). Metal contents are presented in troy ounces (metric tonne x grade / 31.10348).
- 10. InnovExplo is not aware of any known environmental, permitting, legal, title-related, taxation, socio-political or marketing issues, or any other relevant issue not reported in the technical report, that could materially affect the mineral resource estimate.
- 11. These mineral resources are not mineral reserves as they do not have demonstrated economic viability. The quantity and grade of reported Inferred resources in this mineral resource estimate are uncertain in

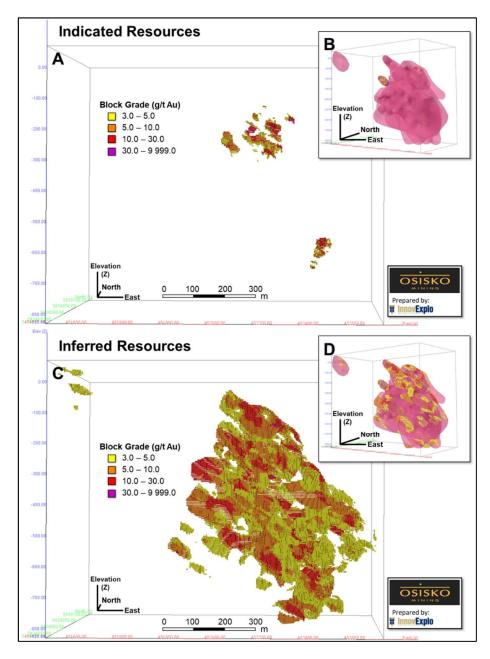
nature and there has been insufficient exploration to define these Inferred resources as Indicated or Measured, and it is uncertain if further exploration will result in upgrading them to these categories.

12. The number of metric tons and ounces was rounded to the nearest unit. Any discrepancies in the totals are due to rounding effects; rounding followed the recommendations in Form 43 101F1.

Table 14-38: Windfall Lake project Indicated and Inferred mineral resource sensitivity table

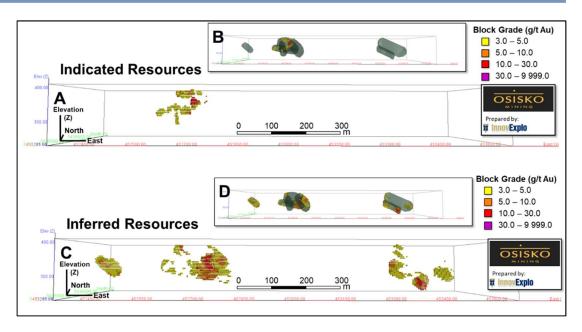

Cut off Oreda	Ind	icated Resour	ces	Inferred Resources		
Cut-off Grade (g/t Au)	Tonnes (000 t)	Grade (g/t Au)	Ounces Au (000 oz)	Tonnes (000 t)	Grade (g/t Au)	Ounces Au (000 oz)
5.00	1,476	10.28	487	5,764	9.06	1,679
4.00	1,858	9.08	543	7,749	7.88	1,964
3.50	2,093	8.48	571	9,091	7.27	2,126
3.00	2,382	7.85	601	10,605	6.70	2,284
2.50	2,741	7.18	633	12,434	6.12	2,445

A) 3D view looking north and B) 3D view looking NW showing indicated resources (>3.0 g/t Au) inside the zones; C) 3D view looking north and D) 3D view looking NW showing inferred resources (>3.0 g/t Au) inside the zones


Figure 14-16: Indicated and inferred resources at the official UCoG in the Main Zone corridor

🗱 InnovExplo

A) 3D view looking north and B) 3D view looking NW showing indicated resources (>3.0 g/t Au) inside the zones; C) 3D view looking north and D) 3D view looking NW showing inferred resources (>3.0 g/t Au) inside the zones.


Figure 14-17: Indicated and inferred resources at the official UCoG in the Lynx Corridor

A) 3D view looking north and B) 3D view looking NW showing indicated resources (>3.0 g/t Au) inside the zones; C) 3D view looking north and D) 3D view looking NW showing inferred resources (>3.0 g/t Au) inside the zones.

Figure 14-18: Indicated and inferred resources at the official UCoG in the Underdog Corridor

🗱 InnovExplo

A) 3D view looking north and B) 3D view looking NW showing indicated resources (>3.0 g/t Au) inside the zones; C) 3D view looking north and D) 3D view looking NW showing inferred resources (>3.0 g/t Au) inside the zones.

Figure 14-19: Indicated and inferred resources at the official UCoG in the F Zones corridor

14.16 Comparison to Previous Mineral Resource Estimates

The previous mineral resource estimate published on the Windfall Lake project was released on June 10, 2015 (see "Preliminary Economic Assessment of the Windfall Lake Gold Property, Québec, Canada", effective date April 28, 2015) and is available on SEDAR (<u>www.sedar.com</u>) under Eagle Hill Exploration Corporation's issuer profile).

The 2018 MRE reflects geological re-modeling of the Windfall Lake deposit as an intrusive-related system where mineralized zones are closely associated with subvolcanic quartz-feldspar porphyries that have been precisely dated, along with mineralization, at 2697+/- 2 Ma. Further to the geological re-modeling, the reevaluation of historical drilling results from previous operators was completed as well as the addition of new drilling information from 812 drill holes performed after the 2015 mineral resource estimate released by the previous owners. The mineral resource estimate reflects grade model changes from a broad mineralized domain approach to better defined, higher grade, vertical sub-domains to capture the nature of the gold bearing zones that follow the intrusive porphyry contacts.

Table 14-39 presents the comparison between the 2018 MRE and the 2015 MRE.

Note that the MRE comparison is somehow limited for some mineralization corridors as a large number of new drill hole information was added to the 2018 MRE. For example, the Lynx and Underdog areas were mostly drilled by Osisko and consequently, the resource estimation related to these mineralization corridors were extensively developed in the 2018 MRE while very few information was available at the time of the 2015 MRE.

Table 14-39: 2018 MRE comparison to 2015 PEA for the Windfall Lake project

Items of comparison	2015 PEA	2018 MRE				
Effective date	April 28, 2015	May 14, 2018				
New drill hole information by Osisko	Not applicable	812				
Geology model - Post mineralization dikes	No specifications	Post-mineralization during the grade int	dikes (Red Dog I2F a erpolation	nd I13 dikes) were tre	eated as barren units	
Mineralization domain style and location	 19 grade domains were defined in the Main zone: Above Red Dog dike: 16 domains Below Red Dog dike: 3 domains 6 domains modelled for colloform-crustiform quartz veins 1 broad pyrite stockwork domain consisting of a broad halo hosting the bulk of the mineralization in the Main zone Additional broad resource domains constrained by the main lithologies were also considered 	 A total of 124 mineralization domains were defined: Zone 27: 18 domains Caribou: 39 domains Lynx: 36 domains Underdog: 20 domains F Zones: 7 domains Domains were based on the observation that most mineralization domains occur at the contact of productive dikes and/or silica alteration and volcanic host rocks Domains constrain high grade gold mineralization (> 2.0 g/t Au) Areas of lower grades (< 2.0 g/t Au) were not constrained into mineralization domains 				
Mineralization modeling parameters	 Minimum width of 1 m Assay grade threshold of 0.5 g/t Au > 1% pyrite in the pyrite stockwork domain 	 Minimum 3 drill h Lateral extension hole 	shold of 2.0 g/t Au oles		alf distance to the next rallel	
Voids model	Not applicable	The mined-out volui model	me from the exploration	on ramp was included	as voids in the block	
Composite length	1.0 m	2.0 m				
Capping strategy	Capping applied on composites	Four-step capping s	trategy applied on co	mposites on a per int	erpolation pass basis	
Interpolation pass definition for capping strategy	Single capping applied to each interpolation pass	Pass 1	Pass 2	Pass 3	Pass 4	
Capping value - Zone 27 (g/t Au)	200	Group 1: 75 Group 2: 50	30 30	15 15	15 15	
Capping value - Caribou (g/t Au)	100	Group 1: 65 Group 2: 50 Group 3: 40	30 30 20	15 15 15	15 15 15	
Capping value - Lynx	Not part of the MRE 2015	Group 1: 65	40	20	20	

🗱 InnovExplo

Items of comparison	2015 PEA			2018 MRE			
(g/t Au)							
Capping value - Underdog (g/t Au)	200	200		Group 1: 55 Group 2: 40	40 20	30 15	20 15
Variogram model	Exponential using	1 structure		Spherical using 1 to	2 structures		
Nugget effect	Mostly 0.25			Varying between 0.4	10 to 0.50		
	Range X (m)	Range Y (m)	Range Z (m)	Range X (m)	Range Y (m)	Range Z (m)	
Variography maximum ranges - Zone 27	37	37	10	70	40	20	
Variography maximum ranges - Caribou	37	37	10	60	35	20	
Variography maximum ranges - Lynx	Not part of the MF	RE 2015		60	40	25	
Variography maximum ranges - Underdog	37	37	10	50	30	20	
Variography maximum ranges - F Zones	75	75	5	70	40	20	
Block size (m)	5 x 5 x 5			5 x 2 x 5			
Interpolator	Ordinary Kriging			Ordinary Kriging / Inverse Distance Squared			
Pass identification	Pass 1	Pass 2	Pass 3	Pass 1	Pass 2	Pass 3	Pass 4
Search type	Octant	Octant	Ellipsoidal	Ellipsoidal	Ellipsoidal	Ellipsoidal	Ellipsoidal
Minimum/Maximum composites	5/10	3/15	2/15	3/12	3/12	3/12	3/12
Maximum number of composites per drill hole	4	2	-	2	2	2	2
Minimum number of drill hole	2	2	1	2	2	2	2
Range Definition	Ranges X/Y/Z	Ranges X/Y/Z	Ranges X/Y/Z	Ranges X/Y/Z	Ranges X/Y/Z	Ranges X/Y/Z	Ranges X/Y/Z
Search ellipsoid ranges (m) - Zone 27	50x25x10	75x38x15	100x50x20	35/20/10	70/40/20	105/60/30	210/120/60
Search ellipsoid ranges (m) - Caribou	50x25x10	75x38x15	100x50x20	30/20/10	60/35/20	90/55/30	180/105/60
Search ellipsoid ranges (m) - Lynx	Not part of the MF	RE 2015		45/30/20	60/40/25	90/60/40	180/120/75

🗱 InnovExplo

Items of comparison	2015 PEA			son 2015 PEA 2018 MRE			
Search ellipsoid ranges (m) - Underdog	50/25/10	75/38/15	100/50/20	40/25/15	50/30/20	75/45/30	250/150/100
Search ellipsoid ranges (m) - F Zones	60/60/5	90/90/8	120/120/10	35/20/10	70/40/20	105/60/30	210/120/60
Resource classification - Indicated resources	Outlines for Indicated resources were defined based on: • Blocks from Pass 1 and 2 • Max anisotropic distance: 50 m • Manual smoothing 2.0 Au g/t		Outlines for Indicated resources were defined based on: • Distance to the closest composite < 25 m • Minimum 3 drill holes • Most blocks interpolated in the first pass • Areas where geological understanding is good				
Resource classification - Inferrec resources	Outlines for Inferred resources were defined based on: • Blocks from Pass 1, 2 and 3		 Outlines for Inferred resources were defined based on: Distance to the closest composite < 50 m Minimum 2 drill holes Most blocks interpolated in the first 3 passes Areas where geological understanding is recognized, but need to be improvided to be i			ed to be improved	
Resource categories	Indicated and infe	erred		Indicated and inferred			

15. MINERAL RESERVE ESTIMATES

The issuer has not published any NI 43-101 compliant mineral reserves for the Project.

16. MINING METHODS

The issuer has not evaluated mining methods for the Project at this current stage.

17. **RECOVERY METHODS**

Not applicable at this current stage.

18. **PROJECT INFRASTRUCTURE**

Not applicable at this current stage.

19. MARKET STUDIES AND CONTRACTS

Not applicable at this current stage.

20. ENVIRONMENTAL STUDIES, PERMITTING, AND SOCIAL OR COMMUNITY IMPACT

Not applicable at this current stage.

21. CAPITAL AND OPERATING COSTS

Not applicable at this current stage.

22. ECONOMIC ANALYSIS

Not applicable at this current stage.

23. ADJACENT PROPERTIES

Exploration in the Urban-Barry greenstone belt has led to the discovery of numerous gold prospects, all within a 20 km radius surrounding the Windfall Lake deposit. Three properties holding promising gold deposits in adjacent properties are presented below and on Figure 23-1. The remainder of the tenements in the region principally consist of small land packages owned by junior exploration companies or prospectors. Recent exploration on adjacent properties by competitor companies and independent prospectors has focused on gold and base metals.

The authors did not verify the information from the adjacent properties, and the information is not necessarily indicative of the mineralization on the Windfall Lake and Urban-Barry properties.

23.1 Gladiator Gold Deposit – Bonterra Resources

Located approximately 10 km southeast of the Windfall Lake deposit, the Gladiator deposit contains Inferred mineral resources of 905,000 tonnes, grading 9.37 g/t Au (4 g/t cut-off grade) for 273,000 ounces of gold. The Mineral Resource Estimate ("MRE") and technical report were completed by Snowden Mining Consultants (2012). The Gladiator deposit is described as highly altered mafic volcanics cross-cut by syenite and quartz porphyry intrusions. Mineralization is mainly hosted at the contact between wall rocks intrusions with the and smoky quartz veins (www.bonterraresources.com). At least five distinct mineral zones have been identified.

23.2 Barry Gold Deposit – Métanor Resources Inc.

The Barry Gold deposit is located approximately 10 km southwest of the Windfall Lake deposit. A NI 43-101 updated MRE carried out by GoldMinds Geoservices (2016) reported 8.4 Mt @ 1.13 g/t Au (305,400 ounces of gold) of Measured and Indicated resources; and Inferred of 31.92 Mt @ 1.02 g/t Au (1,046,000 ounces of gold). The mine has produced 43,970 ounces of gold between 2008 and 2010. Métanor Resources continues to advance the exploration at Barry with ongoing drilling to increase mineral resources below the pits and proceed with an underground bulk sample program in 2018 (www.metanor.ca).

Gold mineralization at the Barry deposit is located in silicified-carbonated basalts near the contacts with quartz-feldspar porphyry dikes and in albite-carbonate-quartz veins adjacent to altered wall rocks.

23.3 Lac Rouleau – Beaufield Resources Inc.

The Lac Rouleau Claim Block is located approximately 5 km from the Windfall Lake deposit and contains three main gold mineralized zones (Zones 14, 17, and 18) and six showings (1, 2, 3, 4, Quesnel, and Cominco showings) mainly surrounding the Rouleau Lake (www.beaufield.com). Mineralization is generally hosted in altered volcanic rocks adjacent to quartz-feldspar porphyry intrusions. Geologica Group-Conseil is producing a NI 43-101 Technical Report (2018); however, no Mineral Resource Estimate was carried out in the Lac Rouleau Claim Block.

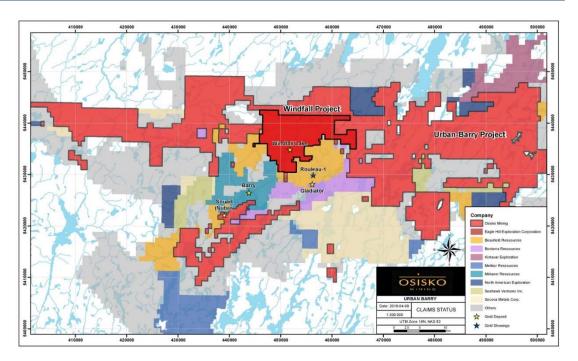


Figure 23-1: Properties and mineralization in the vicinity of the Windfall Lake and Urban-Barry properties as of May 2018

24. OTHER RELEVANT DATA AND INFORMATION

All relevant data and information regarding the Project have been disclosed under the relevant sections of this report.

25. INTERPRETATION AND CONCLUSIONS

The objective of the mandate assigned by Osisko to InnovExplo was to prepare a mineral resource estimate for the Windfall Lake Project, including the Zone 27, Caribou, Lynx, Underdog, Mallard and F Zones mineralization corridors and to prepare a supporting Technical Report in compliance with NI 43-101 and Form 43-101F1.

InnovExplo considers the report and resource estimate to be reliable and thorough, based on quality data, reasonable hypotheses and parameters compliant with NI 43 101 criteria and CIM Definition Standards.

The metallurgical test program for the Windfall Lake Project PEA started in June 2017 under the supervision of BBA in collaboration with Osisko. The test plan aimed to determine an optimal flowsheet and generate engineering data for average ore feed grades.

25.1 Data Verification

Prior to the resource estimation, Stéphane Faure, P.Geo. and Judith St-Laurent, P.Geo. from InnovExplo visited the Windfall Lake Project site where core logging and storage facilities were visited and selected core intervals were examined. InnovExplo conducted an independent resampling of selected core intervals (28 samples) to validate assay results and inspected several drill hole collars to confirm their location. Reviews of assaying procedures, QA/QC program, downhole survey methodologies, and descriptions of lithologies, alteration and structures were also performed during the site visits.

Following the acquisition of the drill hole database, InnovExplo proceeded to the verification of approximately 5% of the database including but not limited to: cross-check routines between original historical logs and drill hole database, comparison of the survey data on original certificates provided by the surveyor companies, and comparison of assay results on original certificates provided by the laboratories.

InnovExplo is of the opinion that:

- The core logging, sampling and other related protocols in place are adequate.
- The differences between the drill hole location measurements taken by InnovExplo and those recorded in the database are within the order of precision of the instrument used by InnovExplo (GPSMAP 60CSx).
- The results of the resampling program conducted by InnovExplo indicate reasonable grade reproducibility of the original samples.
- The final database is adequate and reliable for the purpose of this Technical Report.

25.2 2018 Windfall Mineral Resource Estimate

The 2018 Windfall Mineral Resource Estimate (the "2018 MRE") was prepared by Judith St-Laurent, P.Geo., using all available information. It is different in many respects to the previous estimate released on June 10, 2015 (see "Preliminary Economic Assessment of the Windfall Lake Gold Property, Québec, Canada", effective date April 28, 2015).

The 2018 MRE reflects grade model changes from a broad mineralized domain approach to better defined, higher grade, vertical sub-domains to capture the nature of the gold bearing zones which follow the intrusive porphyry contacts. Newly defined mineralization corridors are also reported in the 2018 MRE, namely Lynx and Underdog areas. Changes were made to the approaches and assumptions published by the previous owners in 2015, most notably to the mineralized domain interpretation, the capping assumptions, the grade interpolation strategy, and the inclusion of post-mineralization barren dike units. In addition, the gold price, project costs and exchange rate assumptions were revised to reflect 2018 market conditions.

The 2018 resource area measures 3.0 km on strike and 1.5 km wide, and is 1.4 km deep. The estimate was based on a compilation of historical and recent diamond drill holes. Wireframed mineralized zones were built by InnovExplo together with Osisko. The mineral resource estimation parameters and geological interpretation for the Windfall Lake Project were established by InnovExplo.

The mineral resources in the 2018 MRE are not mineral reserves as they do not have demonstrated economic viability. The estimate is categorized into Indicated and Inferred Resources based on data density, search ellipse criteria, drill hole density and specific interpolation parameters. The effective date of the estimate is May 14, 2018 based on the compilation status and cut-off grade parameters.

InnovExplo considers the report and resource estimate to be reliable and thorough, based on quality data, reasonable hypotheses and parameters compliant with NI 43-101 criteria and CIM Definition Standards.

After conducting a detailed review of all pertinent information for the Windfall Lake Project and completing the 2018 MRE, InnovExplo concludes the following:

- Geological and grade continuity have been demonstrated for 124 gold-bearing zones in the Windfall Project;
- For an underground mining scenario, using a lower cut-off grade of 3.00 g/t Au, it is estimated that the Project contains 601,000 ounces of gold at an average of 7.85 g/t Au in the Indicated category and 2,284,000 ounces of gold at an average of 6.70 g/t Au in the Inferred category.
- It is likely that additional diamond drilling would upgrade some of the Inferred resources to Indicated resources.
- The potential is good for adding new resources to the Project along the lateral and at depth extensions of the zones in the Lynx and Underdog areas by following a plunge of approximately 30° to the North-East, through additional drilling.

25.3 Metallurgical Testwork

Metallurgical testwork was conducted using material from various zones within the Windfall ore body including: Zone 27, Caribou and Lynx. Representative samples were selected considering different rock types, precious metal grades and special location (depth) within the orebody. The projected metallurgical recovery was established using the results of gravity recovery testwork followed by leaching testwork (CIL) testwork on a composite from the Caribou, Zone 27 and Lynx ore bodies. Limited testwork was performed on Lynx ore due to sample availability. No testwork was performed on the Underdog, Mallard and F zones; however, based on

mineralization similarities between the Caribou and Underdog zones, the average Au and Ag recovery for Caribou and Zone 27 was assigned to Underdog. No recovery values were assigned to zones Mallard or F due to the small proportion of those ores in the deposit. (see Table 13-17). Additional metallurgical recovery testwork will be conducted on Lynx and Underdog material. Additional grindability indices will be measured for Underdog.

25.4 Process Flowsheet

Based on the testwork conducted, the process flowsheet consists of primary crushing, followed by a grinding circuit consisting of a SAG mill (in open circuit) and ball mill (in close circuit with cyclones). A gravity circuit followed by intensive leaching recovers coarse gold from the cyclone underflow, while the cyclone overflow is treated in a carbon-in-leach circuit. Gold is recovered in an ADR circuit followed by EW cells.

25.5 Risk and Opportunities

Table 25-1 identifies the significant internal risks, potential impacts and possible risk mitigation measures that could affect the future economic outcome of the project. The list does not include the external risks that apply to all mining projects (e.g., changes in metal prices, exchange rates, availability of investment capital, change in government regulations, etc.). Significant opportunities that could improve the economics, timing and permitting are identified in Table 25-2. Further information and studies are required before these opportunities can be included in the project economics.

Risk	Explanation	Possible Risk Mitigation
	Minor modification of resource estimation due to the exclusion of 5,000 failed QA/QC failed assays, representing 1% of the assays used in the resource estimate.	Samples sent for re-analysis.
Complex geometry of the dykes and mineralization zones.	The mineralization zones might be of slightly variable shapes.	Underground mapping and definition drilling will help define with more precision the shapes of the zones and confirm the geological and grade continuities of the zones.
Presence of a nugget effect in the gold distribution of the deposit.	The gold grades estimated inside the mineralization panels could vary.	Surface and underground definition drilling will increase the confidence in the gold grade distribution. The beneficiation plant includes a gravity recovery circuit for coarse gold.
Litho-structural model not entirely integrated and still ongoing.	The mineralization zones might be of slightly variable shapes and geometry.	Complete the litho-structural study and update the litho- structural and mineralization models based on the conclusions of the study.
Underdog Au/Ag recovery lower than assigned	No recovery testwork was done on Underdog material, the recovery was assigned based on mineralogical	Perform metallurgical recovery testwork on Underdog material.

Table 25-1: Risks for the Windfall Lake Project

Risk	Explanation	Possible Risk Mitigation
	similarities.	
Lynx recovery lower than	Limited testwork was performed on Lynx material according to whole ore leach-CIL flowsheet	Perform additional metallurgical testwork on Lynx suiting the selected flowsheet.

Table 25-2: Opportunities for the Windfall Lake Project

Opportunities	Explanation	Possible Benefit
Exploration drilling potential	Additional exploration drilling as the deposit remains open at depth and in the vicinity of the Windfall Lake Project.	Potential to increase resources.
Conversion drilling potential		Potential to convert Inferred resources to the Indicated category.
Underground mapping in the exploration ramp.	organisation of the dykes and	Better understanding and definition of the litho-structural and mineralization models.
Underground definition drilling		Potential to upgrade some Inferred resources to the Indicated category.
Integrated the litho- structural model	slightly variable shapes and	Potential to capture gold that was not included in the mineralization zones and increase resources
Processing	Optimizing CIL testwork 1. Target optimum P ₈₀ 2. Target optimum leach time 3. Optimize pre-treatment • Reduce reagent consumption (CN)	 Optimizing grind size may reduce size of grinding mills and reduce CAPEX Reducing CIL retention time will lower capital investment and may reduce the operating cost by reducing reagent consumption Oxidize sulphides and reduce cyanide consumption Use of leach nitrate may reduce CN consumption and leach time. Potential for reduction of CAPEX/OPEX. Lower CN addition could reduce reagents used in Cyanide destruction

26. **RECOMMENDATIONS**

Based on the results of the 2018 MRE, InnovExplo recommends that the Windfall Lake project be advanced to the next phase, which would be a Preliminary Economic Assessment ("PEA"). In parallel with the PEA, more work is warranted. Additional exploration/delineation drilling and further geological and structural interpretation are recommended to gain a better understanding of the deposit. Following a positive phase 1 and 2, and in the light of a positive PEA, a pre-feasability would then be recommended.

Phase 1

In Phase 1, InnovExplo recommends addressing the following technical aspects of the Project:

Refinement of the litho-structural interpretation

In this kind of deposit, structural features have a significant impact on the mineralization. Therefore, it is important to improve the understanding of all their impact. In the Windfall Lake project, the timing between the mineralization, the schistosity and their relationship with the different phase of deformation should be evaluated. That could also support the identification of additional targets on the property.

The Red Dog (I2F) and the I13 post-mineralization dikes are units cross-cutting the mineralization zones present in many areas of the deposit. Detailed logging descriptions of the post-mineralization units and further refinement of the geology model will continue to increase the confidence in the Resource estimate.

Conversion drilling on the Windfall Project

Conversion drilling is recommended in the Project in order to upgrade Inferred resources to the Indicated category. A drill spacing of 25 m is recommended. Additional drilling to evaluate the extension of the zones along the trend and at depth is also recommended. Approximately 150,000 m should be dedicated to this purpose.

Exploration drilling

The objective of the exploration drilling would be to continue investigating untested gold targets along the entire Windfall Project and any potential lateral and depth extensions. Positive results would potentially add Inferred resources. Approximately 20,000 m should be dedicated to this purpose.

Metallurgical testing

Additional metallurgical testwork is recommended on mineralized ore from the Windfall Lake gold deposit. The testwork program should include a gold mineralization study and characterization tests including: head analysis, comminution and metallurgical tests (gravity separation followed by cyanidation of mineralized ore). Additionally, rheological tests should be performed based on the selected flowsheet and target particle size. It is recommended that the testwork is conducted on representative composite samples from Zone 27, Caribou, Lynx and Underdog.

Phase 2

In Phase 2, InnovExplo recommends addressing the following technical aspects of the Project (contingent upon the success of Phase 1).

Bulk sampling

Completion of underground bulk sampling in Zone 27 and Caribou is already underway with additional underground bulk sampling recommended in Lynx and Underdog mineralized corridors. Bulk sampling will test and validate the geological and resource models, and reconcile the latter with grades. It will also validate different mining and metallurgical assumptions as well as improving the litho-structural model using underground mapping.

Update of the litho-structural and mineralization models on the Windfall Project

Based on the conclusions structural study proposed in Phase 1 and on additional information gathered on the unmineralized dikes, InnovExplo recommends updating the litho-structural and mineralization models at the scale of the Windfall Project.

NI 43-101 MRE update on the Windfall Project and Pre-Feasability study

InnovExplo recommends updating the MRE after completing the drilling program, the update to the litho-structural and mineralization models. This update should be used in the preparation of a Pre-Feasibility Study.

Cost estimate for recommended programs

InnovExplo and BBA have prepared a cost estimate for the recommended two-phase work program. Expenditures for Phase 1 are estimated at C\$40,200,000 (incl. 15% for contingencies). The estimated cost for Phase 2 is approximately C\$31,000,000 (including 15% for contingencies). The grand total is C\$71,200,000 (including 15% for contingencies). Phase 2 is contingent upon the success of Phase 1.

InnovExplo and BBA are of the opinion that the recommended work program and proposed expenditures are appropriate and well thought out. InnovExplo and BBA believe that the proposed budget reasonably reflects the type and scope of the contemplated activities. Table 26-1 presents the estimated costs for the various phases of the recommended exploration program.

	Buc	lget
Phase 1 - Work Program	Description	Cost (CAD)
1a Litho-Structural study and geology model refinement	-	\$1,000,000
1b Conversion drilling on Windfall Project	150,000 m	\$30,000,000
1c Exploration drilling	20,000 m	\$4,000,000
1d Metallurgical testing		\$200,000
Contingencies (~ 15%)	-	\$5,000,000
Phase 1 subtotal	-	\$40,200,000

Table 26-1: Estimated costs for the recommended work program

	Dhase 2 Work Drogrom		Budget		
	Phase 2 - Work Program	Description	Cost (CAD)		
2a	Bulk sampling for Lynx and Underdog	-	\$25,000,000		
2b	Update of litho-structural/mineralization models	-	\$1,000,000		
2c	NI 43-101 MRE update on the Windfall Project	-	\$1,000,000		
Conti	ngencies (~ 15%)		\$4,000,000		
Phas	e 2 subtotal		\$31,000,000		
Total	– Phase 1 and Phase 2		\$71,200,000		

27. **REFERENCES**

- Abitibi Géophysique Inc. (2017a). Levé IPower 3D Projet Black Dog, Canton de Barry, Québec, Canada, 29 p.
- Abitibi Géophysique Inc. (2017b). Levé OreVision® Projet Urban-Barry, Canton de Buteaux, Québec, Canada, Rapport d'interprétation, 22p.
- Abitibi Géophysique Inc. (2017c). Levé OreVision® Projet Windfall, Canton d'Urban, Québec, Canada, Rapport d'interprétation, 24p.
- Armstrong, T.J. (2006). Geological report on the Windfall Lake property, Chibougamau mining district, Québec, Canada; for Noront Resources Inc.; P & E Mining Consultants Inc., Report 125; August 28, 2006.
- Armstrong, T.J. (2007). Updated geological report on the Windfall Lake property, Chibougamau mining district, Québec, Canada; for Noront Resources Inc.; P & E Mining Consultants Inc., Report 138; June 20, 2007.
- Armstrong, T.J. (2011). Technical Report on the Windfall Lake Property, Chibougamau Mining Disctrict, Québec, Canada; for Eagle Hill Exploration Corporation; P & E Mining Consultants Inc., Report No. 222.
- Baker, T. (2002). Emplacement depth and CO2–rich fluid inclusions in intrusion-related gold deposits. Economic Geology 97: 1109–1115.
- Bandyayera, D., Rhéaume, P., Doyon, J., and Sharma, K.N.M. (2004). Géologie de la région du lac Hébert (32G/03). Ministère des Ressources Naturelles et de la Faune, RG2003-07.
- Bandyayera, D., Théberge, L., and Fallara, F. (2002). Géologie de la région des lacs Piquet et Mesplet (32G/04 et 32B/13), Ministère des Richesses naturelles du Québec; Report RG 2001-14.
- Bandyayera, D., Theberge, L., Fallara, F. (2002). Compilation géoscientifique Géologie 1/20 000, 32G04-200-0102 – Lac Windfall. Ministère des Richesses naturelles du Québec, Série Sigeom SI-32G04B-C4G-02C.
- Barrett, T.J., and MacLean, W.H. (1994). Mass changes in hydrothermal alteration zones associated with VMS deposits of the Noranda area. Exploration and Mining Geology, 3: 131-160.
- Bernard, D. (1999a). Drill logs for diamond drill holes ATO-97-17 to ATO-99-23 Alto/Noront Project, Urban Township, Québec; for Inmet Mining Corporation, 208 p. GM 57443.
- Bernard, D. (1999b). Drill logs for diamond drill holes ATO-97-3a, ATO-99-24 to ATO-99-33, Alto/Noront Project, Urban Township, Québec; for Inmet Mining Corporation, 186 p. GM 57413.
- Brown, C. and Cheman, M. (2014). Hole-to-Hole 3D IP survey, Windfall Project; for Eagle Hill Exploration. Report 13N057. 22 p.

- Card, K.D. (1990). A review of the Superior Province of the Canadian Shield, a product of Archean accretion. Precambrian Research, 48: 99-156.
- Chainey, D. (1997). Résultats des forages, Propriété Urban-Barry; For Ressources Orient Inc. Octopus, 60 p.
- Chance, P.N. (2009a). Summary Report of the 2007-2008 Underground Sampling Programme, Windfall Property, Canton Urban, Abitibi Region, Québec; an internal report prepared for Noront Resources Ltd.
- Chance, P.N. (2009b). NI 43-101 Compliant Technical Report of the Windfall Property, Canton Urban, Abitibi Region, Québec. Prepared for Eagle Hill Exploration Corporation. Filed on SEDAR.
- Chang, Z., and Meinert, L.D. (2004). The magmatic–hydrothermal transition—evidence from quartz phenocryst textures and endoskarn abundance in Cu–Zn skarns at the Empire Mine, Idaho, USA. Chemical Geology, 210: 149-171.
- Cheman, M. (2013). OreVision Induced Polarization Survey, Windfall Lake Project. Report 13N067. 35 pages and pseudosections.
- Chown, E.H., Daigneault, R., Mueller, W., and Mortensen, J.K. (1992). Tectonic evolution of the northern volcanic zone, Abitibi belt, Quebec. Canadian Journal of Earth Sciences, 29: 2211-2225.
- Clearview Geophysics Inc. (2017). Report on regional compilation and interpretation of IP/Resistivity surveys at the Windfall Project, NE Québec, 33 p.
- ClearView Geophysics Inc. (2017). Report on the regional compilation and interpretation of IP/resistivity surveys at the Windfall Project, NE Québec, 33 p.
- Cloutier, J.P. (1999). Campagne de sondage 1999, Propriété Urban-Barry. For Provonor Inc. Geologica Inc, 161 p.
- Côté, R. (1977). Summary Report, Barry Lake Project, Barry Lake Area, Québec; for Shell Canada Resources Limited, Volume I, 41 p. GM 38828.
- Coyle, T. (1996) Report of diamond drilling, Urban Project, Freewest Block and Inmet Option, Urban Township, Chibougamau Mining Division; for Freewest Resources,105 p. GM 54546.
- Coyle, T. (2004). Drill logs diamond drill holes NOT-04-27 to NOT-04-38, Windfall Lake Property, Urban Township; for Noront Resources Inc.
- Coyle, T. (2005). Drill logs diamond drill holes NOT-05-39 to NOT-05-82, Windfall Lake Property, Urban Township; for Noront Resources Inc.
- Daigneault, R., and Allard, G.O. (1994). Transformation of Archean structural inheritance at the Grenvillian Foreland Parautochthon Transition Zone, Chibougamau, Quebec. Canadian Journal of Earth Sciences, 31: 470-488.

- Daigneault, R., Mueller, W.U., and Chown, E.H. (2004). Abitibi greenstone belt plate tectonics: the diachronous history of arc development, accretion and collision. Developments in Precambrian Geology, 12: 88-103.
- Davis, D.W. (2016). U-Pb Geochronology of pre- and post-mineralization plutons from the Windfall project, Urban-Barry greenstone belt. Internal University of Toronto Report: unpublished.
- Davis, D.W. (2016). U-Pb Geochronology of pre- and post-mineralization plutons from the Windfall project, Urban-Barry greenstone belt. Internal University of Toronto Report: unpublished.
- Desrochers, J.P. (2013). Assessment Report for the 2011-2012 Drilling Program Windfall Lake Project Urban Township Abitibi Region, Quebec; for Eagle Hill Exploration, 84 p. GM 68042.
- Desrochers, J.P., and Blouin, S. (2015). Assessment Report for the 2013 and 2014 Drilling Programs, Windfall Lake Project Urban Township Abitibi Region, Quebec; for Eagle Hill Exploration, 10757 p. GM 69122.
- Dubé, B., and Gosselin, P. (2007). Greenstone-hosted quartz-carbonate vein deposits. Mineral Deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication, 5: 49-73.
- Fairbairn, H.W. (1946). Wetenagami river aera, Ralleau, Effiat and Carpiquet Townships. Ministere de l'Energie et des Ressources, Québec; RG-028(A).
- Farrel, K. (1998). Drill hole records ATO-98-04 to ATO-98-16, Windfall Lake property, Urban Township, Québec; for Alto Minerals Inc., preliminary copy, 28 p.
- Frazer, R.J. (1986). Report on diamond drilling performed on the Urban-Barry claims, Urban-Barry Project; for Exploration Kerr Addison Inc., 80 p. GM 45089.
- G&T Metallurgical Services Ltd. (2011). Preliminary Assessment of the Eagle Hill Desposit. Internal Report prepared for Eagle Hill Exploration Corporation, August12, 2011.
- Gagné and Masson (2013). Un pas en avant! Loi modifiant la Loi sur les mines/(2013 L.Q., c. 32). Retrieved from <u>https://www.fasken.com/fr/knowledgehub/2013/12/miningbulletin-</u> 20131219
- Gagnon, R. (2005). Drill logs diamond drill holes WG-05-01 à WG-05-03, Windfall Lake property, Urban township; for Murgor Resources Inc.
- Gagnon, R. (2006). Drill logs diamond drill holes WIN-06-86 to WIN-06-111, Windfall Lake property, Urban Towship; for Murgor Resources Inc.
- Gaudreault, D. (1987). Rapport de travaux sur la propriété Urban 32G/4; for Ressources Minérales De Montigny Inc., Géologica Groupe conseil, 121 p. GM 46103.

- Gaudreault, D. (1988). Rapport de travaux de sondage, Propriété Urban 32G/4; for Ressources Minérales De Montigny Inc., Géologica Groupe conseil, 112 p. GM 47861.
- Gaudreault, D. (1995). Evaluation report, Barry IV SDBJ option, Duval option and Boudreault option properties. Géologica Groupe conseil, 106 p. GM 54363.
- Gaumond, C. and Trépanier, S. (2016). Report on the 2015 Till Sampling Program; Oban Mining Corporation, 413 p.
- Gaumond, C., and Trépanier, S. (2015). Report on the 2015 till sampling program. Osisko Exploration James Bay, 413 p.
- Gaumond, C., Roussel-L'Allier, R., Bouchard, R., and Simard, P. (2016). Report and Recommendations, 2016 Sampling Till Program, Osisko Mining, 16p.
- Gaumond, C., Roussel-L'Allier, R., Bouchard, R., and Simard, P. (2016). Report and Recommendations, 2016 Sampling Till Program, Osisko Mining, 16p.
- Geo Data Solutions GDS. Inc. (2017). Final technical report high resolution helicopter-borne magnetic survey, for Osisko mining Inc., 26 p.
- Geotech Ltd. (2016). Report on a helicopter-borne aeromagnetic geophysical survey, Main A Block, Lebel-sur-Quévillon, 25 p.
- Geotech Ltd. (2017). Report on a helicopter-borne versatile time domain electromagnetic (VTEMTM plus) and horizontal magnetic gradiometer geophysical survey, Urban-Barry Project, 90 p.
- Geotech Ltd. (2017). Report on a helicopter-borne versatile time domain electromagnetic (VTEMTM plus) and horizontal magnetic gradiometer geophysical survey, Urban-Barry Project, 90 p.
- Girard, T., and Roussel-L'Allier, A. (2018). Technical Report and Recommendations 2016-2017 Exploration Program, Urban-Barry Project, James Bay, Québec, 142 p.
- GoldMinds Geoservices, 2016. NI 43-101 Technical Report, Preliminary Economic Assessment (PEA), Barry Gold Projetc, Quebec Canada. Prepared for Metanor Resources Inc., 188 p.
- Graham, R.B. (1947). Wetenagami lake aera, Souart, Moquin and Labrie Townships, Abitibi-East County. Ministère de l'Énergie et des Ressources, Québec; RG-029.
- Guzun, V. (2012). Mining Rights in the Province of Quebec. Retrieved from
 http://www.blakes.com/English/Resources/Bulletins/Pages/Details.aspx?BulletinID=149
 http://www.blakes.com/English/Resources/Bulletins/Pages/Details.aspx?BulletinID=149
 http://www.blakes.com/English/Resources/Bulletins/Pages/Details.aspx?BulletinID=149

- Hart, C.J., Baker, T., and Burke, M. (2000). New exploration concepts for country-rock-hosted, intrusion-related gold systems: Tintina gold belt in Yukon. The Tintina gold belt: concepts, exploration and discoveries. British Columbia and Yukon Chamber of Mines, Special Volume, 2: 145-172.

- Hart, C.J.R., McCoy, D., Goldfarb, R.J., Smith, M., Roberts, P., Hulstein, R., Bakke, A. A. and Bundtzen, T. K. (2002). Geology, exploration and discovery in the Tintina gold province, Alaska and Yukon. Society of Economic Geology Special Publication 9: 241-274.
- Hocq, M. (1989). Carte Lithotectonique des sous-provinces de l'Abitibi et du Pontiac, 1:500,000: Ministère de l'Énergie et des Ressources (Mines), Gouvernement du Québec, DV 89-04.
- Hoffman, P.F. (1991). On accretion of granite–greenstone terranes. In: Robert, F., Sheahan, P.A., Green, S.B. Eds. NUNA Conference on Greenstone Gold and Crustal Evolution.
 Geological Association of Canada, Mineral Deposits Division, St. John's, Newfoundland, Canada, pp. 32–45.
- Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27: 293-305.
- Jackson, S.L., and Cruden, A.R. (1995). Formation of the Abitibi greenstone belt by arc trench migration. Geology, 23: 471–474
- Joly, M. (1990). Geologie de la region du Lac aux Loutres. Ministere de l'Energie et des Ressources, Québec ; MB 90-42, 55 p.
- Kitney, K.E., Olivo, G.R., Davis, D.W., Desrochers, J.P., and Tessier, A. (2011). The Barry Gold Deposit, Abitibi Subprovince, Canada: A greenstone belt-hosted gold deposit coeval with Late Archean deformation and magmatism. Economic Geology, 106: 1129-1154.
- Lambert, G. (1988). Levé géophysique, Projet Urban. For Ressources Maufort Inc and Shiva Ventures Inc; Val d'Or Géophysique Ltee.
- Lambert, G. (2012). Rapport sur des travaux géophysiques au sol: levés de polarisation provoquée; for Eagle Hill Exploration; TMC Geophysique.
- Lambert, G. (2014). Rapport sur des travaux géophysique au sol : Levés Magnétométriques champ total, projet Windfall; for Eagle Hill Exploration by Géosciences, 13 pages including maps.
- Lang, J.R., and Baker, T. (2001). Intrusion-related gold systems: the present level of understanding. Mineralium Deposita, 36: 477-489.
- Lang, J.R., Baker, T., Hart, G.J.R., and Mortensen, J.K. (2000). An exploration model for intrusion-related gold systems. Society of Economic Geology Newsletter, 40: 6-15.
- Lanthier, G. (2004 and 2005). Drill logs diamond drill holes WIN-04-01 à WIN-04-11 et WIN-05-12 à WIN-05-85, Windfall Lake propery, Urban township; for Murgor Resources Inc.
- Lapointe, M. (1999). Résultats de la campagne de forage 1998, Propriété Belmont, Cantons Belmont, Buteux and Lacroix; for Aur Resources, 260 p. GM 57568.

- Mair, J.L. (2004). Tectonic Setting, Magmatism and Magmatic-hydrothermal Systems at Scheelite Dome, Tombstone Gold Belt, Yukon: Critical Constraints on Intrusion-related Gold Systems. Unpublished PhD thesis, The University of Western Australia, Perth, 197 p. plus appendices.
- Mair, J.L., Hart, C.J.R., Goldfarb, R.J., O'Dea, M., Harris, S., Emond, D.S., and Westen, L.H.
 (2000). Geology and metallogenic signature of gold occurrences at Scheelite Dome, Tombstone gold belt, Yukon. Yukon exploration and geology 1999. Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada: 65-176.
- Marsh, E.E., Goldfarb, R J., Hart, C.J., and Johnson, C.A. (2003). Geology and geochemistry of the Clear Creek intrusion-related gold occurrences, Tintina Gold Province, Yukon, Canada. Canadian Journal of Earth Sciences, 40: 681-699.
- McCoy, D., Newberry, R.J., Layer, P., DiMarchi, J.J., Bakke, A., Masterman, J.S. and Minehane, D.L. (1997). Plutonic-related gold deposits of interior Alaska. Economic Geology Monograph 9: 191-241.
- Miller, M.L., Bradley, D.C. and Bundtzen, T.K. (2000). Late Cretaceous strike-slip faulting and its relationship to Au and Hg ore-forming events in the Kuskokwim Mineral Belt, southwestern Alaska. Geological Society of America, Abstract program 32.
- Milner. R.L. (1943). Région du lac Barry, Comté d'Abitibi et territoire d'Abitibi. Ministere de l'Energie et des Ressources, Québec; RG-104.
- National Assembly (2013). A Step Forward! An Act to Amend the Mining Act/(2013 S.Q., c.32) Retrieved from <u>https://us.fasken.com/en/home/knowledgehub/2013/12/miningbulletin-20131219</u>
- Newberry, R.J. (1995). Plutonic-hosted gold ores in Alaska: igneous vs. metamorphic origins. Resource Geology Special Issue, 18: 57-100.
- O'Dea, M., Carlson, G., Harris, S., and Fields, M. (2000). Structural and metallogenic framework for the Scheelite Dome deposit, Yukon Territory. In: Tucker T.L., Smith M.T. (eds) The Tintina gold belt: concepts, exploration and discoveries. British Columbia and Yukon Chamber of Mines Special Volume 2: 115-130.
- Relevés Géophysique Inc. (1983). Levé aérien par input MK VI Région de Marin-Barry.
- Relevés Géophysique Inc. (1983). DP-83-08.
- Rhéaume, P., and Bandyayera, D. (2006). Révision stratigraphique de la Ceinture d'Urban-Barry: Ministère des Ressources naturelles et de la Faune, Québec, RP 2006-08, 11 p.
- Robert, F. (2001). Syenite-associated disseminated gold deposits in the Abitibi greenstone belt, Canada. Mineralium Deposita, 36: 503-516.
- Sillitoe, R.H. (1991). Intrusion-related gold deposits. In: Foster RP (ed) Gold metallogeny and exploration. Blackie, Glasgow, pp 165-209.

- Sillitoe, R.H., and Thompson, J. F. (1998). Intrusion–Related Vein Gold Deposits: Types, Tectono-Magmatic Settings and Difficulties of Distinction from Orogenic Gold Deposits. Resource Geology, 48: 237-250.
- Simard, J. (2014). Rapport sur un levé de polarisation provoquée effectué sur la propriété Rousseau, canton Belmont, Baie James, Québec; for Eagle Hill Exploration by Géophysique TMC. Réf: 14C-153, 25 p.
- SkyTEM Canada Inc. (2016). Data Report for Oban Mining Corporation, 61 p.
- SkyTEM Canada Inc. (2016). Data Report for Oban Mining Corporation, 61 p.
- Snowden Mining Consultants, 2012. BonTerra Resources Inc.: Eastern Extension Property, NI 43-101 Technical Report, 133 p.
- Sproule, R., and Tuscherer, M. (2016). Report on targeting and field validation in the urban-Barry belt for Osisko Mining, 87 p.
- SRK Consulting (Canada) Inc. (2011). Mineral Resource Evaluation Technical Report, Windfall Lake Gold Project, Quebec; for Eagle Hill Exploration Corporation, By Dorota El-Rassi, Glen Cole and Dominic Chartier.
- SRK Consulting (Canada) Inc. (2012). Mineral Resource Evaluation Technical Report, Windfall Lake Gold Project, Quebec; for Eagle Hill Exploration Corporation, By Dorota El-Rassi, Glen Cole, Lars Weiershäuser, and Dominic Chartier.
- SRK Consulting (Canada) Inc. (2014). Technical Report for the Windfall Lake Gold Project, Quebec; Report prepared for Eagle Hill Exploration Corporation, By Dorota El-Rassi, Dominic Chartier, Lars Weiershauser, Jean-François Ravenelle and Lawrence Melis.
- Stephens, J.R., Oliver, N. H. S., Baker, T., and Hart, C. J. R. (2000). Structural evolution and controls on gold mineralization at Clear Creek, Yukon. Yukon exploration and geology, 1999: 151-163.
- Tetra Tech. 2015. Preliminary Economic Assessment of the Windfall Lake Gold Property, Québec, Canada; for Eagle Hill Exploration Corporation, By M. McLaughlin, D. Kesavanathan, D. Sweeney, S.A. Hafez, D. Chartier, J.F. Couture, P. Roy, N. D'Anjou, M.C. Dion St-Pierre.
- Thompson, J.F.H., and Newberry, R.J. (2000). Gold deposits related to reduced granitic intrusions. Reviews in Economic Geology, 13: 377-400.
- Thompson, J.F.H., Sillitoe, R.H., Baker, T., Lang, J.R., and Mortensen, J.K. (1999). Intrusionrelated gold deposits associated with tungsten-tin provinces. Mineralium Deposita, 34: 323-334.
- Thorsen, K. (2004). Exploration report on the 2004 diamond drill program on the Windfall Lake Property, Urban Township; for Fury Exploration Ltd, 14 p.

- Tremblay, R.J. (1999a). Summary report on the Fall 1998 diamond drilling program, DDH ATO-98-09 to ATO-98-11, Windfall property, Urban Township; for Alto Minerals Inc and Noront Resources Ltd, 122 p. GM 56449.
- Tremblay, R.J. (1999b). Summary report on the Fall 1998 diamond drilling program, DDH ATO-98-12 to ATO-98-13, Alcane property, Urban Township; for Alto Minerals Inc and Noront Resources Ltd.
- Tremblay, R.J. (1999c). Drill logs diamond drill holes, ATO-98-14 to ATO-98-16, Alto/Noront project, Urban township; for Alto Minerals Inc/Noront Resources Ltd/Inmet Mining Corporation, 62 p. GM 57412.
- Tremblay, R.J. (2003). Journaux de sondage, Propriété Windfall, FUR-03-01 à FUR-03-21; for Fury Explorations Ltd.
- Tremblay, R.J., Bottomer, L. (2002). Geological Report on the Windfall Lake and Alcane Properties, Urban Township Chibougamau Mining District, Abitibi-East Québec, NTS 32 G/4; for Fury Explorations Ltd.
- Turcotte, D. (2011). Assessment Report for Windfall Lake Project, Diamond drilling/Surface mapping report, Urban Township, Abitibi Region, Québec; for Eagle Hill Exploration.
- White, M.V. (1998). Report on phase I and II drilling carried out on Windfall/Alcane properties, Urban Township, Québec; for Alto Minerals Inc., 27 p. GM 56448.

APPENDIX I - LIST OF WINDFALL LAKE AND URBAN-BARRY PROPERTIES MINING TITLES ACCORDING TO GESTIM (APRIL 9, 2018)

Windfall Property

•••••••	горену							
Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1	2611	32G04	56.38	CDC	Active	9/25/2003	9/24/2019	Eagle Hill Exploration Corporation
2	2612	32G04	56.38	CDC	Active	9/25/2003	9/24/2019	Eagle Hill Exploration Corporation
3	2613	32G04	56.37	CDC	Active	9/25/2003	9/24/2019	Eagle Hill Exploration Corporation
4	2614	32G04	56.37	CDC	Active	9/25/2003	9/24/2019	Eagle Hill Exploration Corporation
5	2615	32G04	56.37	CDC	Active	9/25/2003	9/24/2019	Eagle Hill Exploration Corporation
6	2616	32G04	56.37	CDC	Active	9/25/2003	9/24/2019	Eagle Hill Exploration Corporation
7	2619	32G04	56.36	CDC	Active	9/25/2003	9/24/2019	Eagle Hill Exploration Corporation
8	2620	32G04	56.36	CDC	Active	9/25/2003	9/24/2019	Eagle Hill Exploration Corporation
9	2621	32G04	56.36	CDC	Active	9/25/2003	9/24/2019	Eagle Hill Exploration Corporation
10	2622	32G04	56.36	CDC	Active	9/25/2003	9/24/2019	Eagle Hill Exploration Corporation
11	2623	32G04	56.36	CDC	Active	9/25/2003	9/24/2019	Eagle Hill Exploration Corporation
12	2624	32G04	56.36	CDC	Active	9/25/2003	9/24/2019	Eagle Hill Exploration Corporation
13	2625	32G04	56.36	CDC	Active	9/25/2003	9/24/2019	Eagle Hill Exploration Corporation
14	1106259	32G04	56.37	CDC	Active	12/6/2002	12/5/2018	Eagle Hill Exploration Corporation
15	1106260	32G04	56.36	CDC	Active	12/6/2002	12/5/2018	Eagle Hill Exploration Corporation
16	1106261	32G04	56.36	CDC	Active	12/6/2002	12/5/2018	Eagle Hill Exploration Corporation
17	1106262	32G04	56.35	CDC	Active	12/6/2002	12/5/2018	Eagle Hill Exploration Corporation
18	1106263	32G04	56.35	CDC	Active	12/6/2002	12/5/2018	Eagle Hill Exploration Corporation
19	1106264	32G04	56.34	CDC	Active	12/6/2002	12/5/2018	Eagle Hill Exploration Corporation
20	1107033	32G04	56.35	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
21	1107034	32G04	56.35	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
22	1107035	32G04	56.35	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
23	1107036	32G04	56.35	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
24	1107037	32G04	56.35	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
25	1107038	32G04	56.35	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
26	1107039	32G04	56.35	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
27	1107040	32G04	56.35	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
28	1107041	32G04	56.34	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
29	1107042	32G04	56.34	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
30	1107043	32G04	56.34	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
31	1107044	32G04	56.34	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
32	1107045	32G04	56.34	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
33	1107046	32G04	56.34	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
34	1107047	32G04	56.34	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
35	1107048	32G04	56.34	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
36	1107049	32G04	56.34	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
37	1107050	32G04	56.34	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
38	1107051	32G04	56.34	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
39	1107052	32G04	56.33	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
40	1107053	32G04	56.33	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
41	1107054	32G04	56.33	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
42	1107055	32G04	56.33	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
43	1107056	32G04	56.33	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
44	1107057	32G04	56.33	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
45	1107058	32G04	56.33	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
46	1107059	32G04	56.33	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
47	1107060	32G04	56.33	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
48	1107061	32G04	56.33	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
49	1107062	32G04	56.33	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
50	1107063	32G04	56.33	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
51	1107064	32G04	56.33	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
52	1107065	32G04	56.33	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
53	1107066	32G04	56.33	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
54	1107067	32G04	56.32	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
55	1107068	32G04	56.32	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
56	1107069	32G04	56.32	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
57	1107070	32G04	56.32	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
58	1107071	32G04	56.32	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
59	1107072	32G04	56.32	CDC	Active	12/11/2002	12/10/2018	Eagle Hill Exploration Corporation
60	1119376	32G04	10.67	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
61	1119377	32G04	11.15	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
62	1119378	32G04	3.29	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
63	1119379	32G04	56.39	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
64	1119380	32G04	56.39	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
65	1119381	32G04	45.66	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
66	1119386	32G04	56.38	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
67	1119387	32G04	55.18	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
68	1119388	32G04	27.07	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
69	1119389	32G04	27.33	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
70	1119390	32G04	27.63	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
71	1119391	32G04	41.61	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
72	1119392	32G04	56.38	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
73	1119393	32G04	54.73	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
74	1119394	32G04	46.55	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
75	1119395	32G04	46.83	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
76	1119396	32G04	46.86	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
77	1119397	32G04	41.71	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
78	1119398	32G04	56.37	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
79	1119399	32G04	56.37	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
80	1119400	32G04	56.37	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
81	1119401	32G04	56.37	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
82	1119402	32G04	56.37	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
83	1119403	32G04	56.37	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
84	1119404	32G04	56.37	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
85	1119405	32G04	56.37	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
86	1119406	32G04	56.37	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
87	1119407	32G04	56.37	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
88	1119408	32G04	56.27	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
89	1119409	32G04	56.18	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
90	1119410	32G04	56.37	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
91	1119411	32G04	56.36	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
92	1119412	32G04	56.36	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
93	1119413	32G04	56.36	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
94	1119414	32G04	56.36	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
95	1119415	32G04	56.36	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
96	1119416	32G04	56.36	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
97	1119417	32G04	56.36	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
98	1119418	32G04	56.36	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
99	1119419	32G04	56.36	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
100	1119420	32G04	56.35	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
101	1119421	32G04	56.35	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
102	1119422	32G04	56.35	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
103	1119423	32G04	56.35	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
104	1119424	32G04	56.35	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
105	1119425	32G04	56.35	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
106	1119426	32G04	56.35	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
107	1119427	32G04	56.34	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
108	1119428	32G04	56.34	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
109	1119429	32G04	56.34	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
110	1119430	32G04	56.34	CDC	Active	5/23/2003	3/5/2019	Eagle Hill Exploration Corporation
111	1125116	32G04	22.76	CDC	Active	7/2/2003	12/4/2018	Eagle Hill Exploration Corporation
112	1125117	32G04	56.39	CDC	Active	7/2/2003	12/4/2018	Eagle Hill Exploration Corporation
113	1125118	32G04	56.39	CDC	Active	7/2/2003	12/4/2018	Eagle Hill Exploration Corporation
114	1125120	32G04	56.38	CDC	Active	7/2/2003	12/4/2018	Eagle Hill Exploration Corporation
115	1125121	32G04	56.38	CDC	Active	7/2/2003	12/4/2018	Eagle Hill Exploration Corporation
116	1125122	32G04	56.38	CDC	Active	7/2/2003	12/4/2018	Eagle Hill Exploration Corporation
117	1125124	32G04	56.37	CDC	Active	7/2/2003	12/4/2018	Eagle Hill Exploration Corporation
118	1126615	32G04	56.37	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
119	1126616	32G04	56.37	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
120	1126617	32G04	56.37	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
121	1126618	32G04	56.36	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
122	1126619	32G04	56.36	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
123	1126620	32G04	56.36	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
124	1126621	32G04	56.36	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
125	1126622	32G04	56.36	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
126	1126623	32G04	56.35	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
127	1126624	32G04	56.35	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
128	1126625	32G04	56.35	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
129	1126626	32G04	56.35	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
130	1126627	32G04	56.35	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
131	1126628	32G04	56.35	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
132	1126629	32G04	56.34	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
133	1126630	32G04	56.34	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
134	1126631	32G04	56.34	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
135	1126632	32G04	56.34	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
136	1126633	32G04	56.34	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
137	1126634	32G04	56.34	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
138	1126635	32G04	56.34	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
139	1126636	32G04	56.33	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
140	1126637	32G04	56.33	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
141	1126638	32G04	56.33	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
142	1126639	32G04	56.33	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
143	1126640	32G04	56.33	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
144	1126641	32G04	56.33	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
145	1126642	32G04	56.33	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
146	1126643	32G04	56.33	CDC	Active	6/11/2003	6/10/2019	Eagle Hill Exploration Corporation
147	1133001	32G04	56.38	CDC	Active	7/11/2005	3/5/2019	Eagle Hill Exploration Corporation
148	2225915	32G03	56.39	CDC	Active	5/3/2010	5/2/2020	Eagle Hill Exploration Corporation
149	2225916	32G03	56.39	CDC	Active	5/3/2010	5/2/2020	Eagle Hill Exploration Corporation
150	2225917	32G03	56.38	CDC	Active	5/3/2010	5/2/2020	Eagle Hill Exploration Corporation
151	2225918	32G03	56.38	CDC	Active	5/3/2010	5/2/2020	Eagle Hill Exploration Corporation
152	2225919	32G03	56.37	CDC	Active	5/3/2010	5/2/2020	Eagle Hill Exploration Corporation
153	2225920	32G03	56.37	CDC	Active	5/3/2010	5/2/2020	Eagle Hill Exploration Corporation
154	2225921	32G03	56.36	CDC	Active	5/3/2010	5/2/2020	Eagle Hill Exploration Corporation
155	2225922	32G03	56.36	CDC	Active	5/3/2010	5/2/2020	Eagle Hill Exploration Corporation
156	2225923	32G04	56.38	CDC	Active	5/3/2010	5/2/2020	Eagle Hill Exploration Corporation
157	2225924	32G04	56.37	CDC	Active	5/3/2010	5/2/2020	Eagle Hill Exploration Corporation
158	2225925	32G04	56.36	CDC	Active	5/3/2010	5/2/2020	Eagle Hill Exploration Corporation
159	2226346	32G04	56.38	CDC	Active	5/4/2010	5/3/2020	Eagle Hill Exploration Corporation
160	2226347	32G04	56.38	CDC	Active	5/4/2010	5/3/2020	Eagle Hill Exploration Corporation
161	2226348	32G04	56.37	CDC	Active	5/4/2010	5/3/2020	Eagle Hill Exploration Corporation
162	2226349	32G04	56.37	CDC	Active	5/4/2010	5/3/2020	Eagle Hill Exploration Corporation
163	2226350	32G04	56.37	CDC	Active	5/4/2010	5/3/2020	Eagle Hill Exploration Corporation

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
164	2226351	32G04	56.37	CDC	Active	5/4/2010	5/3/2020	Eagle Hill Exploration Corporation
165	2226352	32G04	56.37	CDC	Active	5/4/2010	5/3/2020	Eagle Hill Exploration Corporation
166	2360634	32G04	56.33	CDC	Active	8/15/2012	8/14/2018	Eagle Hill Exploration Corporation
167	2360635	32G04	56.33	CDC	Active	8/15/2012	8/14/2018	Eagle Hill Exploration Corporation
168	2360636	32G04	56.33	CDC	Active	8/15/2012	8/14/2018	Eagle Hill Exploration Corporation
169	2360637	32G04	56.33	CDC	Active	8/15/2012	8/14/2018	Eagle Hill Exploration Corporation
170	2360638	32G04	56.33	CDC	Active	8/15/2012	8/14/2018	Eagle Hill Exploration Corporation
171	2371957	32G04	6.05	CDC	Active	1/21/2013	8/2/2018	Eagle Hill Exploration Corporation
172	2371958	32G04	11.17	CDC	Active	1/21/2013	8/2/2018	Eagle Hill Exploration Corporation
173	2371959	32G04	3.75	CDC	Active	1/21/2013	8/2/2018	Eagle Hill Exploration Corporation
174	2371960	32G04	5.22	CDC	Active	1/21/2013	8/2/2018	Eagle Hill Exploration Corporation
175	2372910	32G04	28.34	CDC	Active	1/21/2013	8/2/2018	Eagle Hill Exploration Corporation
176	2372911	32G04	3.72	CDC	Active	1/21/2013	8/2/2018	Eagle Hill Exploration Corporation
177	2372912	32G04	3.36	CDC	Active	1/21/2013	8/2/2018	Eagle Hill Exploration Corporation
178	2372913	32G04	3.00	CDC	Active	1/21/2013	8/2/2018	Eagle Hill Exploration Corporation
179	2372914	32G04	1.60	CDC	Active	1/21/2013	8/2/2018	Eagle Hill Exploration Corporation
180	2376794	32G04	12.38	CDC	Active	3/4/2013	8/2/2018	Eagle Hill Exploration Corporation
181	2376795	32G04	47.15	CDC	Active	3/4/2013	8/2/2018	Eagle Hill Exploration Corporation
182	2376796	32G04	6.88	CDC	Active	3/4/2013	8/2/2018	Eagle Hill Exploration Corporation
183	2376797	32G04	15.53	CDC	Active	3/4/2013	8/2/2018	Eagle Hill Exploration Corporation
184	2376841	32G04	9.08	CDC	Active	3/11/2013	1/22/2020	Eagle Hill Exploration Corporation
185	2376842	32G04	15.06	CDC	Active	3/11/2013	1/22/2020	Eagle Hill Exploration Corporation
186	2376843	32G04	21.71	CDC	Active	3/11/2013	1/22/2020	Eagle Hill Exploration Corporation
187	2376844	32G04	27.22	CDC	Active	3/11/2013	1/22/2020	Eagle Hill Exploration Corporation
188	2376845	32G04	1.51	CDC	Active	3/11/2013	1/22/2020	Eagle Hill Exploration Corporation
189	2376846	32G04	1.90	CDC	Active	3/11/2013	1/22/2020	Eagle Hill Exploration Corporation
190	2376847	32G04	56.44	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
191	2376848	32G04	56.44	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
192	2376849	32G04	56.43	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
193	2376850	32G04	56.43	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
194	2376851	32G04	56.43	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
195	2376852	32G04	56.43	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
196	2376853	32G04	56.42	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
197	2376854	32G04	56.42	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
198	2376855	32G04	56.42	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
199	2376856	32G04	56.42	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
200	2376857	32G04	56.41	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
201	2376858	32G04	56.41	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
202	2376859	32G04	56.41	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
203	2376860	32G04	56.41	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
204	2376861	32G04	56.40	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
205	2376862	32G04	56.40	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
206	2376863	32G04	56.40	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
207	2376864	32G04	56.40	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
208	2376865	32G04	56.44	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
209	2376866	32G04	56.40	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
210	2376867	32G04	0.01	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
211	2376868	32G04	9.56	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
212	2376869	32G04	34.34	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
213	2376870	32G04	44.73	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
214	2376871	32G04	5.93	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
215	2376872	32G04	30.09	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
216	2376873	32G04	51.10	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
217	2376874	32G04	24.57	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
218	2376875	32G04	6.49	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
219	2376876	32G04	51.45	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
220	2376877	32G04	6.15	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
221	2376878	32G04	23.36	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
222	2376879	32G04	4.55	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
223	2376880	32G04	22.22	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
224	2376881	32G04	43.10	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
225	2376882	32G04	55.34	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
226	2376883	32G04	13.53	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
227	2376884	32G04	51.13	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
228	2376885	32G04	51.60	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
229	2376886	32G04	1.57	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
230	2376887	32G04	47.91	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
231	2376888	32G04	9.53	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
232	2376889	32G04	1.60	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
233	2376890	32G04	31.91	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
234	2376891	32G04	4.21	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
235	2376892	32G04	8.15	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
236	2376893	32G04	5.86	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
237	2376894	32G04	3.56	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
238	2376895	32G04	20.80	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
239	2376896	32G04	1.83	CDC	Active	3/11/2013	9/25/2018	Eagle Hill Exploration Corporation
240	2379285	32G04	56.40	CDC	Active	3/25/2013	12/4/2018	Eagle Hill Exploration Corporation
241	2379286	32G04	56.40	CDC	Active	3/25/2013	12/4/2018	Eagle Hill Exploration Corporation
242	2379287	32G04	10.28	CDC	Active	3/25/2013	12/4/2018	Eagle Hill Exploration Corporation
243	2379288	32G04	21.50	CDC	Active	3/25/2013	12/4/2018	Eagle Hill Exploration Corporation
244	2379289	32G04	28.59	CDC	Active	3/25/2013	12/4/2018	Eagle Hill Exploration Corporation
245	2379290	32G04	29.19	CDC	Active	3/25/2013	12/4/2018	Eagle Hill Exploration Corporation

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
246	2379291	32G04	6.03	CDC	Active	3/25/2013	12/4/2018	Eagle Hill Exploration Corporation
247	2379292	32G04	9.41	CDC	Active	3/25/2013	12/4/2018	Eagle Hill Exploration Corporation
248	2379293	32G04	15.90	CDC	Active	3/25/2013	3/20/2019	Eagle Hill Exploration Corporation
249	2379294	32G04	34.77	CDC	Active	3/25/2013	3/20/2019	Eagle Hill Exploration Corporation
250	2379295	32G04	48.16	CDC	Active	3/25/2013	3/20/2019	Eagle Hill Exploration Corporation
251	2379296	32G04	35.65	CDC	Active	3/25/2013	3/20/2019	Eagle Hill Exploration Corporation
252	2379297	32G04	33.48	CDC	Active	3/25/2013	3/20/2019	Eagle Hill Exploration Corporation
253	2379298	32G04	35.68	CDC	Active	3/25/2013	3/20/2019	Eagle Hill Exploration Corporation
254	2379299	32G04	25.16	CDC	Active	3/25/2013	3/20/2019	Eagle Hill Exploration Corporation
255	2379300	32G04	19.83	CDC	Active	3/25/2013	3/20/2019	Eagle Hill Exploration Corporation
256	2379301	32G04	25.43	CDC	Active	3/25/2013	3/20/2019	Eagle Hill Exploration Corporation
257	2379355	32G04	10.73	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
258	2379356	32G04	1.20	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
259	2379357	32G04	29.31	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
260	2379358	32G04	29.05	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
261	2379359	32G04	28.75	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
262	2379360	32G04	14.77	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
263	2379361	32G04	1.65	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
264	2379362	32G04	9.83	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
265	2379363	32G04	9.55	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
266	2379364	32G04	9.52	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
267	2379365	32G04	14.67	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
268	2379366	32G04	0.10	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
269	2379367	32G04	30.39	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
270	2379368	32G04	38.76	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
271	2379369	32G04	46.96	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
272	2379370	32G04	33.04	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
273	2379371	32G04	51.84	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
274	2379372	32G04	34.17	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
275	2379373	32G04	42.85	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
276	2379374	32G04	54.79	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
277	2379375	32G04	52.18	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
278	2379376	32G04	50.53	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
279	2379377	32G04	37.09	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
280	2379378	32G04	26.00	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
281	2379379	32G04	25.99	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
282	2379380	32G04	16.99	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
283	2379381	32G04	2.33	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
284	2379382	32G04	9.23	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
285	2379383	32G04	0.19	CDC	Active	3/25/2013	3/10/2019	Eagle Hill Exploration Corporation
			Wind	fall Lake C	laim List on A	April 9, 2018; 285 (Claims for 12,467 Ha	

Urban-Barry Property

				_	.			
Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1	2364938	32B13	56.53	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
2	2364939	32B13	56.53	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
3	2364940	32B13	56.52	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
4	2364941	32B13	56.52	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
5	2364942	32B13	56.51	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
6	2364943	32B13	51.77	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
7	2364944	32B13	4.97	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
8	2364945	32B13	1.10	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
9	2364946	32B13	23.98	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
10	2364947	32B13	2.09	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
11	2364948	32B13	56.54	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
12	2364949	32B13	16.65	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
13	2364950	32B13	56.54	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
14	2364951	32B13	56.53	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
15	2364952	32B13	33.04	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
16	2364953	32B13	3.63	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
17	2364954	32B13	56.53	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
18	2364955	32B13	14.78	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
19	2364956	32B13	56.53	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
20	2364957	32B13	18.35	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
21	2364958	32B13	56.53	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
22	2364959	32B13	56.52	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
23	2364960	32B13	48.02	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
24	2364961	32B13	2.91	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
25	2364962	32B13	56.52	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
26	2364963	32B13	9.72	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
27	2364964	32B13	56.52	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
28	2364965	32B13	56.51	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
29	2364966	32B13	30.69	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
30	2364967	32B13	33.19	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
31	2364968	32B13	49.76	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
32	2364969	32B13	49.48	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
33	2364970	32B13	44.42	CDC	Active	10/23/2012	7/30/2019	Minière Osisko inc.
33	2304970	32G03	56.46	CDC	Active	11/25/2012	11/24/2018	Minière Osisko inc.
35	2417070	32G03	56.46	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
36	2417077	32G03	56.46	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
30	2417078	32G03 32G03	56.45	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
38	2417079	32G03 32G03		CDC		11/25/2014	11/24/2018	
38	2417080	32G03 32G03	56.45	CDC	Active			Minière Osisko inc.
39 40			56.45	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
40	2417082	32G03	56.45		Active	11/25/2014	11/24/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
41	2417083	32G03	56.44	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
42	2417084	32G03	56.44	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
43	2417085	32G03	56.44	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
44	2417086	32G03	56.44	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
45	2417087	32G03	56.44	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
46	2417088	32G03	56.43	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
47	2417089	32G03	56.43	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
48	2417090	32G03	56.43	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
49	2417091	32G03	56.43	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
50	2417092	32G03	56.43	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
51	2417093	32G03	56.43	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
52	2417094	32G03	56.42	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
53	2417095	32G03	56.42	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
54	2417096	32G03	56.42	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
55	2417097	32G03	56.42	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
56	2417098	32G03	56.42	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
57	2417099	32G03	56.42	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
58	2417100	32G03	56.42	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
59	2417101	32G03	56.42	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
60	2417102	32G03	56.41	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
61	2417103	32G03	56.41	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
62	2417104	32G03	56.41	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
63	2417105	32G03	56.41	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
64	2417106	32G03	56.41	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
65	2417107	32G03	56.41	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
66	2417108	32G03	56.41	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
67	2417109	32G03	56.41	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
68	2417110	32G03	56.41	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
69	2417111	32G03	56.41	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
70	2417112	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
71	2417113	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
72	2417114	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
73	2417115	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
74	2417116	32G03	56.43	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
75	2417117	32G03	56.43	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
76	2417118	32G03	56.42	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
77	2417119	32G03	56.41	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
78	2417120	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
79	2417121	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
80	2417122	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
81	2417123	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
82	2417124	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
83	2417125	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
84	2417126	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
85	2417127	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
86	2417128	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
87	2417129	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
88	2417130	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
89	2417131	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
90	2417132	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
91	2417133	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
92	2417134	32G03	56.40	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
93	2417135	32G03	56.39	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
94	2417136	32G03	56.39	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
95	2417137	32G03	56.39	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
96	2417138	32G03	56.39	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
97	2417139	32G03	56.39	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
98	2417140	32G03	56.39	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
99	2417141	32G03	56.39	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
100	2417142	32G03	56.39	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
101	2417143	32G03	56.39	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
102	2417144	32G03	56.39	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
103	2417145	32G03	56.39	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
104	2417146	32G03	56.39	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
105	2417147	32G03	56.39	CDC	Active	11/25/2014	11/24/2018	Minière Osisko inc.
106	2417220	32G03	56.38	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
107	2417221	32G03	56.37	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
108	2417222	32G03	56.36	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
109	2417223	32G03	56.35	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
110	2417224	32G03	56.35	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
111	2417225	32G03	56.35	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
112	2417226	32G03	56.35	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
113	2417227	32G03	56.35	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
114	2417228	32G03	56.35	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
115	2417229	32G03	56.35	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
116	2417230	32G03	56.35	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
117	2417231	32G03	56.35	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
118	2417232	32G03	56.35	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
119	2417233	32G03	56.35	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
120	2417234	32G03	56.35	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
121	2417235	32G03	56.35	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
122	2417236	32G03	56.35	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
123	2417237	32G03	56.35	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
124	2417238	32G03	56.34	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
125	2417239	32G03	56.34	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
126	2417240	32G03	56.34	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
127	2417241	32G03	56.34	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
128	2417242	32G03	56.34	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
129	2417243	32G03	56.34	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
130	2417244	32G03	56.34	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
131	2417245	32G03	56.34	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
132	2417246	32G03	56.34	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
133	2417247	32G03	56.34	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
134	2417248	32G03	56.34	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
135	2417249	32G03	56.34	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
136	2417250	32G03	56.34	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
137	2417251	32G03	56.33	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
138	2417252	32G03	56.33	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
139	2417253	32G03	56.33	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
140	2417254	32G03	56.33	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
141	2417255	32G03	56.33	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
142	2417256	32G03	56.33	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
143	2417257	32G03	56.33	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
144	2417258	32G03	56.33	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
145	2417259	32G03	56.33	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
146	2417260	32G03	56.33	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
147	2417261	32G03	56.33	CDC	Active	11/26/2014	11/25/2018	Minière Osisko inc.
148	2417382	32G03	56.40	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
149	2417383	32G03	56.40	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
150	2417384	32G03	56.40	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
151	2417385	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
152	2417386	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
153	2417387	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
154	2417388	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
155	2417389	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
156	2417390	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
157	2417391	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
158	2417392	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
159	2417393	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
160	2417394	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
161	2417395	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
162	2417396	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
163	2417397	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
164	2417398	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
165	2417399	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
166	2417400	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
167	2417401	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
168	2417402	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
169	2417403	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
170	2417404	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
171	2417405	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
172	2417406	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
173	2417407	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
174	2417408	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
175	2417409	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
176	2417410	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
177	2417411	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
178	2417412	32G03	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
179	2417413	32G03	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
180	2417414	32G03	56.34	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
181	2417415	32G03	56.34	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
182	2417416	32G03	56.34	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
183	2417417	32G03	56.34	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
184	2417418	32G03	56.34	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
185	2417419	32G03	56.40	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
186	2417420	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
187	2417421	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
188	2417422	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
189	2417423	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
190	2417424	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
191	2417425	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
192	2417426	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
193	2417427	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
194	2417428	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
195	2417429	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
196	2417430	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
197	2417431	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
198	2417432	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
199	2417433	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
200	2417434	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
201	2417435	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
202	2417436	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
203	2417437	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
204	2417438	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
205	2417439	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
206	2417440	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
207	2417441	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
208	2417442	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
209	2417443	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
210	2417444	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
211	2417445	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
212	2417446	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
213	2417447	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
214	2417448	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
215	2417449	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
216	2417450	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
217	2417451	32G03	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
218	2417452	32G03	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
219	2417453	32G03	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
220	2417454	32G03	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
221	2417455	32G03	56.34	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
222	2417456	32G03	56.34	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
223	2417457	32G03	56.34	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
224	2417458	32G03	56.34	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
225	2417537	32B13	56.60	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
226	2417538	32B13	56.60	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
227	2417539	32B13	56.60	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
228	2417540	32B13	56.60	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
229	2417541	32B13	56.60	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
230	2417542	32B13	56.60	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
231	2417543	32B13	56.59	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
232	2417544	32B13	56.59	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
233	2417545	32B13	56.59	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
234	2417546	32B13	56.59	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
235	2417547	32B13	56.59	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
236	2417548	32B13	56.59	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
237	2417549	32B13	56.59	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
238	2417550	32B13	56.59	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
239	2417551	32B13	56.58	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
240	2417552	32B13	56.58	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
241	2417553	32B13	56.58	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
242	2417554	32B13	56.58	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
243	2417555	32B13	56.56	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
244	2417556	32B13	56.56	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
245	2417557	32B13	56.56	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
246	2417558	32B13	56.56	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
247	2417559	32B13	56.56	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
248	2417560	32B13	56.56	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
249	2417561	32B13	56.56	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
250	2417562	32B13	56.56	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
251	2417563	32B13	56.55	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
252	2417564	32B13	56.55	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
253	2417565	32B13	56.55	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
254	2417566	32B13	56.55	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
255	2417567	32B13	56.55	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
256	2417568	32B13	56.55	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
257	2417569	32B13	56.55	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
258	2417570	32B13	56.55	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
259	2417571	32B13	56.54	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
260	2417572	32B13	56.54	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
261	2417573	32B13	56.54	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
262	2417574	32B13	56.54	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
263	2417575	32B13	56.54	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
264	2417576	32B13	56.54	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
265	2417577	32B13	56.54	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
266	2417578	32B13	56.54	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
267	2417579	32B13	56.50	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
268	2417580	32G03	56.46	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
269	2417581	32G03	56.46	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
270	2417582	32G03	56.46	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
271	2417583	32G03	56.46	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
272	2417584	32G03	56.46	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
273	2417585	32G03	56.46	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
274	2417586	32G03	56.45	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
275	2417587	32G03	56.45	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
276	2417588	32G03	56.45	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
277	2417589	32G03	56.45	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
278	2417590	32G03	56.45	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
279	2417591	32G03	56.44	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
280	2417592	32G03	56.44	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
281	2417593	32G03	56.44	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
282	2417594	32G03	56.44	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
283	2417595	32G03	56.44	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
284	2417596	32G03	56.44	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
285	2417597	32G03	56.43	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
286	2417598	32G03	56.43	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
287	2417599	32G03	56.43	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
288	2417600	32G03	56.42	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
289	2417601	32G03	56.42	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
290	2417602	32G03	56.42	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
291	2417603	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
292	2417604	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
293	2417605	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
294	2417606	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
295	2417607	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
296	2417608	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
297	2417609	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
298	2417610	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
299	2417611	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
300	2417612	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
301	2417613	32G03	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
302	2417614	32G03	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
303	2417615	32G03	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
304	2417616	32G03	56.34	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
305	2417617	32G03	56.34	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
306	2417618	32G04	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
307	2417619	32G04	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
308	2417620	32G04	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
309	2417621	32G04	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
310	2417622	32G04	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
311	2417623	32G04	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
312	2417624	32G04	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
313	2417625	32G04	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
314	2417626	32G04	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
315	2417627	32G04	56.34	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
316	2417628	32G04	56.34	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
317	2417629	32G04	56.34	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
318	2417630	32G04	56.34	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
319	2417631	32G04	56.34	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
320	2417632	32G04	56.32	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
321	2417633	32G04	56.32	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
322	2417634	32G04	56.32	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
323	2417635	32G04	56.32	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
324	2417636	32G04	56.32	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
325	2417637	32G04	56.32	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
326	2417638	32G04	56.32	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
327	2417639	32G04	56.32	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
328	2417640	32G04	56.32	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
329	2417641	32G04	56.32	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
330	2417642	32G04	56.32	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
331	2417643	32G04	56.32	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
332	2417644	32G04	56.32	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
333	2417645	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
334	2417646	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
335	2417647	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
336	2417648	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
337	2417649	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
338	2417650	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
339	2417651	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
340	2417652	32G04	56.30	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
341	2417653	32G04	56.30	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
342	2417654	32G04	56.30	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
343	2417655	32G03	56.40	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
344	2417656	32G03	56.40	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
345	2417657	32G03	56.40	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
346	2417658	32G03	56.40	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
347	2417659	32G03	56.40	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
348	2417660	32G03	56.40	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
349	2417661	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
350	2417662	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
351	2417663	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
352	2417664	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
353	2417665	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
354	2417666	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
355	2417667	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
356	2417668	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
357	2417669	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
358	2417670	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
359	2417671	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
360	2417672	32G03	56.39	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
361	2417673	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
362	2417674	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
363	2417675	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
364	2417676	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
365	2417677	32G03	56.38	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
366	2417678	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
367	2417679	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
368	2417680	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
369	2417681	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
370	2417682	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
371	2417683	32G03	56.37	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
372	2417684	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
373	2417685	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
374	2417686	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
375	2417687	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
376	2417688	32G03	56.36	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
377	2417689	32G03	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
378	2417690	32G03	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
379	2417691	32G03	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
380	2417692	32G03	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
381	2417693	32G03	56.35	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
382	2417694	32G03	56.34	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
383	2417695	32G04	56.32	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
384	2417696	32G04	56.32	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
385	2417697	32G04	56.32	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
386	2417698	32G04	56.32	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
387	2417699	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
388	2417700	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
389	2417701	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
390	2417702	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
391	2417703	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
392	2417704	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
393	2417705	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
394	2417706	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
395	2417707	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
396	2417708	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
397	2417709	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
398	2417710	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
399	2417711	32G04	56.31	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
400	2417712	32G04	56.30	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
401	2417713	32G04	56.30	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
402	2417714	32G04	56.30	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
403	2417715	32G04	56.30	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
404	2417716	32G04	56.30	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
405	2417717	32G04	56.30	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
406	2417718	32G04	56.29	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
407	2417719	32G04	56.29	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
408	2417720	32G04	56.29	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
409	2417721	32G04	56.29	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
410	2417722	32G04	56.29	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
411	2417723	32G04	56.29	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
412	2417724	32G04	56.29	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
413	2417725	32G04	56.29	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
414	2417726	32G04	56.28	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
415	2417727	32G04	56.28	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
416	2417728	32G04	56.28	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
417	2417729	32G04	56.28	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
418	2417730	32G04	56.28	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
419	2417731	32G04	56.28	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
420	2417732	32G04	56.28	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
421	2417733	32G04	56.28	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
422	2417734	32G04	56.27	CDC	Active	12/1/2014	11/30/2018	Minière Osisko inc.
423	2418096	32G03	56.40	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
424	2418097	32G03	56.40	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
425	2418098	32G03	56.40	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
426	2418099	32G03	56.40	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
427	2418100	32G03	56.40	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
428	2418101	32G03	56.40	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
429	2418102	32G03	56.40	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
430	2418103	32G03	56.39	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
431	2418104	32G03	56.39	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
432	2418105	32G03	56.39	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
433	2418106	32G03	56.39	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
434	2418107	32G03	56.39	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
435	2418108	32G03	56.39	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
436	2418109	32G03	56.39	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
437	2418110	32G03	56.39	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
438	2418111	32G03	56.39	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
439	2418112	32G03	56.39	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
440	2418113	32G03	56.39	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
441	2418114	32G03	56.39	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
442	2418115	32G03	56.39	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
443	2418116	32G03	56.39	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
444	2418117	32G03	56.38	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
445	2418118	32G03	56.38	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
446	2418119	32G03	56.38	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
447	2418120	32G03	56.38	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
448	2418121	32G03	56.38	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
449	2418122	32G03	56.38	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
450	2418123	32G03	56.38	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
451	2418124	32G03	56.38	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
452	2418125	32G03	56.37	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
453	2418126	32G03	56.37	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
454	2418127	32G03	56.37	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
455	2418128	32G03	56.37	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
456	2418129	32G03	56.37	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
457	2418130	32G03	56.37	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
458	2418131	32G03	56.36	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
459	2418132	32G03	56.46	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
460	2418133	32G03	56.45	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
461	2418134	32G03	56.43	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
462	2418135	32G03	56.41	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
463	2418136	32G03	56.40	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
464	2418137	32G03	56.40	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
465	2418138	32G03	56.38	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
466	2418139	32G03	56.38	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
467	2418140	32G03	56.38	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
468	2418141	32G03	56.37	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
469	2418142	32G03	56.37	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
470	2418143	32G03	56.37	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
471	2418144	32G03	56.37	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
472	2418145	32G03	56.36	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
473	2418146	32G03	56.36	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
474	2418147	32G03	56.36	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
475	2418148	32G03	56.36	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
476	2418149	32G03	56.36	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
477	2418150	32G03	56.36	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
478	2418151	32G03	56.36	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
479	2418152	32G03	56.36	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
480	2418153	32G03	56.36	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
481	2418154	32G03	56.36	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
482	2418155	32G03	56.36	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
483	2418156	32G03	56.35	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
484	2418157	32G03	56.35	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
485	2418158	32G03	56.35	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
486	2418159	32G03	56.35	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
487	2418160	32G03	56.35	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
488	2418161	32G03	56.35	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
489	2418162	32G03	56.35	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
490	2418163	32G03	56.35	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
491	2418164	32G03	56.35	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
492	2418165	32G03	56.35	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
493	2418166	32G03	56.35	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
494	2418167	32G03	56.35	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
495	2418168	32G03	56.35	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
496	2418169	32G03	56.35	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
497	2418170	32G03	56.35	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
498	2418190	32B14	56.50	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
499	2418191	32B14	56.50	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
500	2418192	32B14	56.50	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
501	2418193	32B14	56.50	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
502	2418194	32B14	56.50	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
503	2418195	32B14	56.50	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
504	2418196	32B14	56.50	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
505	2418197	32B14	56.50	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
506	2418198	32B14	56.50	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
507	2418199	32B14	56.49	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
508	2418200	32B14	56.49	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
509	2418201	32B14	56.49	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
510	2418202	32B14	56.49	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
511	2418203	32B14	56.49	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
512	2418204	32B14	56.49	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
513	2418205	32B14	56.49	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
514	2418206	32B14	56.49	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
515	2418207	32B14	56.49	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
516	2418208	32B14	56.49	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
517	2418209	32B14	56.48	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
518	2418210	32B14	56.48	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
519	2418211	32B14	56.48	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
520	2418212	32B14	56.48	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
521	2418213	32B14	56.48	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
522	2418214	32B14	56.48	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
523	2418215	32B14	56.48	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
524	2418216	32B14	56.48	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
525	2418217	32B14	56.48	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
526	2418218	32B14	56.48	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
527	2418219	32B14	56.47	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
528	2418220	32B14	56.47	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
529	2418221	32B14	56.47	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
530	2418222	32B14	56.47	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
531	2418223	32B14	56.47	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
532	2418224	32B14	56.47	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
533	2418225	32B14	56.47	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
534	2418226	32B14	56.47	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
535	2418227	32B14	56.47	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
536	2418228	32B14	56.47	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
537	2418229	32B14	56.47	CDC	Active	12/2/2014	12/1/2018	Minière Osisko inc.
538	2418370	32G03	56.41	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
539	2418371	32G03	56.40	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
540	2418372	32G03	56.40	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
541	2418373	32G03	56.40	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
542	2418374	32G03	56.40	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
543	2418375	32G03	56.38	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
544	2418376	32G03	56.37	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
545	2418377	32G03	56.37	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
546	2418378	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
547	2418379	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
548	2418380	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
549	2418381	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
550	2418382	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
551	2418383	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
552	2418384	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
553	2418385	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
554	2418386	32G03	56.33	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
555	2418387	32G03	56.33	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
556	2418388	32G03	56.33	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
557	2418389	32G03	56.33	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
558	2418390	32G03	56.33	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
559	2418391	32G03	56.32	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
560	2418392	32G03	56.32	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
561	2418393	32G03	56.32	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
562	2418394	32G03	56.32	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
563	2418395	32G03	56.32	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
564	2418396	32G03	56.32	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
565	2418397	32G03	56.32	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
566	2418398	32G03	56.32	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
567	2418399	32G03	56.32	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
568	2418400	32G03	56.32	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
569	2418401	32G03	56.31	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
570	2418402	32G03	56.31	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
571	2418403	32G03	56.31	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
572	2418404	32G03	56.31	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
573	2418405	32G03	56.31	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
574	2418406	32G03	56.31	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
575	2418407	32G03	56.31	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
576	2418408	32G03	56.31	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
577	2418409	32G03	56.31	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
578	2418410	32G03	56.46	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
579	2418411	32G03	56.46	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
580	2418412	32G03	56.46	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
581	2418413	32G03	56.46	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
582	2418414	32G03	56.46	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
583	2418415	32G03	56.46	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
584	2418416	32G03	56.46	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
585	2418417	32G03	56.46	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
586	2418418	32G03	56.46	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
587	2418419	32G03	56.46	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
588	2418420	32G03	56.46	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
589	2418421	32G03	56.46	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
590	2418422	32G03	56.46	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
591	2418423	32G03	56.45	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
592	2418424	32G03	56.45	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
593	2418425	32G03	56.45	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
594	2418426	32G03	56.45	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
595	2418427	32G03	56.45	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
596	2418428	32G03	56.45	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
597	2418429	32G03	56.45	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
598	2418430	32G03	56.45	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
599	2418431	32G03	56.45	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
600	2418432	32G03	56.45	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
601	2418433	32G03	56.43	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
602	2418434	32G03	56.42	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
603	2418435	32G03	56.42	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
604	2418436	32G03	56.39	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
605	2418437	32G03	56.39	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
606	2418438	32G03	56.39	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
607	2418439	32G03	56.35	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
608	2418440	32G03	56.35	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
609	2418441	32G03	56.35	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
610	2418442	32G03	56.35	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
611	2418443	32G03	56.35	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
612	2418444	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
613	2418445	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
614	2418446	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
615	2418447	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
616	2418448	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
617	2418449	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
618	2418450	32G03	56.42	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
619	2418451	32G03	56.41	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
620	2418452	32G03	56.41	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
621	2418453	32G03	56.38	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
622	2418454	32G03	56.38	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
623	2418455	32G03	56.37	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
624	2418456	32G03	56.37	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
625	2418457	32G03	56.37	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
626	2418458	32G03	56.36	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
627	2418459	32G03	56.36	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
628	2418460	32G03	56.36	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
629	2418461	32G03	56.35	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
630	2418462	32G03	56.35	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
631	2418463	32G03	56.35	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
632	2418464	32G03	56.35	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
633	2418465	32G03	56.35	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
634	2418466	32G03	56.35	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
635	2418467	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
636	2418468	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
637	2418469	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
638	2418470	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
639	2418471	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
640	2418472	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
641	2418473	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
642	2418474	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
643	2418475	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
644	2418476	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
645	2418477	32G03	56.34	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
646	2418478	32G03	56.33	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
647	2418479	32G03	56.33	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
648	2418480	32G03	56.33	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
649	2418481	32G03	56.33	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
650	2418482	32G03	56.33	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
651	2418483	32G03	56.33	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
652	2418484	32G03	56.33	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
653	2418485	32G03	56.33	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
654	2418486	32G03	56.33	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
655	2418487	32G03	56.33	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
656	2418488	32G03	56.33	CDC	Active	12/3/2014	12/2/2018	Minière Osisko inc.
657	2418540	32G03	56.46	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
658	2418541	32G03	56.46	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
659	2418542	32G03	56.46	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
660	2418543	32G03	56.45	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
661	2418544	32G03	56.45	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
662	2418545	32G03	56.44	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
663	2418546	32G03	56.44	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
664	2418547	32G03	56.44	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
665	2418548	32G03	56.44	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
666	2418549	32G03	56.44	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
667	2418550	32G03	56.42	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
668	2418551	32G03	56.42	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
669	2418552	32G03	56.42	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
670	2418553	32G03	56.42	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
671	2418554	32G03	56.41	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
672	2418555	32G03	56.40	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
673	2418556	32G03	56.40	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
674	2418557	32G03	56.40	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
675	2418558	32G03	56.40	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
676	2418559	32G03	56.40	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
677	2418560	32G03	56.40	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
678	2418561	32G03	56.39	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
679	2418562	32G03	56.39	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
680	2418563	32G03	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
681	2418564	32G03	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
682	2418565	32G03	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
683	2418566	32G03	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
684	2418567	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
685	2418568	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
686	2418569	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
687	2418570	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
688	2418571	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
689	2418572	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
690	2418573	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
691	2418574	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
692	2418575	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
693	2418576	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
694	2418577	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
695	2418578	32G04	56.32	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
696	2418579	32G04	56.32	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
697	2418580	32G04	56.32	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
698	2418581	32G04	56.32	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
699	2418582	32G04	56.32	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
700	2418583	32G04	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
701	2418584	32G04	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
702	2418585	32G04	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
703	2418586	32G04	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
704	2418587	32G04	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
705	2418588	32G04	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
706	2418589	32G04	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
707	2418590	32G04	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
708	2418591	32G04	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
709	2418592	32G04	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
710	2418593	32G04	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
711	2418594	32G04	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
712	2418595	32G04	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
713	2418596	32G04	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
714	2418597	32G04	56.29	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
715	2418598	32G04	56.29	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
716	2418599	32G04	56.29	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
717	2418600	32G04	56.29	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
718	2418601	32G04	56.29	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
719	2418602	32G04	56.29	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
720	2418603	32G04	56.29	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
721	2418604	32G04	56.29	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
722	2418605	32G04	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
723	2418606	32G04	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
724	2418607	32G04	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
725	2418608	32G04	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
726	2418609	32G04	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
727	2418610	32G04	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
728	2418611	32G04	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
729	2418612	32G04	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
730	2418613	32G04	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
731	2418614	32G04	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
732	2418615	32G04	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
733	2418616	32G04	56.27	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
734	2418617	32G04	56.27	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
735	2418618	32B13	56.62	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
736	2418619	32B13	56.62	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
737	2418620	32B13	56.62	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
738	2418621	32B13	56.62	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
739	2418622	32B13	56.62	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
740	2418623	32B13	56.62	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
741	2418624	32B13	56.61	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
742	2418625	32B13	56.61	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
743	2418626	32B13	56.61	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
744	2418627	32B13	56.61	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
745	2418628	32B13	56.61	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
746	2418629	32B13	56.61	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
747	2418630	32B13	56.61	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
748	2418631	32B13	56.61	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
749	2418632	32B13	56.61	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
750	2418633	32B13	56.61	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
751	2418634	32B13	56.61	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
752	2418635	32B13	56.61	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
753	2418636	32B13	56.61	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
754	2418637	32B13	56.61	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
755	2418638	32B13	56.61	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
756	2418639	32B13	56.61	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
757	2418640	32B13	56.60	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
758	2418641	32B13	56.60	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
759	2418642	32B13	56.60	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
760	2418643	32B13	56.60	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
761	2418644	32B13	56.60	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
762	2418645	32B13	56.59	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
763	2418646	32B13	56.58	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
764	2418647	32B13	56.58	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
765	2418648	32B13	56.58	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
766	2418649	32B13	56.57	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
767	2418650	32B13	56.57	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
768	2418651	32B13	56.57	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
769	2418652	32B13	56.57	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
770	2418653	32B13	56.57	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
771	2418654	32B13	56.57	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
772	2418655	32B13	56.56	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
773	2418656	32B13	56.56	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
774	2418657	32B13	56.56	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
775	2418658	32B13	56.56	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
776	2418659	32B13	56.56	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
777	2418660	32B13	56.55	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
778	2418661	32B13	56.55	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
779	2418662	32B13	56.55	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
780	2418663	32B13	56.55	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
781	2418664	32B13	56.53	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
782	2418665	32B13	56.53	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
783	2418666	32B13	56.53	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
784	2418667	32B13	56.53	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
785	2418668	32F01	56.44	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
786	2418669	32F01	56.44	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
787	2418670	32F01	56.43	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
788	2418671	32F01	56.43	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
789	2418672	32F01	56.43	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
790	2418673	32F01	56.42	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
791	2418674	32F01	56.42	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
792	2418675	32F01	56.42	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
793	2418676	32F01	56.42	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
794	2418677	32F01	56.42	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
795	2418678	32F01	56.42	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
796	2418679	32F01	56.40	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
797	2418680	32F01	56.39	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
798	2418681	32F01	56.39	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
799	2418682	32F01	56.39	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
800	2418683	32F01	56.39	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
801	2418684	32F01	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
802	2418685	32F01	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
803	2418686	32F01	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
804	2418687	32F01	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
805	2418688	32F01	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
806	2418689	32F01	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
807	2418690	32F01	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
808	2418691	32F01	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
809	2418692	32F01	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
810	2418693	32F01	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
811	2418694	32F01	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
812	2418695	32F01	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
813	2418696	32F01	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
814	2418697	32F01	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
815	2418698	32F01	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
816	2418699	32F01	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
817	2418700	32F01	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
818	2418701	32F01	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
819	2418702	32F01	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
820	2418703	32F01	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
821	2418704	32F01	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
822	2418705	32F01	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
823	2418706	32F01	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
824	2418707	32F01	56.32	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
825	2418708	32G03	56.41	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
826	2418709	32G03	56.41	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
827	2418710	32G03	56.40	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
828	2418711	32G03	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
829	2418712	32G03	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
830	2418713	32G03	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
831	2418714	32G03	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
832	2418715	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
833	2418716	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
834	2418717	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
835	2418718	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
836	2418719	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
837	2418720	32G03	56.32	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
838	2418721	32G03	56.32	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
839	2418722	32G03	56.32	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
840	2418723	32G03	56.32	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
841	2418724	32G03	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
842	2418725	32G03	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
843	2418726	32G03	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
844	2418727	32G03	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
845	2418728	32G03	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
846	2418729	32G03	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
847	2418730	32G03	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
848	2418731	32G03	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
849	2418732	32G03	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
850	2418733	32G03	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
851	2418734	32G03	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
852	2418735	32G03	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
853	2418736	32G03	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
854	2418737	32G03	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
855	2418738	32G03	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
856	2418739	32G03	56.29	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
857	2418740	32G03	56.29	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
858	2418741	32G03	56.29	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
859	2418742	32G03	56.29	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
860	2418743	32G03	56.29	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
861	2418744	32G03	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
862	2418745	32G03	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
863	2418746	32G03	56.27	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
864	2418747	32G03	56.27	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
865	2418748	32G03	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
866	2418749	32G03	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
867	2418750	32G03	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
868	2418751	32G03	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
869	2418752	32G03	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
870	2418753	32G03	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
871	2418754	32G03	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
872	2418755	32G03	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
873	2418756	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
874	2418757	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
875	2418758	32G03	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
876	2418759	32G03	56.32	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
877	2418760	32G03	56.32	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
878	2418761	32G03	56.32	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
879	2418762	32G03	56.32	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
880	2418763	32G03	56.32	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
881	2418764	32G03	56.32	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
882	2418765	32G03	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
883	2418766	32G03	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
884	2418767	32G03	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
885	2418768	32G03	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
886	2418769	32G03	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
887	2418770	32G03	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
888	2418771	32G03	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
889	2418772	32G03	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
890	2418773	32G03	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
891	2418774	32G03	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
892	2418775	32G03	56.29	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
893	2418776	32G03	56.29	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
894	2418777	32G03	56.29	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
895	2418778	32G03	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
896	2418779	32G03	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
897	2418780	32G03	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
898	2418781	32G03	56.27	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
899	2418782	32G03	56.27	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
900	2418783	32G03	56.27	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
901	2418784	32G03	56.26	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
902	2418785	32G03	56.26	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
903	2418786	32G03	56.26	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
904	2418787	32G04	56.44	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
905	2418789	32G04	56.45	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
906	2418790	32G04	56.45	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
907	2418791	32G04	56.45	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
908	2418792	32G04	56.44	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
909	2418793	32G04	56.44	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
910	2418794	32G04	56.44	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
911	2418795	32G04	56.43	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
912	2418796	32G04	56.43	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
913	2418797	32G04	56.43	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
914	2418798	32G04	56.40	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
915	2418799	32G04	56.39	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
916	2418800	32G04	56.39	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
917	2418801	32G04	56.39	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
918	2418802	32G04	56.39	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
919	2418803	32G04	56.39	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
920	2418804	32G04	56.39	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
921	2418805	32G04	56.39	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
922	2418806	32G04	56.39	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
923	2418807	32G04	56.39	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
924	2418808	32G04	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
925	2418809	32G04	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
926	2418810	32G04	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
927	2418811	32G04	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
928	2418812	32G04	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
929	2418813	32G04	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
930	2418814	32G04	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
931	2418815	32G04	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
932	2418816	32G04	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
933	2418817	32G04	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
934	2418818	32G04	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
935	2418819	32G04	56.38	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
936	2418820	32G04	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
937	2418821	32G04	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
938	2418822	32G04	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
939	2418823	32G04	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
940	2418824	32G04	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
941	2418825	32G04	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
942	2418826	32G04	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
943	2418827	32G04	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
944	2418828	32G04	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
945	2418829	32G04	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
946	2418830	32G04	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
947	2418831	32G04	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
948	2418832	32G04	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
949	2418833	32G04	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
950	2418834	32G04	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
951	2418835	32G04	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
952	2418836	32G04	56.37	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
953	2418837	32G04	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
954	2418838	32G04	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
955	2418839	32G04	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
956	2418840	32G04	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
957	2418841	32G04	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
958	2418842	32G04	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
959	2418843	32G04	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
960	2418844	32G04	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
961	2418845	32G04	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
962	2418846	32G04	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
963	2418847	32G04	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
964	2418848	32G04	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
965	2418849	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
966	2418850	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
967	2418851	32G04	56.32	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
968	2418852	32G04	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
969	2418853	32G04	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
970	2418854	32G04	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
971	2418855	32G04	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
972	2418856	32G04	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
973	2418857	32G04	56.31	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
974	2418858	32G04	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
975	2418859	32G04	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
976	2418860	32G04	56.30	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
977	2418861	32G04	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
978	2418862	32G04	56.28	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
979	2418863	32G04	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
980	2418864	32G04	56.36	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
981	2418865	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
982	2418866	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
983	2418867	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
984	2418868	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
985	2418869	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
986	2418870	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
987	2418871	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
988	2418872	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
989	2418873	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
990	2418874	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
991	2418875	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
992	2418876	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
993	2418877	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
994	2418878	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
995	2418879	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
996	2418880	32G04	56.35	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
997	2418881	32G04	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
998	2418882	32G04	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
999	2418883	32G04	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1000	2418884	32G04	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1001	2418885	32G04	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1002	2418886	32G04	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1003	2418887	32G04	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1004	2418888	32G04	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1005	2418889	32G04	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1006	2418890	32G04	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1007	2418891	32G04	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1008	2418892	32G04	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1009	2418893	32G04	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1010	2418894	32G04	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1011	2418895	32G04	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1012	2418896	32G04	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1013	2418897	32G04	56.34	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1014	2418898	32G04	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1015	2418899	32G04	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1016	2418900	32G04	56.33	CDC	Active	12/4/2014	12/3/2018	Minière Osisko inc.
1017	2418912	32G03	56.44	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1018	2418913	32G03	56.44	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1019	2418914	32G03	56.44	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1020	2418915	32G03	56.43	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1021	2418916	32G03	56.43	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1022	2418917	32G03	56.43	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1023	2418918	32G03	56.43	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1024	2418919	32G03	56.43	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1025	2418920	32G03	56.43	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1026	2418921	32G03	56.43	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1027	2418922	32G03	56.43	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1028	2418923	32G03	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1029	2418924	32G03	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1030	2418925	32G03	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1031	2418926	32G03	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1032	2418927	32G03	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1033	2418928	32G03	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1034	2418929	32G03	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1035	2418930	32G03	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1036	2418931	32G03	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1037	2418932	32G03	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1038	2418933	32G03	56.41	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1039	2418934	32G03	56.41	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1040	2418935	32G03	56.41	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1041	2418936	32G03	56.41	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1042	2418937	32G03	56.41	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1043	2418938	32G03	56.41	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1044	2418939	32G03	56.41	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1045	2418940	32G03	56.41	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1046	2418941	32G03	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1047	2418942	32G03	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1048	2418943	32G03	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1049	2418944	32G03	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1050	2418945	32G03	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1051	2418946	32G03	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1052	2418947	32G03	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1053	2418948	32G03	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1054	2418949	32G03	56.39	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1055	2418950	32G03	56.39	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1056	2418951	32G03	56.39	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1057	2418953	32B13	56.61	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1058	2418955	32B13	56.60	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1059	2418956	32B13	56.60	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1060	2418957	32B13	56.60	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1061	2418958	32B13	56.60	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1062	2418959	32B13	56.60	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1063	2418962	32B13	56.59	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1064	2418963	32B13	56.59	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1065	2418964	32B13	56.59	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1066	2418965	32B13	56.59	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1067	2418966	32B13	56.59	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1068	2418970	32B13	56.58	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1069	2418971	32B13	56.58	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1070	2418972	32B13	56.58	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1071	2418973	32B13	56.58	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1072	2418974	32B13	56.58	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1073	2418978	32B13	56.57	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1074	2418979	32B13	56.57	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1075	2418980	32B13	56.57	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1076	2418981	32B13	56.57	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1077	2418982	32B13	56.57	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1078	2418986	32B13	56.56	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1079	2418987	32B13	56.56	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1080	2418988	32B13	56.56	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1081	2418989	32B13	56.56	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1082	2418990	32B13	56.56	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1083	2418991	32B13	56.56	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1084	2418992	32G03	56.46	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1085	2418993	32G03	56.46	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1086	2418994	32G03	56.46	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1087	2418995	32G03	56.46	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1088	2418996	32G03	56.46	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1089	2418997	32G03	56.46	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1090	2418998	32G03	56.46	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1091	2418999	32G03	56.46	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1092	2419000	32G03	56.45	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1093	2419001	32G03	56.45	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1094	2419002	32G03	56.45	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1095	2419003	32G03	56.45	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1096	2419004	32G03	56.45	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1097	2419005	32G03	56.45	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1098	2419006	32G03	56.45	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1099	2419007	32G03	56.45	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1100	2419008	32G03	56.45	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1101	2419009	32G03	56.45	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1102	2419010	32G03	56.45	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1103	2419011	32G03	56.45	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1104	2419012	32G03	56.45	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1105	2419013	32G03	56.44	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1106	2419014	32G03	56.44	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1107	2419015	32G03	56.44	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1108	2419016	32G03	56.43	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1109	2419017	32G03	56.43	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1110	2419018	32G03	56.43	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1111	2419019	32G03	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1112	2419020	32G03	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1113	2419021	32G03	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1114	2419022	32G03	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1115	2419023	32G03	56.41	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1116	2419024	32G03	56.41	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1117	2419025	32G03	56.41	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1118	2419026	32G03	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1119	2419027	32G03	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1120	2419028	32G03	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1121	2419029	32G03	56.39	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1122	2419030	32G03	56.39	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1123	2419031	32G03	56.35	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1124	2419032	32B14	56.54	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1125	2419033	32B14	56.54	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1126	2419034	32B14	56.54	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1127	2419035	32B14	56.54	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1128	2419036	32B14	56.54	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1129	2419037	32B14	56.54	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1130	2419038	32B14	56.54	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1131	2419039	32B14	56.54	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1132	2419040	32B14	56.54	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1133	2419041	32B14	56.54	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1134	2419042	32B14	56.54	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1135	2419043	32B14	56.54	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1136	2419044	32B14	56.53	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1137	2419045	32B14	56.53	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1138	2419046	32B14	56.53	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1139	2419047	32B14	56.53	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1140	2419048	32B14	56.53	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1141	2419049	32B14	56.53	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1142	2419050	32B14	56.53	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1143	2419051	32B14	56.53	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1144	2419052	32B14	56.53	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1145	2419053	32B14	56.53	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1146	2419054	32B14	56.53	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1147	2419055	32B14	56.53	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1148	2419056	32B14	56.53	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1149	2419057	32B14	56.52	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1150	2419058	32B14	56.51	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1151	2419059	32B14	56.51	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1152	2419060	32B14	56.51	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1153	2419061	32B14	56.51	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1154	2419062	32B14	56.51	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1155	2419063	32B14	56.50	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1156	2419064	32B14	56.50	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1157	2419065	32B14	56.50	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1158	2419066	32B14	56.49	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1159	2419067	32B14	56.49	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1160	2419068	32B14	56.48	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1161	2419069	32B14	56.48	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1162	2419070	32B14	56.48	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1163	2419071	32B14	56.47	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1164	2419072	32B14	56.47	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1165	2419073	32B14	56.47	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1166	2419074	32B14	56.47	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1167	2419075	32B14	56.47	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1168	2419076	32G02	56.29	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1169	2419077	32G02	56.28	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1170	2419078	32G02	56.27	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1171	2419079	32G03	56.33	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1172	2419082	32F01	56.43	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1173	2419083	32F01	56.43	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1174	2419084	32F01	56.43	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1175	2419085	32F01	56.43	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1176	2419086	32F01	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1177	2419087	32F01	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1178	2419088	32F01	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1179	2419089	32F01	56.42	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1180	2419090	32F01	56.41	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1181	2419091	32F01	56.41	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1182	2419092	32F01	56.41	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1183	2419093	32F01	56.41	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1184	2419094	32F01	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1185	2419095	32F01	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1186	2419096	32F01	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1187	2419097	32F01	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1188	2419109	32G04	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1189	2419110	32G04	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1190	2419111	32G04	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1191	2419112	32G04	56.40	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1192	2419113	32G04	56.39	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1193	2419114	32G04	56.39	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1194	2419115	32G04	56.39	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1195	2419116	32G04	56.39	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1196	2419117	32G04	56.39	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1197	2419118	32G04	56.39	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1198	2419119	32G04	56.38	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1199	2419120	32G04	56.38	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1200	2419121	32G04	56.38	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1201	2419122	32G04	56.38	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1202	2419123	32G04	56.38	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1203	2419124	32G04	56.38	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1204	2419125	32G04	56.38	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1205	2419126	32G04	56.38	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1206	2419127	32G04	56.37	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1207	2419128	32G04	56.37	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1208	2419129	32G04	56.37	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1209	2419130	32G04	56.37	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1210	2419131	32G04	56.37	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1211	2419132	32G04	56.36	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1212	2419133	32G04	56.36	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1213	2419134	32G04	56.36	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1214	2419135	32G04	56.36	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1215	2419136	32G04	56.36	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1216	2419137	32G04	56.36	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1217	2419138	32G04	56.36	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1218	2419139	32G04	56.36	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1219	2419140	32G04	56.36	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1220	2419141	32G04	56.35	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1221	2419142	32G04	56.35	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1222	2419143	32G04	56.35	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1223	2419144	32G04	56.35	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1224	2419145	32G04	56.35	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1225	2419146	32G04	56.35	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1226	2419147	32G04	56.35	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1227	2419148	32G04	56.35	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1228	2419149	32G04	56.35	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1229	2419150	32B13	56.65	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1230	2419151	32B13	56.64	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1231	2419152	32B13	56.64	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1232	2419153	32B13	56.64	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1233	2419154	32B13	56.63	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1234	2419155	32B13	56.63	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1235	2419156	32B13	56.63	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1236	2419157	32B13	56.61	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1237	2419158	32B13	56.60	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1238	2419159	32B13	56.60	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1239	2419160	32B13	56.59	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1240	2419161	32B13	56.57	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1241	2419169	32B13	56.52	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1242	2419170	32B13	56.51	CDC	Active	12/5/2014	12/4/2018	Minière Osisko inc.
1243	2420621	32B13	56.63	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1244	2420622	32B13	56.62	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1245	2420623	32B13	56.62	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1246	2420624	32B13	56.62	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1247	2420625	32B13	56.62	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1248	2420626	32B13	56.62	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1249	2420627	32B13	56.62	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1250	2420628	32B13	56.62	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1251	2420629	32B13	56.62	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1252	2420630	32B13	56.62	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1253	2420631	32B13	56.62	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1254	2420632	32B13	56.62	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1255	2420633	32B13	56.56	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1256	2420634	32B13	56.56	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1257	2420636	32B13	56.55	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1258	2420637	32B13	56.55	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1259	2420639	32B13	56.54	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1260	2420640	32B13	56.54	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1261	2420641	32B13	56.53	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1262	2420642	32B13	56.53	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1263	2420643	32B13	56.53	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1264	2420646	32B13	56.52	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1265	2420647	32B13	56.52	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1266	2420648	32B13	56.52	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1267	2420649	32B13	56.52	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1268	2420650	32B13	56.52	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1269	2420653	32B13	56.51	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1270	2420654	32B13	56.51	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1271	2420655	32B13	56.51	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1272	2420656	32B13	56.51	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1273	2420657	32B13	56.51	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1274	2420662	32F01	56.39	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1275	2420663	32F01	56.38	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1276	2420664	32G03	56.32	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1277	2420665	32G03	56.32	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1278	2420672	32G04	56.42	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1279	2420673	32G04	56.41	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1280	2420674	32G04	56.34	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1281	2420675	32G04	56.34	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1282	2420676	32G04	56.34	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1283	2420677	32G04	56.33	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1284	2420678	32G04	56.33	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1285	2420679	32G04	56.33	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1286	2420680	32G04	56.33	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1287	2420681	32G04	56.33	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1288	2420682	32G04	56.32	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1289	2420683	32G04	56.32	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1290	2420684	32G04	56.31	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1291	2420685	32G04	56.31	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1292	2420686	32G04	56.31	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1293	2420687	32G04	56.31	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1294	2420688	32G04	56.31	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1295	2420689	32G04	56.30	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1296	2420690	32G04	56.30	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1297	2420691	32G04	56.30	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1298	2420692	32G04	56.30	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1299	2420693	32G04	56.30	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1300	2420694	32G04	56.30	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1301	2420695	32G04	56.30	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1302	2420834	32G03	55.97	CDC	Active	12/30/2014	12/29/2018	Minière Osisko inc.
1303	2421803	32G04	52.32	CDC	Active	1/22/2015	1/21/2019	Minière Osisko inc.
1304	2427494	32G04	56.36	CDC	Active	5/11/2015	5/10/2019	Minière Osisko inc.
1305	2427495	32G04	56.36	CDC	Active	5/11/2015	5/10/2019	Minière Osisko inc.
1306	2427776	32G04	56.35	CDC	Active	5/19/2015	5/18/2019	Minière Osisko inc.
1307	2432474	32G03	56.38	CDC	Active	8/21/2015	8/20/2019	Minière Osisko inc.
1308	2432475	32G03	56.38	CDC	Active	8/21/2015	8/20/2019	Minière Osisko inc.
1309	2440496	32G03	56.44	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1310	2440497	32G03	56.44	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1311	2440498	32G03	56.44	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1312	2440499	32G03	56.44	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1313	2440500	32G03	56.44	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1314	2440501	32G03	56.43	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1315	2440502	32G03	56.43	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1316	2440503	32G03	56.43	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1317	2440504	32G03	56.43	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1318	2440505	32G03	56.43	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1319	2440506	32G03	56.42	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1320	2440507	32G03	56.42	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1321	2440508	32G03	56.41	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1322	2440509	32G03	56.41	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1323	2440510	32G03	56.40	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1324	2440511	32G03	56.40	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1325	2440512	32G03	56.39	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1326	2440513	32G03	56.39	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1327	2440514	32G03	56.39	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1328	2440515	32G03	56.39	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1329	2440516	32G03	56.42	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1330	2440517	32G03	56.42	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1331	2440518	32G03	56.41	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1332	2440519	32G03	56.41	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1333	2440520	32G03	56.41	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1334	2440521	32G03	56.40	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1335	2440522	32G03	56.40	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1336	2440523	32G03	56.40	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1337	2440524	32G03	56.39	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1338	2440525	32G03	56.39	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1339	2440526	32G03	56.39	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1340	2440527	32G03	56.39	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1341	2440528	32G03	56.39	CDC	Active	4/8/2016	4/7/2020	Minière Osisko inc.
1342	2440725	32G03	56.38	CDC	Active	4/12/2016	4/11/2020	Minière Osisko inc.
1343	2443381	32G03	56.32	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1344	2443382	32G03	56.32	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1345	2443383	32G03	56.32	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1346	2443384	32G03	56.32	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1347	2443385	32G03	56.32	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1348	2443386	32G03	56.31	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1349	2443387	32G03	56.31	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1350	2443388	32G03	56.31	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1351	2443389	32G03	56.31	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1352	2443390	32G03	56.31	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1353	2443391	32G03	56.30	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1354	2443392	32G03	56.30	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1355	2443393	32G03	56.30	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1356	2443394	32G03	56.30	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1357	2443395	32G03	56.30	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1358	2443396	32G03	56.29	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1359	2443397	32G03	56.29	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1360	2443398	32G03	56.29	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1361	2443399	32G03	56.29	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1362	2443400	32G03	56.29	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1363	2443401	32G03	56.29	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1364	2443402	32G03	56.29	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1365	2443403	32G03	56.29	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1366	2443404	32G03	56.29	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1367	2443405	32G03	56.29	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1368	2443406	32G03	56.29	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1369	2443407	32G03	56.29	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1370	2443408	32G03	56.28	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1371	2443409	32G03	56.28	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1372	2443410	32G03	56.28	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1373	2443411	32G03	56.28	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1374	2443412	32G03	56.28	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1375	2443413	32G03	56.28	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1376	2443414	32G03	56.28	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1377	2443415	32G03	56.28	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1378	2443416	32G03	56.28	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1379	2443417	32G03	56.28	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1380	2443418	32G03	56.28	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1381	2443419	32G03	56.27	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1382	2443420	32G03	56.27	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1383	2443421	32G03	56.32	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1384	2443422	32G03	56.32	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1385	2443423	32G03	56.32	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1386	2443424	32G03	56.32	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1387	2443425	32G03	56.32	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1388	2443426	32G03	56.32	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1389	2443427	32G03	56.32	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1390	2443428	32G03	56.31	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1391	2443429	32G03	56.31	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1392	2443430	32G03	56.30	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1393	2443431	32G03	56.30	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1394	2443432	32G03	56.30	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1395	2443433	32G03	56.30	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1396	2443434	32G03	56.30	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1397	2443435	32G03	56.30	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1398	2443436	32G03	56.30	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1399	2443437	32G03	56.30	CDC	Active	4/26/2016	4/25/2020	Minière Osisko inc.
1400	2443438	32G03	56.30	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1401	2443439	32G03	56.29	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1402	2443440	32G03	56.29	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1403	2443441	32G03	56.29	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1404	2443442	32G03	56.29	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1405	2443443	32G03	56.29	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1406	2443444	32G03	56.29	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1407	2443445	32G03	56.29	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1408	2443446	32G03	56.28	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1409	2443447	32G03	56.28	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1410	2443448	32G03	56.28	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1411	2443449	32G03	56.28	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1412	2443450	32G03	56.28	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1413	2443451	32G03	56.28	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1414	2443452	32G03	56.28	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1415	2443453	32G03	56.27	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1416	2443454	32G03	56.27	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1417	2443455	32G03	56.27	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1418	2443456	32G03	56.27	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1419	2443457	32G03	56.27	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1420	2443458	32G03	56.26	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1421	2443459	32G03	56.26	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1422	2443460	32G03	56.26	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1423	2443468	32G03	56.29	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1424	2443469	32G03	56.29	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1425	2443470	32G03	56.28	CDC	Active	4/26/2016	4/25/2018	Minière Osisko inc.
1426	2450641	32G03	43.81	CDC	Active	6/22/2016	6/21/2018	Minière Osisko inc.
1427	2450960	32G03	51.35	CDC	Active	6/23/2016	6/22/2018	Minière Osisko inc.
1428	2450961	32G03	54.66	CDC	Active	6/23/2016	6/22/2018	Minière Osisko inc.
1429	2450962	32G03	7.80	CDC	Active	6/23/2016	6/22/2018	Minière Osisko inc.
1430	2450963	32G03	43.56	CDC	Active	6/23/2016	6/22/2018	Minière Osisko inc.
1431	2450964	32G03	47.50	CDC	Active	6/23/2016	6/22/2018	Minière Osisko inc.
1432	2450965	32G03	24.03	CDC	Active	6/23/2016	6/22/2018	Minière Osisko inc.
1433	2450966	32G03	2.27	CDC	Active	6/23/2016	6/22/2018	Minière Osisko inc.
1434	2450967	32G03	0.50	CDC	Active	6/23/2016	6/22/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1435	2450968	32G03	0.11	CDC	Active	6/23/2016	6/22/2018	Minière Osisko inc.
1436	2450969	32G03	13.30	CDC	Active	6/23/2016	6/22/2018	Minière Osisko inc.
1437	2450970	32G03	7.59	CDC	Active	6/23/2016	6/22/2018	Minière Osisko inc.
1438	2454299	32G03	0.04	CDC	Active	7/22/2016	7/21/2018	Minière Osisko inc.
1439	2454300	32G03	2.62	CDC	Active	7/22/2016	7/21/2018	Minière Osisko inc.
1440	2454301	32G03	54.46	CDC	Active	7/22/2016	7/21/2018	Minière Osisko inc.
1441	2454302	32G03	31.71	CDC	Active	7/22/2016	7/21/2018	Minière Osisko inc.
1442	2457563	32B14	56.49	CDC	Active	8/15/2016	8/14/2018	Minière Osisko inc.
1443	2457564	32B14	56.49	CDC	Active	8/15/2016	8/14/2018	Minière Osisko inc.
1444	2457565	32B14	56.49	CDC	Active	8/15/2016	8/14/2018	Minière Osisko inc.
1445	2457566	32B14	56.49	CDC	Active	8/15/2016	8/14/2018	Minière Osisko inc.
1446	2457567	32B14	56.49	CDC	Active	8/15/2016	8/14/2018	Minière Osisko inc.
1447	2457568	32B14	56.48	CDC	Active	8/15/2016	8/14/2018	Minière Osisko inc.
1448	2457569	32B14	56.48	CDC	Active	8/15/2016	8/14/2018	Minière Osisko inc.
1449	2457570	32B14	56.48	CDC	Active	8/15/2016	8/14/2018	Minière Osisko inc.
1450	2457571	32B14	56.48	CDC	Active	8/15/2016	8/14/2018	Minière Osisko inc.
1451	2457572	32B14	56.48	CDC	Active	8/15/2016	8/14/2018	Minière Osisko inc.
1452	2459947	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1453	2459948	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1454	2459949	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1455	2459950	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1456	2459951	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1457	2459952	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1458	2459953	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1459	2459954	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1460	2459955	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1461	2459956	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1462	2459957	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1463	2459958	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1464	2459959	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1465	2459960	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1466	2459961	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1467	2459962	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1468	2459963	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1469	2459964	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1470	2459965	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1471	2459966	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1472	2459967	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1473	2459968	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1474	2459969	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1475	2459970	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1476	2459971	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1477	2459972	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1478	2459973	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1479	2459974	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1480	2459975	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1481	2459976	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1482	2459977	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1483	2459978	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1484	2459979	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1485	2459980	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1486	2459981	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1487	2459982	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1488	2459983	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1489	2459984	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1490	2459985	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1491	2459986	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1492	2459987	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1493	2459988	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1494	2459989	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1495	2459990	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1496	2459991	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1497	2459992	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1498	2459993	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1499	2459994	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1500	2459995	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1501	2459996	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1502	2459997	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1503	2459998	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1504	2459999	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1505	2460000	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1506	2460001	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1507	2460002	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1508	2460003	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1509	2460004	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1510	2460005	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1511	2460006	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1512	2460007	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1513	2460008	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1514	2460009	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1515	2460010	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1516	2460011	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1517	2460012	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1518	2460013	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1519	2460014	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1520	2460015	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1521	2460016	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1522	2460017	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1523	2460018	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1524	2460019	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1525	2460020	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1526	2460021	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1527	2460022	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1528	2460023	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1529	2460024	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1530	2460025	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1531	2460026	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1532	2460305	32F01	56.37	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1533	2460306	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1534	2460307	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1535	2460308	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1536	2460309	32F01	56.36	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1537	2460310	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1538	2460311	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1539	2460312	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1540	2460313	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1541	2460314	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1542	2460315	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1543	2460316	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1544	2460317	32F01	56.35	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1545	2460318	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1546	2460319	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1547	2460320	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1548	2460321	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1549	2460322	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1550	2460323	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1551	2460324	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1552	2460325	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1553	2460326	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1554	2460327	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1555	2460328	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1556	2460329	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1557	2460330	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1558	2460331	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1559	2460332	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1560	2460333	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1561	2460334	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1562	2460335	32F01	56.32	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1563	2460336	32F01	56.32	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1564	2460337	32F01	56.32	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1565	2460338	32F01	56.32	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1566	2460339	32F01	56.32	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1567	2460340	32F01	56.32	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1568	2460341	32F01	56.32	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1569	2460342	32F01	56.32	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1570	2460343	32F01	56.32	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1571	2460344	32F01	56.32	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1572	2460355	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1573	2460356	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1574	2460357	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1575	2460358	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1576	2460359	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1577	2460360	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1578	2460361	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1579	2460362	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1580	2460363	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1581	2460364	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1582	2460365	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1583	2460366	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1584	2460367	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1585	2460368	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1586	2460369	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1587	2460370	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1588	2460371	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1589	2460372	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1590	2460373	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1591	2460374	32F01	56.34	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1592	2460375	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1593	2460376	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1594	2460377	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1595	2460378	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1596	2460379	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1597	2460380	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1598	2460381	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1599	2460382	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1600	2460383	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1601	2460384	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1602	2460385	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1603	2460386	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1604	2460387	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1605	2460388	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1606	2460389	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1607	2460390	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1608	2460391	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1609	2460392	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1610	2460393	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1611	2460394	32F01	56.33	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1612	2460395	32F01	56.32	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1613	2460396	32F01	56.32	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1614	2460397	32F01	56.32	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1615	2460398	32F01	56.32	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1616	2460399	32F01	56.32	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1617	2460400	32F01	56.32	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1618	2460404	32F01	56.39	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1619	2460405	32F01	56.39	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1620	2460406	32F01	56.39	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1621	2460407	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1622	2460408	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1623	2460409	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1624	2460410	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1625	2460411	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1626	2460412	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1627	2460413	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1628	2460414	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1629	2460415	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1630	2460416	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1631	2460417	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1632	2460418	32F01	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1633	2460419	32G04	56.39	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1634	2460420	32G04	56.39	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1635	2460421	32G04	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1636	2460422	32G04	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1637	2460423	32G04	56.38	CDC	Active	8/31/2016	8/30/2018	Minière Osisko inc.
1638	2467259	32G03	56.31	CDC	Active	10/27/2016	10/26/2018	Minière Osisko inc.
1639	2467260	32G03	56.30	CDC	Active	10/27/2016	10/26/2018	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1640	2467261	32G03	56.30	CDC	Active	10/27/2016	10/26/2018	Minière Osisko inc.
1641	2467262	32G03	56.30	CDC	Active	10/27/2016	10/26/2018	Minière Osisko inc.
1642	2467263	32G03	56.30	CDC	Active	10/27/2016	10/26/2018	Minière Osisko inc.
1643	2467264	32G03	56.30	CDC	Active	10/27/2016	10/26/2018	Minière Osisko inc.
1644	2467265	32G03	56.29	CDC	Active	10/27/2016	10/26/2018	Minière Osisko inc.
1645	2467266	32G03	56.29	CDC	Active	10/27/2016	10/26/2018	Minière Osisko inc.
1646	2467267	32G03	56.29	CDC	Active	10/27/2016	10/26/2018	Minière Osisko inc.
1647	2467268	32G03	56.29	CDC	Active	10/27/2016	10/26/2018	Minière Osisko inc.
1648	2467269	32G03	56.28	CDC	Active	10/27/2016	10/26/2018	Minière Osisko inc.
1649	2467270	32G03	56.28	CDC	Active	10/27/2016	10/26/2018	Minière Osisko inc.
1650	2467271	32G03	56.28	CDC	Active	10/27/2016	10/26/2018	Minière Osisko inc.
1651	2467272	32G03	56.28	CDC	Active	10/27/2016	10/26/2018	Minière Osisko inc.
1652	2471661	32B13	56.66	CDC	Active	1/5/2017	1/4/2019	Minière Osisko inc.
1653	2471662	32B13	56.66	CDC	Active	1/5/2017	1/4/2019	Minière Osisko inc.
1654	2471663	32B13	56.65	CDC	Active	1/5/2017	1/4/2019	Minière Osisko inc.
1655	2471664	32B13	56.65	CDC	Active	1/5/2017	1/4/2019	Minière Osisko inc.
1656	2471665	32B13	56.65	CDC	Active	1/5/2017	1/4/2019	Minière Osisko inc.
1657	2471666	32B13	56.65	CDC	Active	1/5/2017	1/4/2019	Minière Osisko inc.
1658	2471667	32B13	56.64	CDC	Active	1/5/2017	1/4/2019	Minière Osisko inc.
1659	2471668	32B13	56.64	CDC	Active	1/5/2017	1/4/2019	Minière Osisko inc.
1660	2471669	32B13	56.64	CDC	Active	1/5/2017	1/4/2019	Minière Osisko inc.
1661	2471670	32B13	56.64	CDC	Active	1/5/2017	1/4/2019	Minière Osisko inc.
1662	2471671	32B13	56.63	CDC	Active	1/5/2017	1/4/2019	Minière Osisko inc.
1663	2471672	32B13	56.63	CDC	Active	1/5/2017	1/4/2019	Minière Osisko inc.
1664	2471673	32B13	56.63	CDC	Active	1/5/2017	1/4/2019	Minière Osisko inc.
1665	2471674	32B13	56.63	CDC	Active	1/5/2017	1/4/2019	Minière Osisko inc.
1666	2471675	32B13	56.63	CDC	Active	1/5/2017	1/4/2019	Minière Osisko inc.
1667	2472079	32G04	56.33	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1668	2472080	32G04	56.33	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1669	2472081	32G04	56.33	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1670	2472082	32G04	56.33	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1671	2472083	32G04	56.33	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1672	2472084	32G04	56.33	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1673	2472085	32G04	56.33	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1674	2472086	32G04	56.32	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1675	2472087	32G04	56.32	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1676	2472088	32G04	56.32	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1677	2472089	32G04	56.32	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1678	2472090	32G04	56.32	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1679	2472091	32G04	56.32	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1680	2472092	32G04	56.32	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1681	2472093	32G04	56.31	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1682	2472094	32G04	56.31	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1683	2472095	32G04	56.31	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1684	2472096	32G04	56.31	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1685	2472097	32G04	56.31	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1686	2472098	32G04	56.31	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1687	2472099	32G04	56.31	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1688	2472100	32G04	56.30	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1689	2472101	32G04	56.30	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1690	2472102	32G04	56.30	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1691	2472103	32G04	56.30	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1692	2472104	32G04	56.30	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1693	2472105	32G04	56.30	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1694	2472106	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1695	2472107	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1696	2472108	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1697	2472109	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1698	2472110	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1699	2472111	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1700	2472112	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1701	2472113	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1702	2472114	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1703	2472115	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1704	2472116	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1705	2472117	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1706	2472118	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1707	2472119	32G02	56.41	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1708	2472120	32G02	56.41	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1709	2472121	32G02	56.41	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1710	2472122	32G02	56.40	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1711	2472123	32G02	56.40	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1712	2472124	32G02	56.40	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1713	2472125	32G02	56.39	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1714	2472126	32G02	56.39	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1715	2472127	32G02	56.39	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1716	2472128	32G03	56.41	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1717	2472129	32G03	56.41	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1718	2472130	32G03	56.41	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1719	2472131	32G03	56.40	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1720	2472132	32G03	56.40	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1721	2472133	32G03	56.39	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1722	2472134	32G03	56.39	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1723	2472135	32G03	56.39	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1724	2472136	32G03	56.39	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1725	2472137	32G03	56.39	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1726	2472138	32G03	56.38	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1727	2472139	32G03	56.38	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1728	2472140	32G03	56.38	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1729	2472141	32G03	56.38	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1730	2472142	32G03	56.38	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1731	2472143	32G03	56.37	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1732	2472144	32G03	56.37	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1733	2472145	32G03	56.37	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1734	2472146	32G03	56.37	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1735	2472147	32G03	56.37	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1736	2472148	32G03	56.36	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1737	2472149	32G03	56.36	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1738	2472150	32G03	56.36	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1739	2472151	32G03	56.36	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1740	2472152	32G03	56.33	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1741	2472153	32G03	56.33	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1742	2472157	32G04	56.30	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1743	2472158	32G04	56.30	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1744	2472159	32G04	56.30	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1745	2472160	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1746	2472161	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1747	2472162	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1748	2472163	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1749	2472164	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1750	2472165	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1751	2472166	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1752	2472167	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1753	2472168	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1754	2472169	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1755	2472170	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1756	2472171	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1757	2472172	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1758	2472173	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1759	2472174	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1760	2472175	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1761	2472176	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1762	2472177	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1763	2472178	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1764	2472179	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1765	2472180	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1766	2472181	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1767	2472182	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1768	2472183	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1769	2472184	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1770	2472185	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1771	2472186	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1772	2472187	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1773	2472188	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1774	2472189	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1775	2472190	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1776	2472191	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1777	2472192	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1778	2472193	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1779	2472194	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1780	2472195	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1781	2472196	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1782	2472197	32G02	56.43	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1783	2472198	32G02	56.43	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1784	2472199	32G02	56.43	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1785	2472200	32G02	56.42	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1786	2472201	32G02	56.42	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1787	2472202	32G02	56.42	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1788	2472203	32G03	56.46	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1789	2472204	32G03	56.46	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1790	2472205	32G03	56.46	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1791	2472206	32G03	56.46	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1792	2472207	32G03	56.46	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1793	2472208	32G03	56.45	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1794	2472209	32G03	56.45	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1795	2472210	32G03	56.45	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1796	2472211	32G03	56.45	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1797	2472212	32G03	56.45	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1798	2472213	32G03	56.44	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1799	2472214	32G03	56.44	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1800	2472215	32G03	56.44	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1801	2472216	32G03	56.44	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1802	2472217	32G03	56.43	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1803	2472218	32G03	56.43	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1804	2472219	32G03	56.43	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1805	2472220	32G03	56.43	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1806	2472221	32G03	56.42	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1807	2472222	32G03	56.42	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1808	2472223	32G03	56.42	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1809	2472224	32G03	56.42	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1810	2472225	32G03	56.42	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1811	2472287	32G04	56.33	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1812	2472288	32G04	56.33	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1813	2472289	32G04	56.33	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1814	2472290	32G04	56.33	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1815	2472291	32G04	56.32	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1816	2472292	32G04	56.32	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1817	2472293	32G04	56.32	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1818	2472294	32G04	56.32	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1819	2472295	32G04	56.31	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1820	2472296	32G04	56.31	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1821	2472297	32G04	56.31	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1822	2472298	32G04	56.31	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1823	2472299	32G04	56.31	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1824	2472300	32G04	56.30	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1825	2472301	32G04	56.30	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1826	2472302	32G04	56.30	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1827	2472303	32G04	56.30	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1828	2472304	32G04	56.30	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1829	2472305	32G04	56.30	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1830	2472306	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1831	2472307	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1832	2472308	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1833	2472309	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1834	2472310	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1835	2472311	32G04	56.29	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1836	2472312	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1837	2472313	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1838	2472314	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1839	2472315	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1840	2472316	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1841	2472317	32G04	56.28	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1842	2472318	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1843	2472319	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1844	2472320	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1845	2472321	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1846	2472322	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1847	2472323	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1848	2472324	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1849	2472325	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1850	2472326	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1851	2472369	32G04	56.27	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1852	2472370	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1853	2472371	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1854	2472372	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1855	2472373	32G04	56.26	CDC	Active	1/9/2017	1/8/2019	Minière Osisko inc.
1856	2472465	32G03	56.28	CDC	Active	1/12/2017	1/11/2019	Minière Osisko inc.
1857	2472466	32G03	56.28	CDC	Active	1/12/2017	1/11/2019	Minière Osisko inc.
1858	2473065	32G03	56.38	CDC	Active	1/20/2017	1/19/2019	Minière Osisko inc.
1859	2473066	32G03	55.58	CDC	Active	1/20/2017	1/19/2019	Minière Osisko inc.
1860	2473067	32G03	46.94	CDC	Active	1/20/2017	1/19/2019	Minière Osisko inc.
1861	2473068	32G03	49.92	CDC	Active	1/20/2017	1/19/2019	Minière Osisko inc.
1862	2473069	32G03	46.63	CDC	Active	1/20/2017	1/19/2019	Minière Osisko inc.
1863	2473070	32G03	0.88	CDC	Active	1/20/2017	1/19/2019	Minière Osisko inc.
1864	2473071	32G03	1.71	CDC	Active	1/20/2017	1/19/2019	Minière Osisko inc.
1865	2473072	32G03	0.23	CDC	Active	1/20/2017	1/19/2019	Minière Osisko inc.
1866	2473073	32G03	0.15	CDC	Active	1/20/2017	1/19/2019	Minière Osisko inc.
1867	2473074	32G03	3.42	CDC	Active	1/20/2017	1/19/2019	Minière Osisko inc.
1868	2473075	32G03	0.35	CDC	Active	1/20/2017	1/19/2019	Minière Osisko inc.
1869	2473076	32G03	0.23	CDC	Active	1/20/2017	1/19/2019	Minière Osisko inc.
1870	2473077	32G03	39.67	CDC	Active	1/23/2017	1/22/2019	Minière Osisko inc.
1871	2473078	32G03	27.19	CDC	Active	1/23/2017	1/22/2019	Minière Osisko inc.
1872	2473079	32G03	22.40	CDC	Active	1/23/2017	1/22/2019	Minière Osisko inc.
1873	2473080	32G03	32.66	CDC	Active	1/23/2017	1/22/2019	Minière Osisko inc.
1874	2473081	32G03	45.08	CDC	Active	1/23/2017	1/22/2019	Minière Osisko inc.
1875	2473082	32G03	56.16	CDC	Active	1/23/2017	1/22/2019	Minière Osisko inc.
1876	2473815	32B14	56.53	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1877	2473816	32B14	56.53	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1878	2473817	32B14	56.53	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1879	2473818	32B14	56.53	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1880	2473819	32B14	56.53	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1881	2473820	32B14	56.53	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1882	2473821	32B14	56.52	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1883	2473822	32B14	56.52	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1884	2473823	32B14	56.52	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1885	2473824	32B14	56.52	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1886	2473825	32B14	56.52	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1887	2473826	32B14	56.52	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1888	2473827	32B14	56.52	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1889	2473828	32B14	56.52	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1890	2473829	32B14	56.52	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1891	2473830	32B14	56.51	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1892	2473831	32B14	56.51	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1893	2473832	32B14	56.51	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1894	2473833	32B14	56.51	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1895	2473834	32B14	56.51	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1896	2473835	32B14	56.51	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1897	2473836	32B14	56.51	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1898	2473837	32B14	56.51	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1899	2473838	32B14	56.51	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1900	2473839	32B14	56.50	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1901	2473840	32B14	56.50	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1902	2473841	32B14	56.50	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1903	2473842	32B14	56.50	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1904	2473843	32B14	56.50	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1905	2473844	32B14	56.50	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1906	2473845	32B14	56.50	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1907	2473846	32B14	56.50	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1908	2473847	32B14	56.49	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1909	2473848	32B14	56.49	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1910	2473849	32B14	56.49	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1911	2473850	32B14	56.48	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1912	2473851	32B14	56.48	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1913	2473852	32B14	56.48	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1914	2473909	32B14	56.54	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1915	2473910	32B14	56.54	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1916	2473911	32B14	56.54	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1917	2473912	32B14	56.54	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1918	2473913	32B14	56.54	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1919	2473914	32B14	56.54	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1920	2473915	32B14	56.54	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1921	2473916	32B14	56.54	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1922	2473917	32B14	56.54	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1923	2473918	32B14	56.54	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1924	2473919	32B14	56.54	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1925	2473920	32B14	56.54	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1926	2473921	32B14	56.54	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1927	2473922	32B14	56.54	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1928	2473923	32B14	56.53	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1929	2473924	32B14	56.53	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1930	2473925	32B14	56.53	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1931	2473926	32B14	56.53	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1932	2473927	32B14	56.52	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1933	2473928	32B14	56.52	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1934	2473929	32B14	56.52	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1935	2473930	32B14	56.52	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1936	2473931	32B14	56.52	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1937	2473932	32B14	56.51	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1938	2473933	32B14	56.51	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1939	2473934	32B14	56.50	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1940	2473935	32B14	56.50	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1941	2473936	32B14	56.49	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1942	2473937	32B14	56.48	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1943	2473938	32B14	56.48	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1944	2473939	32B14	56.48	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1945	2473950	32B14	56.56	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1946	2473951	32B14	56.56	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1947	2473952	32B14	56.56	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1948	2473953	32B14	56.56	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1949	2473954	32B14	56.56	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1950	2473955	32B14	56.55	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1951	2473956	32B14	56.55	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1952	2473957	32B14	56.55	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1953	2473958	32B14	56.55	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1954	2473959	32B14	56.55	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1955	2473960	32B14	56.55	CDC	Active	1/30/2017	1/29/2019	Minière Osisko inc.
1956	2475585	32G02	56.33	CDC	Active	1/31/2017	1/30/2019	Minière Osisko inc.
1957	2475586	32G03	56.44	CDC	Active	1/31/2017	1/30/2019	Minière Osisko inc.
1958	2475587	32G03	56.38	CDC	Active	1/31/2017	1/30/2019	Minière Osisko inc.
1959	2475588	32G03	56.37	CDC	Active	1/31/2017	1/30/2019	Minière Osisko inc.
1960	2475589	32G03	56.36	CDC	Active	1/31/2017	1/30/2019	Minière Osisko inc.
1961	2475590	32G03	56.33	CDC	Active	1/31/2017	1/30/2019	Minière Osisko inc.
1962	2475591	32G03	56.32	CDC	Active	1/31/2017	1/30/2019	Minière Osisko inc.
1963	2484527	32B14	55.32	CDC	Active	3/16/2017	3/15/2019	Minière Osisko inc.
1964	2484528	32B14	23.02	CDC	Active	3/16/2017	3/15/2019	Minière Osisko inc.
1965	2484529	32B14	52.42	CDC	Active	3/16/2017	3/15/2019	Minière Osisko inc.
1966	2484530	32B14	20.09	CDC	Active	3/16/2017	3/15/2019	Minière Osisko inc.
1967	2484531	32B14	21.23	CDC	Active	3/16/2017	3/15/2019	Minière Osisko inc.

Item	Title	NTS	Area (Ha)	Туре	Status	Staking Date	Expiration Date	Owner (according to GESTIM)
1968	2484532	32B14	53.54	CDC	Active	3/16/2017	3/15/2019	Minière Osisko inc.
1969	2484533	32B14	30.55	CDC	Active	3/16/2017	3/15/2019	Minière Osisko inc.
1970	2484534	32B14	55.91	CDC	Active	3/16/2017	3/15/2019	Minière Osisko inc.
1971	2484535	32B14	8.01	CDC	Active	3/16/2017	3/15/2019	Minière Osisko inc.
1972	2484536	32B14	1.19	CDC	Active	3/16/2017	3/15/2019	Minière Osisko inc.
1973	2491612	32B13	56.56	CDC	Active	5/5/2017	5/4/2019	Minière Osisko inc.
1974	2491613	32B13	56.55	CDC	Active	5/5/2017	5/4/2019	Minière Osisko inc.
1975	2492749	32G04	56.42	CDC	Active	5/24/2017	5/23/2019	Minière Osisko inc.
1976	2493123	32B14	56.49	CDC	Active	5/24/2017	5/23/2019	Minière Osisko inc.
1977	2493124	32B14	56.49	CDC	Active	5/24/2017	5/23/2019	Minière Osisko inc.
1978	2493125	32B14	56.47	CDC	Active	5/24/2017	5/23/2019	Minière Osisko inc.
1979	2493126	32B14	56.47	CDC	Active	5/24/2017	5/23/2019	Minière Osisko inc.
1980	2493127	32B14	56.47	CDC	Active	5/24/2017	5/23/2019	Minière Osisko inc.
1981	2495061	32B13	56.59	CDC	Active	6/9/2017	6/8/2019	Minière Osisko inc.
1982	2495062	32B13	56.59	CDC	Active	6/9/2017	6/8/2019	Minière Osisko inc.
1983	2495063	32B13	56.58	CDC	Active	6/9/2017	6/8/2019	Minière Osisko inc.
1984	2495064	32B13	56.58	CDC	Active	6/9/2017	6/8/2019	Minière Osisko inc.
1985	2499645	32G04	56.41	CDC	Active	8/11/2017	8/10/2019	Minière Osisko inc.
1986	2499653	32G04	56.40	CDC	Active	8/11/2017	8/10/2019	Minière Osisko inc.
1987	2499654	32G04	56.38	CDC	Active	8/11/2017	8/10/2019	Minière Osisko inc.
1988	2499655	32G04	56.45	CDC	Active	8/11/2017	8/10/2019	Minière Osisko inc.
1989	2499656	32G04	56.44	CDC	Active	8/11/2017	8/10/2019	Minière Osisko inc.
1990	2499658	32G03	56.27	CDC	Active	8/11/2017	8/10/2019	Minière Osisko inc.
1991	2499659	32G03	56.27	CDC	Active	8/11/2017	8/10/2019	Minière Osisko inc.
1992	2499660	32G03	56.35	CDC	Active	8/11/2017	8/10/2019	Minière Osisko inc.
1993	2499661	32G03	56.35	CDC	Active	8/11/2017	8/10/2019	Minière Osisko inc.
1994	2499684	32G04	56.43	CDC	Active	8/11/2017	8/10/2019	Minière Osisko inc.
1995	2505919	32G03	56.39	CDC	Active	11/21/2017	11/20/2019	Minière Osisko inc.
1996	2505921	32G03	56.40	CDC	Active	11/21/2017	11/20/2019	Minière Osisko inc.
1997	2505922	32G03	56.39	CDC	Active	11/21/2017	11/20/2019	Minière Osisko inc.
		•	Urban-E	Barry Claim		9, 2018; 1,997 Cla	aims for 110,748.44 Ha	3

APPENDIX II - EXPLORATION REPORTS FOR WORK DONE PARTIALLY OR ENTIRELY WITHIN THE BOUNDS OF THE CURRENT URBAN-BARRY PROPERTY

Report	Title	Year	Township	Work done	Author	Company	Claim holder
GM 00910- A	Report On Resistivity Survey On Portion Of The Meston Option	1950	Souart	Levé de résistivité, localisation de sondage	Mccannell, J D, Randell, J T	Geo-Technical Dev Co Ltd	Roybar Uranium & Gold Mines L
GM 05363	Report On Sheilann Lake Property	1956	Ralleau	Levé géologique	Grant, G W	Amaco Dev Corp Ltd	Claims Wilkinson, Spes Expls Ltd
GM 05817- A	Sketch Of Dip Needle Survey	1957	Carpiquet	Levé magnétique au sol			Merrill Island Mining Corp Ltd
GM 05817- B	13 DDH Logs	1957	Carpiquet	Sondage			Merrill Island Mining Corp Ltd
GM 06011	Report On New Discovery	1937	Barry	Analyse de roche, levé géologique	Corbett, H E	Corbett, Howe & Associates Ltd, J T Donald & Co Ltd	Barry Lake Gold Mines Ltd
GM 06012	Report On Property	1936	Barry	Levé géologique	Howe, R W		Barry Lake Gold Mines Ltd
GM 07811	Report, Aerial Electromagnetic Survey	1958	Carpiquet Urban	Levé EM aérien	Sander, G W	Northfield Geophysical Corp L	Claims Hoyle, Claims Macdonald
GM 09077	Report On Combined Em And Magnetometer Survey	1959	Carpiquet Urban	Levé EM au sol, levé géologique, levé magnétique au sol	Sander, G W		Claims Knight, Fab Metal Mines Ltd
GM 09416- A	2 Plans Of Trenches	1959	Carpiquet	Travaux de surface			Aumacho River Mines Ltd
GM 09416- B	Report On Mag-Em Surveys	1959	Carpiquet	Levé EM au sol, levé magnétique au sol	Sander, G W		Aumacho River Mines Ltd, Nightlen Mines Ltd
GM 09881	Geophysical Reconnaissance Survey	1960	Bressani Marceau	Levé EM au sol, levé magnétique au sol	Amos, A		Claims Beauchemin
GM 10503- A	Report On Mag-EM Surveys	1960	Carpiquet Urban	Levé EM au sol, levé magnétique au sol, localisation de sondage	Sander, G W		Claims Boylen, Claims Knight
GM 10686	Report On EM And Magnetometer Survey	1960	Carpiquet	Levé EM au sol, levé magnétique au sol	Sander, G W	George Sander Ltd	Aumacho River Mines Ltd
GM 10687	Report On EM And Magnetometer Survey	1960	Carpiquet	Levé EM au sol, levé magnétique au sol	Sander, G W	George Sander Ltd	Nightlen Mines Ltd
GM 10688	Report On EM And Magnetometer Survey	1960	Carpiquet	Levé EM au sol, levé magnétique au sol	Sander, G W	George Sander Ltd	Claims Brink, Claims Sander
GM 11163	1 Plan Of Electromagnetic Survey	1960	Marceau	Levé EM au sol	Rodgers, T		Sogemines Dev Co Ltd
GM 11523	Report On The Properties	1961	Carpiquet Ste-Helene Urban	Analyse de roche, levé géologique	Simard, L R		Fab Metal Mines Ltd
GM 12533	Geological Report With 2 Sketches Of Property Location	1962	5745 Carpiquet Ste-Helene Urban	Levé géologique	Simard, L R		Fab Metal Mines Ltd
GM 13523	Geological Report With 2 Sketches Of Property Location	1963	5745 Barry Carpiquet Urban	Analyse de roche, levé géologique	Simard, L R		Fab Metal Mines Ltd
GM 15663	Report On The Properties	1964	Barry Carpiquet Urban	Analyse de roche, levé géologique	Simard, L R		Fab Metal Mines Ltd
GM 15993	Report On Magnetometer Survey	1965	Ralleau	Levé magnétique au sol	Dumont, G H		Anglo American Mining Corp Ltd, Claims Germain
GM 16206	Geoghysical Surveys	1965	Carpiquet	Levé EM au sol, levé géologique, levé magnétique au sol	Shaw, W W		Southwest Potash Corp
GM 16333	Report On Airborne Geophysical Survey, Project No 5032	1965	Carpiquet Effiat	Levé EM aérien	Rattew, A R	Canadian Aero Mineral Svys Ltd	Claims Belanger, Claims Desjardins
GM 16781	Report On Geological, Magnetic And Electromagnetic Surveys	1965	Lacroix	Levé EM au sol, levé géologique, levé magnétique au sol, localisation de sondage	Londry, J		Southwest Potash Corp
GM 16783	Report On Geological, Magnetic And Electromagnetic Surveys, Group 7	1965	Lacroix	Levé EM au sol, levé géologique, levé magnétique au sol	Londry, J		Southwest Potash Corp
GM 17075	Report On The Properties	1965	Barry Carpiquet Urban	Analyse de roche, levé géologique	Zurowski, M		Fab Metal Mines Ltd

Report	Title	Year	Township	Work done	Author	Company	Claim holder
GM 17774	Rapport Sur Un Groupe De Claims Situes Au Lac Aux Loutres	1966	Barry	Levé géologique	Lacombe, P G, Pudifin, A D	P G Lacombe & Associes, Pudifin & Co	Claims Mineau
GM 17775	Relevés Geophysiques, Lac Aux Loutres	1966	Barry	Levé EM au sol, levé magnétique au sol	Lacombe, P G	P G Lacombe & Associes	Claims Mineau
GM 17776- A	Rapport Sur Un Relevé Au Magnetometre, Lac Aux Loutres	1966	Barry	Levé magnétique au sol	Lacombe, P G	P G Lacombe & Associes	Claims Bouffard, Claims Mineau
GM 17776- B	Rapport Complementaire, Relevé Magnetometrique, Lac Aux Loutres	1966	Barry	Levé magnétique au sol	Lacombe, P G		Claims Mineau
GM 17776- C	Brief Report On Magnetometer Survey, Bouffard Claims	1966	Barry	Levé magnétique au sol	Pudifin, A D	Pudifin & Co	Claims Bouffard, Claims Mineau
GM 17845	Report On Geophysical Survey And Location Of Old Drill Holes	1965	Barry Souart	Analyse de roche, levé EM au sol, levé magnétique au sol, localisation de sondage	Szetu, S S	Cana Expl Consultants Ltd	Claims Richmond, Goldmaster Mines Ltd
GM 18253	Geophysical Survey Report	1966	Ralleau	Levé EM au sol, levé magnétique au sol	Honsberger, J A		Anglo American Ni Mng Corp Ltd
GM 18258	Report On Magnetometer Survey	1966	Urban	Levé magnétique au sol	Pudifin, A D		Fab Metal Mines Ltd
GM 20368	Relevé Magnetometrique Complementaire, Relevé Electromagnétique	1967	Barry	Levé EM au sol, levé magnétique au sol	Lacombe, P G	P G Lacombe & Associes	Claims Mineau
GM 20369	Rapport Complementaire, Relevé Magnetometrique, Lac Aux Loutres	1967	Barry	Levé magnétique au sol	Lacombe, P G	P G Lacombe & Associes	Claims Mineau
GM 20716	Report On Yvonne Lake Property	1967	Bressani	Levé géologique, levé magnétique au sol, levé radiometrique au sol	Dumont, P E		CanadorEMining & Dev Corp
GM 20883	Report On Yvonne Lake Property	1967	Bressani	Evaluation technique	Dumont, P E		Canadore Mining & Dev Corp
GM 20989	Location Plan Of Surface Works	1967	Urban	Travaux de surface			Fab Metal Mines Ltd
GM 22569	Report On Work Done	1968	Bressani	Levé géologique, levé magnétique au sol, levé radiometrique au sol, localisation de sondage	Dumont, P E		Canadore Mining & Dev Corp
GM 23008	Diamond Drill Record	1968	Bressani	Analyse de roche, sondage au diamant	Veilleux, C A		Canadore Mining & Dev Corp
GM 24424	Report Of Geophysical Surveys, Mid-North Option	1969	Carpiquet	Levé EM au sol, levé magnétique au sol	Tays, R H		Falconbridge Nickel Mines Ltd
GM 24656	Report Of Geophysical Surveys, Prospect Q	1969	Carpiquet	Levé EM au sol, levé magnétique au sol	Tays, R H		Opemiska Copper Mines Ltd
GM 29733	Report On The Lac Aux Loutres Claim Groups	1973	Barry	Levé magnétique au sol	Honsberger, J A		Claims Okazaki
GM 32459	Report On Geophysical Surveys On Grid Number 8, Barry Project	1976	Souart	Levé EM au sol, levé magnétique au sol	Bergmann, H J	Prospecting Geophysics Ltd	Shell Canada Ltd
GM 32463	Report On Geophysical Surveys On Grid Number 21, Barry Project	1976	Barry	Levé EM au sol, levé magnétique au sol	Bergmann, H J	Prospecting Geophysics Ltd	Shell Canada Ltd
GM 32464	Report On Geophysical Surveys On Grid Number 24, Barry Project	1976	Barry	Levé EM au sol, levé magnétique au sol	Bergmann, H J	Prospecting Geophysics Ltd	Shell Canada Ltd
GM 32468	Report On Geophysical Surveys On Grid Numbers 38, 39, 41 And 45	1976	Lacroix Urban	Levé EM au sol, levé magnétique au sol	Bergmann, H J	Prospecting Geophysics Ltd	Shell Canada Ltd
GM 32469	Report On Geophysical Surveys On Grid Number 46, Barry Project	1976	Lacroix	Levé EM au sol, levé magnétique au sol	Bergmann, H J	Prospecting Geophysics Ltd	Shell Canada Ltd
GM 32470	Report On Geophysical Surveys On Grid Number 55, Barry Project	1976	Lacroix	Levé EM au sol, levé magnétique au sol	Bergmann, H J	Prospecting Geophysics Ltd	Shell Canada Ltd

Report	Title	Year	Township	Work done	Author	Company	Claim holder
GM 32471	Report On Geophysical Surveys On Grids Numbered 56 And 57, Barry Project	1976	Buteux Lacroix	Levé EM au sol, levé magnétique au sol	Bergmann, H J	Prospecting Geophysics Ltd	Shell Canada Ltd
GM 32472	Report On Geophysical Surveys On Grid Number 85, Barry Project	1976	Buteux	Levé EM au sol, levé magnétique au sol	Bergmann, H J	Prospecting Geophysics Ltd	Shell Canada Ltd
GM 32473	Report On Geophysical Surveys On Grid Number 92b, Barry Project	1976	Barry	Levé EM au sol, levé magnétique au sol	Bergmann, H J	Prospecting Geophysics Ltd	Shell Canada Ltd
GM 32474	Report On Geophysical Surveys On Grid Number 95, Barry Project	1976	Buteux Marceau	Levé EM au sol, levé magnétique au sol	Bergmann, H J	Prospecting Geophysics Ltd	Shell Canada Ltd
GM 32475	Report On Geophysical Surveys On Grid Number 96, Barry Project	1976	Buteux Marceau	Levé EM au sol, levé magnétique au sol	Bergmann, H J	Prospecting Geophysics Ltd	Shell Canada Ltd
GM 32476	Report On Geophysical Surveys On Grid Number 103, Barry Project	1976	Buteux	Levé EM au sol, levé magnétique au sol	Bergmann, H J	Prospecting Geophysics Ltd	Shell Canada Ltd
GM 32477	Report On Geophysical Surveys On Grid Number 109	1976	Marceau	Levé EM au sol, levé magnétique au sol	Bergmann, H J	Prospecting Geophysics Ltd	Shell Canada Ltd
GM 32478	Report On Geophysical Surveys On Grid Number 128	1976	Marceau	Levé EM au sol, levé magnétique au sol	Bergmann, H J	Prospecting Geophysics Ltd	Shell Canada Ltd
GM 32482	Report On Airborne Geophysical Survey In The Barry Project Area	1975		Levé EM aérien, levé magnétique aérien	Stemp, R W	Kenting Earth Sciences Ltd	Shell Canada Ltd
GM 33284	Geological Report Of The Areas Covering AEM Anomalies 12, 32, 55, 92b, 95 And 101	1977	Barry Buteux Lacroix	Analyse de roche, levé géologique	Cote, R	Shell Canada Resources Ltd, Technical Service Laboratories	Shell Canada Resources Ltd
GM 33285	Report On Soil Geochemical Surveys, Areas On AEM Anomalies 32 And 55	1977	Barry Lacroix	Sol, géochimie	Cote, R	Assayers Ltd, Shell Canada Resources Ltd	Shell Canada Resources Ltd
GM 33286	Report On Geophysical Surveys On Aem Anomalies 2, 22 And 47, Barry Project	1977	Belmont Carpiquet Urban	Levé EM au sol, levé géologique, levé magnétique au sol	Bergmann, H J	Prospecting Geophysics Ltd	Shell Canada Resources Ltd
GM 36999	Property Geology Report, Barry Lake Project, Barry And Urban Groups	1980	Barry Urban	Analyse de roche, levé géologique	Sullivan, P		Mattagami Lake Expl Ltd
GM 37112	Urban Gold Showings, Alix-Salamis Claims	1980	Barry Urban	Analyse de roche, levé géologique, localisation de sondage	Salamis, C	C Salamis & Associates Inc	Claims Alix, Claims Desautels
GM 37200	Report On Gold-Bearing Mineralization, Thirty Claims Mining Property	1980	Souart	Analyse de roche, levé géologique, localisation de sondage	Ingham, W N		Tut Expls Inc
GM 37985	Helicopter Electromagnetic And Magnetic Survey, Urban, Barry, Souart, Carpiquet Townships	1981	Barry Carpiquet Souart Urban	Levé EM aérien, levé magnétique aérien	Hogg, R L S	Aerodat Ltd	Claims Alix, Jason Resources Ltd
GM 38783	Sommaire Des Travaux Effectués Sur La Propriété Ca-2, Projet Barry	1982	Carpiquet	Analyse de roche, levé géologique	Duplessis, D		SDBJ
GM 38784	Rapport De Geophysique, Levés VIf, Mag, Max-Min, Projet Barry	1982	Barry Souart Urban	Levé EM h, levé EM v, levé magnétique au sol, levé VLF au sol	Duplessis, D, Kennedy, I		SDBJ
GM 38804	Airborne Electromagnetic Survey, Barry (North) Project	1977	Belmont Bressani Buteux Lespinay Marceau	Levé input, levé magnétique aérien	De Carle, R J	Questor Surveys Ltd	Shell Canada Ltee
GM 38826	Report On Airborne Geophysical Survey In The Barry Project Area	1975	Bailly Balete Barry Belmont Buteux	Levé EM aérien, levé magnétique aérien	Stemp, R W	Kenting Earth Sciences Ltd	Shell Canada Ltee

Report	Title	Year	Township	Work done	Author	Company	Claim holder
GM 38828	Summary Report, Barry Lake Project	1977	Bailly Balete Barry Belmont Bressani	Analyse de roche, levé géologique, localisation de sondage, sondage au diamant	Beaulieu, J R, Cote, R		Shell Canada Ltee
GM 38829	Progress Report, Barry North And Barry (Reassessment) Projects	1977	Belmont Bressani Buteux Lacroix Lespinay	Levé géologique, sondage au diamant	Cote, R		Shell Canada Ltee
GM 38830	Geology And Compilation, Barry Project	1976	Lacroix	Levé géologique	Beaulieu, J R, Cote, R		Shell Canada Ltee
GM 38831	Geology & Compilation, Barry Project	1976	Buteux	Levé géologique	Beaulieu, J R, Gauthier, Y		Shell Canada Ltee
GM 38834	Geology And Compilation, Barry Project	1976	Bressani Marceau	Levé géologique	Beaulieu, J R, Cote, R		Shell Canada Ltee
GM 38837	Geology And Compilation, Barry Project	1976	Carpiquet	Levé géologique	Beaulieu, J R		Shell Canada Ltee
GM 38840	Geological Report On The Wilson Lake Greenstone Belt	1979	Carpiquet Effiat Ralleau Verneuil Winson	Levé géologique	Birkett, T C		Shell Canada Ltee
GM 39750	Rapport Annuel 1981, Projet Barry, Secteur Lac Aux Loutres	1981	Barry Carpique Souart Urban	Analyse de roche, levé géologique	Duplessis, D		SDBJ
GM 39972	Rapport Annuel 1982, Projet Barry, Secteur Lac Aux Loutres	1982	Barry Souart	Levé EM au sol, levé magnétique au sol, levé VLF au sol	Duplessis, D		SDBJ
GM 40144	Preliminary Report, Macho River Property	1983	Souart	Analyse de roche, evaluation technique	Descarreaux, J	J Descarreaux & Associes Ltee	Ressources Oasis Inc
GM 40348	Report On Geophysical Work, Lac Rouleau Project	1983	Barry	Levé EMH, levé magnétique au sol, levé VLF au sol	Slankis, J A		Exploration Miniere Kidd Creek
GM 40581	Report On Geophysical Wok, Claim Group #2, Lac Rouleau Project	1983	Barry Urban	Levé EMH, levé magnétique au sol, levé VLF au sol	Slankis, J A		Exploration Miniere Kidd Creek
GM 41019	Report On Magnetic Work On The Souart Township Property	1984	Souart	Levé magnétique au sol, levé VLF au sol	Gosselin, R	Rejean Gosselin & Associes Inc	Ressources Oasis Inc
GM 41244	Rapport Preliminaire, Projet Marin-Barry, Propriétés Azt-1 Et Chris- 1	1984	Barry	Levé de PP, levé EMH, levé géologique, levé magnétique au sol, levé VLF au sol, sondage au diamant	Duplessis, D, Guimond, J L		Mines Camchib Inc
GM 41246	Report On Induced Polarization And Resistivity Surveys On The Azt Property	1983	Barry	Levé de PP, levé de résistivité	Webster, B	Jvx Ltd	Mines Camchib Inc
GM 41250	Rapport Annuel 1983: Projet Marin-Barry	1984	Barry Lacroix Urban	Levé EMH, levé géologique, levé magnétique au sol, sondage au diamant	Duplessis, D, Guimond, J L		Mines Camchib Inc
GM 41254	Compilation Results, Marin-Barry Project	1984	Barry Buteux Lacroix Urban	Analyse de roche, evaluation technique, levé géologique	Duplessis, D		Mines Camchib Inc
GM 41353	Rapport Sur Les Travaux De Reconnaissance Effectues Sur Les Propriétés Du Projet Marin-Barry	1984	Belmont Buteux Du Guesclin Lacroix Urban	Analyse de roche, levé géologique, levé magnétique au sol, levé VLF au sol	Archer, P, Tremblay, E	Chimitec Ltee	Explorations Noranda Ltee
GM 41489	Rapport Preliminaire, Projet Marin-Barry, Propriété Urb-3	1984	Urban	Levé géologique, levé VLF au sol	Duplessis, D		Mines Camchib Inc
GM 42922	Report	1986	Souart	Levé de PP	Hallof, P G	Phoenix Geophysics Ltd, Val D'or Geophysique Ltee	Ressources Oasis Inc

Report	Title	Year	Township	Work done	Author	Company	Claim holder
GM 42946	Report On Combined Helicopter Borne, Magnetic, Electromagnetic And Vlf Survey, Bachelor Lake, Area D2 - Barry	1985	Barry	Diagraphie EM, levé EM aérien, levé magnétique aérien, levé VLF aérien	Podolsky, G	Aerodat Ltd	Exploration Kerr Addison Inc
GM 42947	Report On Combined Helicopter Borne, Magnetic, Electromagnetic And Vlf Survey, Bachelor Lake, Areas D1 And D3	1985	Barry Carpiquet Urban	Diagraphie EM, levé EM aérien, levé magnétique aérien, levé VLF aérien	Podolsky, G	Aerodat Ltd	Exploration Kerr Addison Inc
GM 43391	Magnetic Survey, Barry Township	1986	Barry	Levé magnétique au sol	Lavoie, C, Plante, L	Geola Ltee	Exploration Miniere Kidd Creek
GM 43738	Report On Geophysical Surveys, Camchib Option Project	1986	Lacroix	Levé EMH, levé magnétique au sol, levé VLF au sol	Beckmann, H		Exploration Rio Algom Inc
GM 44050	Geological Report, Camchib Option	1986	Lacroix	Analyse de roche, levé géologique	Bertoni, C H		Exploration Rio Algom Inc
GM 44215	Report On The Gold Property	1986	Barry Souart	Evaluation technique	Larouche, C		Exploration Moisson D'or Inc
GM 44216	Report On Airborne Geophysical Surveys	1986	Barry Souart	Levé magnétique aérien, levé VLF aérien	Scott, F	H Ferderber Geophysics Ltd	Exploration Moisson D'or Inc
GM 44345	A Report For Geophysical Surveys Conducted On The Souart Property	1987	Souart	Levé gradiométrique au sol, levé magnétique au sol, levé VLF au sol	Mccurdy, S E	Relevés C D I Surveys Inc	Ressources Onyx Inc
GM 44367	A Report For Geophysical Surveys	1987	Barry	Levé magnétique au sol, levé VLF au sol	Mccurdy, S E	Relevés C D I Surveys Inc	Exploration Norwood Inc
GM 44389	A Report For Geophysical Surveys Conducted On The Souart Property	1987	Souart	Levé gradiométrique au sol, levé magnétique au sol, levé VLF au sol	Mccurdy, S E	Relevés C D I Surveys Inc	Exploration Oz Inc
GM 44396	Assessment Report, Macho Project	1987	Barry Buteux Maseres Souart Urban	Analyse de roche, levé géologique	Cook, R B, Moore, D W		Cominco Ltee
GM 44401	A Report For Geophysical Sueveys	1987	Barry	Levé magnétique au sol, levé VLF au sol	Mccurdy, S E	Relevés C D I Surveys Inc	Ressources Farboro Inc
GM 44460	Rapport Géologique, Projet Panache	1986	Carpiquet Urban	Analyse de roche, évaluation technique, levé géologique, localisation de sondage	Beauregard, A J, Gaudreault, D	Geologica Inc	Mines D'or Malartic Hygrade
GM 44463	Report On Buteux Property And Desjardins Property	1986	Buteux Desjardins	Évaluation technique	Cavey, G, Lebel, L	Orequest Consultants Ltd	Beaver Creek Goldfields Inc
GM 44494	Interpretation Of Airborne EM (Input) And Magnetics Data, Project Panache	1986	Carpiquet Urban	Levé input, levé magnétique aérien	Mccurdy, S E	Relevés C D I Surveys Inc	Mines D'or Malartic Hygrade
GM 44497	A Report On Geophysical Surveys On The Panache Project	1987	Carpiquet Urban	Levé magnétique au sol, levé VLF au sol	Mccurdy, S E	Relevés C D I Surveys Inc	Mines D'or Malartic Hygrade
GM 44513	A Report For Geophysical Surveys Conducted On The Novellor Project	1987	Carpiquet Effiat Ralleau	Levé gradiométrique au sol, levé magnétique au sol, levé VLF au sol, sol, géochimie	Mccurdy, S E	Relevés C D I Surveys Inc	Mines Sullivan Inc
GM 44514	Interpretation Of Airborne EM (Input) And Magnetics Data, Novellor Project	1987	Carpiquet Effiat Ralleau	Levé gradiométrique aérien, levé input, levé magnétique aérien	Mccurdy, S E	Geophysical Surveys Inc, Questor Surveys Ltd	Mines Sullivan Inc
GM 44537	Rapport De Levés Geophysiques, Propriété Belmont-Lacroix	1987	Belmont Lacroix	Levé magnétique au sol, levé VLF au sol	Lamothe, G	Magma Expl Inc	Claims Lamothe
GM 44538	Propriété De Roland Mainville & Associes	1987	Souart	Evaluation technique	Garneau, A G	Alain G Garneau & Associes Inc	Claims Mainville
GM 44589	Maxmin And Magnetometer Surveys, Urban "A" And "B"	1987	Urban	Levé EMH, levé gradiométrique au sol, levé magnétique au sol	Desbiens, R, Gaucher, E	Edwin Gaucher & Associes Inc	Exploration Kerr Addison Inc, Soc En Commandite Expl Kery

Report	Title	Year	Township	Work done	Author	Company	Claim holder
GM 44596	Report On The Reconnaissance Induced Polarization And Resistivity Survey, Lac Barry Property	1987	Barry Urban	Levé de PP	Hallof, P G	Val D'or Geophysique Ltee, Walcer Geophysics Ltd	Exploration Miniere Kidd Creek
GM 44597	Magnetic Survey, Lac Barry (098-101) Project, Lac Barry Block	1987	Barry Urban	Levé gradiométrique au sol, levé magnétique au sol	Turcotte, R	Val D'or Geophysique Ltee	Exploration Miniere Kidd Creek
GM 44598	Magnetic Survey, Lac Barry (098-101) Project, Macho River Block	1987	Carpiquet Urban	Levé gradiométrique au sol, levé magnétique au sol	Turcotte, R	Val D'or Geophysique Ltee	Exploration Miniere Kidd Creek
GM 44744	Report And Recommendations, Lac Fecteau Claim Group	1987	Buteux	Analyse de roche, evaluation technique, levé géologique	Lamothe, G, Smith, P H	Bondar-Clegg & Co Ltd	Claims Parceaud
GM 45021	Summary Report, Riviere St. Cyr Property	1987	Lacroix	Analyse de roche, levé géologique	Smith, P H	Bondar-Clegg & Co Ltd, Magma Expl Inc	Claims Lamothe
GM 45023	Magnetometer And VIf Surveys, Buteux Property	1987	Buteux	Levé magnétique au sol, levé VLF au sol	Gaucher, E A, St-Pierre, R	Edwin Gaucher & Associes Inc	Beaver Creek Goldfields Inc
GM 45033	A Report For Geophysical Surveys Conducted On The Souart Property	1987	Barry Souart	Levé EMH, levé magnétique au sol	Mccurdy, S E	Relevés C D I Surveys Inc	Claims Boudrias, Claims Champagne
GM 45086	Rapport De Travaux Realises En 1986 Sur La Propriété Novellor	1987	Carpiquet Effiat	Analyse de roche, evaluation technique, sondage au diamant	Asselin, R, Beauregard, A J	Geologica Inc	Mines Sullivan Inc
GM 45088	A Report For Geophysical Surveys, Novellor Project	1987	Effiat Ralleau	Levé magnétique au sol, levé VLF au sol	Mccurdy, S	Relevés C D I Surveys Inc	Mines Sullivan Inc
GM 45196	A Report On Geophysical Surveys, Panache Project	1987	Carpiquet Urban	Levé magnétique au sol, levé VLF au sol	Mccurdy, S	Relevés C D I Surveys Inc	Mines D'or Malartic Hygrade
GM 45207	A Report On Geophysical Surveys, Eagle River Property	1987	Belmont Buteux Lacroix Urban	Levé magnétique au sol, levé VLF au sol	Mccurdy, S	Relevés C D I Surveys Inc	Claims Duchesne
GM 45295	Rapport De Travaux Supplementaires, Propriété Barry	1987	Barry	Evaluation technique, levé géologique	Beauregard, A J, Gaudreault, D	Geologica Inc	Ressources Farboro Inc
GM 45401	Magnetometer Survey, Urb-3 Property	1987	Urban	Levé magnétique au sol	Bussieres, Y	G M Expl Inc	150990 Canada Ltd
GM 45850	A Report On Geophysical Surveys Conducted On The Macho River Property	1987	Souart	Levé EMH, levé magnétique au sol	Mccurdy, S E	Relevés C D I Surveys Inc	Ressources Oasis Inc
GM 46228	Geophysical And Geochemical Report, Souart Property	1987	Souart	Levé magnétique au sol, levé VLF au sol, sol, géochimie	Parise, J C	Chimitec Ltee, Supervision Geo- X Inc	Exploration Moisson D'or Inc
GM 46401	Report On The Airborne Geophysical Survey	1988	Souart	Levé magnétique aérien, levé VLF aérien	Henriksen, G N	H Ferderber Geophysics Ltd	Claims Champagne, Claims Mainville
GM 46415	Rapport, Propriété Du Lac Yvonne	1987	Bressani	Evaluation technique	Tremblay, A	Groupe Conseil Roche Ltee	Orilya Expl Inc
GM 46447	Rapport Géologique, Propriété Freeman- Buteux	1987	Buteux Lespinay	Analyse de roche, levé géologique, sondage au diamant	Hussey, J	Chimitec Ltee	Soquem
GM 46448	Rapport Geophysique, Propriété Freeman- Buteux	1988	Buteux Lespinay	Levé de PP, levé EMH, levé magnétique au sol	Theriault, G	Norex Enrg	Soquem
GM 46701	A Report On Geophysical Surveys Conducted On The Eagle River Property	1988	Belmont Buteux Lacroix Urban	Levé magnétique au sol, levé VLF au sol	Mccurdy, S	Semex Geophysics Inc	Claims Duchesne, Messeguay Mines Inc
GM 46968	Journal De Sondage, Projet Panache	1987	Carpiquet	Analyse de roche, sondage au diamant	Dorion, S, Guerette, G		Exploration Oz Inc, Mines D'or Malartic Hygrade
GM 46969	Levé De Polarisation Provoquee, Prorpiete Panache	1988	Carpiquet	Levé de PP	Boivin, M, Lortie, P	Sagax Geophysique Inc	Exploration Oz Inc, Mines D'or Malartic Hygrade

Report	Title	Year	Township	Work done	Author	Company	Claim holder
GM 47028	Rapport De Levés Magnétiques Et Electromagnétiques, Propriété De La Riviere St-Cyr	1988	Lacroix	Levé magnétique au sol, levé VLF au sol	Allard, M	Magma Expl Inc	Ressources Fort Rupert Ltee
GM 47130	Geophysical Survey, Barry West Project	1988	Barry	Levé de PP, levé gradiométrique au sol, levé magnétique au sol	Lambert, G, Turcotte, R	Val D'or Geophysique Ltee	Exploration Kerr Addison Inc
GM 47140	Geophysical Survey, Urban Project	1988	Urban	Levé de PP, levé gradiométrique au sol, levé magnétique au sol	Lambert, G, Turcotte, R	Val D'or Geophysique Ltee	Exploration Kerr Addison Inc
GM 47177	Rapport De Travaux D'exploration, Propriété Belmont-Lacroix	1988	Belmont Lacroix	Levé géologique, levé VLF au sol, localisation de sondage	Lamothe, G	Magma Expl Inc	Claims Lamothe
GM 47330	Dighem lii Survey, Lac Barry Project	1988	Bailly Lacroix Urban	Levé dighem, levé magnétique aérien, levé VLF aérien	Mcconnell, D L	Dighem Surveys & Processing I	Falconbridge Ltee
GM 47563	Dighem lii Survey	1988	Barry Souart	Levé dighem, levé gradiométrique aérien, levé magnétique aérien, levé VLF aérien	Mcconnell, D L	Dighem Surveys & Processing I	Somine Inc
GM 47599	Levé De Polarisation Provoquee, Propriété Novellor	1988	Effiat Ralleau	Levé de PP	Nantel, J J	Sagax Geophysique Inc	Cambior Inc
GM 47657	Dighem lii Survey, Propriété Lacroix	1988	Lacroix	Levé dighem, levé magnétique aérien, levé VLF aérien	Mcconnell, D L	Dighem Surveys & Processing I	Ressources Ojibway Ltee
GM 47709	Rapport Des Travaux De Reconnaissances, Propriété Du Lac Yvonne	1988	Bressani	Levé géologique, levé magnétique au sol, sol, géochimie	Derosier, C	Christian Derosier Geologue- Conseil Inc	Orilya Expl Inc
GM 47783	Rapport Sur Les Travaux D'exploration Effectues En 1987-1988, Propriété Novellor-Est	1988	Carpiquet	Analyse de roche, levé géologique, sondage au diamant	Chainey, D, Guerette, G		Cambior Inc
GM 47784	Levé De Polarisation Provoquee, Propriété Novellor, Projet 454	1988	Carpiquet	Levé de PP	Conway, P	Sagax Geophysique Inc	Cambior Inc
GM 47785	Rapport Sur Les Travaux D'exploration Effectués En 1987-1988, Propriété Panache	1988	Carpiquet Urban	Analyse de roche, levé géologique, sondage au diamant	Chainey, D, Dorion, S		Mines D'or Malartic Hygrade
GM 47893	Rapport Sur Les Travaux D'exploration, Propriété Souart	1988	Souart	Analyse de roche, levé géologique	Chainey, D		Ressources Onyx Inc
GM 47894	Levé De Polarisation Provoquee, Propriété Souart	1988	Souart	Levé de PP	Nantel, J J	Sagax Geophysique Inc	Ressources Onyx Inc
GM 47896	Rapport Sur Les Travaux D'exploration, Propriété Barry	1988	Barry	Analyse de roche, levé géologique	Chainey, D, Richer, V		Exploration Norwood Inc
GM 47897	Levé De Polarisation Provoquee, Propriété Barry	1988	Barry	Levé de PP	Nantel, J J	Sagax Geophysique Inc	Exploration Norwood Inc
GM 47910	Levé De Polarisation Provoquee, Propriété Barry, Projets 462 &467	1988	Barry	Levé de PP	Nantel, J J	Sagax Geophysique Inc	Ressources Farboro Inc
GM 47912	Levé De Polarisation Provoquee, Propriété Souart, Projet 457	1988	Souart	Levé de PP	Nantel, J J	Sagax Geophysique Inc	Exploration Oz Inc
GM 47917	Levé De Polarization Provoquee, Propriété Souart, Projet 440	1988	Souart	Levé de PP	Nantel, J J	Sagax Geophysique Inc	Ressources Oasis Inc
GM 47974	Geologie Regionale	1987	Souart	Evaluation technique, localisation de sondage	Gaudreault, D	Geologica Inc	Exploration Oz Inc
GM 47996	Dighem lii Survey, Propriété Lacroix	1988	Lacroix	Levé de résistivité, levé magnétique aérien, levé VLF aérien	Mcconnell, D L	Dighem Surveys & Processing I	Exploration Barlow Inc

Report	Title	Year	Township	Work done	Author	Company	Claim holder
GM 48414	Rapport De Travaux D'exploration, Propriété Belmont-Lacroix	1989	Belmont Lacroix	Levé magnétique au sol, levé VLF au sol, sol, géochimie	Taquet, B		Claims Lamothe, Claims Theriault
GM 48455	Rapport Géologique, Propriété Freeman- Buteux	1989	Buteux Lespinay Marceau	Analyse de roche, levé géologique, sondage au diamant	Racine, M	Chimitec Ltee, Metriclab [1980] Inc	Soquem
GM 48508	Rapport Geophysique, Projet Freeman-Buteux	1988	Buteux Lespinay Marceau	Levé de PP, levé EMH, levé magnétique au sol	Theriault, G	Norex Enrg	Soquem
GM 48537	Rapport De Travaux D'exploration, Propriété Lac Fecteau	1989	Buteux	Levé gradiométrique au sol, levé magnétique au sol, levé VLF au sol, localisation de sondage	Lamothe, G, Taquet, B		161814 Canada Inc, Claims Parceaud
GM 48572	Rapport Sur Les Resultats De La Cartographie Géologique Et De L'echantillonnage Lithogeochimique, Propriété Riviere De L'aigle	1989	Belmont Urban	Analyse de roche, levé géologique	Richer, V		Ressources Oasis Inc
GM 48691	Report On The Combined Airborne Geophysical Surveys, Prevert And Carpiquet Townships	1989	Carpiquet Prevert	Levé géologique, levé VLF aérien	Thai, D M		Claims Cooper, H Ferderber Geophysics Ltd
GM 49036	Geophysical Surveys - Hem & Mag, Lac Rouleau Block & East Block	1989	Lacroix Urban	Levé EMH, levé gradiométrique au sol, levé magnétique au sol	Lavoie, C, Plante, L	Geola Ltee	Falconbridge Ltee, Ressources Beaufield Inc
GM 49193	Exploration Program, East Rouleau Property	1989	Lacroix Urban	Analyse de roche, levé gradiométrique au sol, levé magnétique au sol, sondage au diamant	Imbeau, G		Beaufield Resources Inc, Falconbridge Ltee
GM 49262	Exploration Report, Panache Property	1989	Carpiquet Urban	Analyse de roche, levé géologique, localisation de sondage	Raymond, D		Mines D'or Malartic Hygrade
GM 50285	Rapport Sur Les Travaux De Terrain Effectues En 1990, Propriété Barry Ouest (Pn 625)	1991	Barry	Analyse de roche, levé géologique	Guerard, S	Bondar-Clegg & Co Ltd, Lab D'analyse Bourlamaque Ltee	Exploration Kerr Addison Inc
GM 51378	A Report On Geophysical Surveys, Lac Aux Loutres Project	1991	Barry	Levé de PP, levé magnétique au sol	Abernethy, R, Webster, B	Jvx Ltd	Minnova Inc
GM 51386	Levés Geophysiques, Projet Prevert	1992	Prevert	Levé EMH, levé gradiométrique au sol, levé gravimetrique au sol, levé magnétique au sol	Boileau, P, Lortie, P	Val D'or Geophysique Ltee	Explorations Noranda Ltee
GM 51472	Report, Lac Fecteau Project	1991	Buteux	Levé EM au sol, levé géologique	Smith, P H	Chimitec Ltee, Metriclab [1980] Inc	Claims Lamothe
GM 51607	Rapport De Cartographie, Propriété Urban Pn 625	1991	Urban	Analyse de roche, levé géologique, localisation de sondage	Levésque, P	Laboratoires Chemex Ltee	Minnova Inc
GM 51713	Rapport Sur Les Travaux D'exploration Effectues En 1992, Propriété Margry	1992	Le Tacmargry Prevert	Analyse de roche, sondage au diamant	Roger, G, Vachon, A	Abilab Inc, Chimitec Ltee	Geoconseils Jack Stoch Ltee
GM 52224	Geophysical Surveys, Fecteau Lake Project	1993	Buteux	Levé EMH, levé magnétique au sol	Boileau, P, Turcotte, R	Val D'or Geophysique Ltee	Placer Dome Inc

www.innovexplo.com

Report	Title	Year	Township	Work done	Author	Company	Claim holder
GM 52440	Report On A Combined Helicopter Borne Electromagnetic, Magnetic, Radiometric And VIf-Em Survey, Delafond Project	1993	Barry Maseres Mesplet Souart	Levé EM aérien, levé gradiométrique aérien, levé magnétique aérien, levé spectrometrique aérien, levé VLF aérien	De Carle, R J	Aerodat Ltd, Geonex Aerodat Inc	Ressources Aur Inc
GM 52628	Report On A Detailed Geological Survey, Project 494b (Rock Island)	1993	Lespinay	Analyse de roche, levé géologique, localisation de sondage, travaux de surface	Beauregard, A J, Gaudreault, D	Chimitec Ltee, Geologica Inc	Placer Dome Inc
GM 52630	Report On A Detailed Geological Survey And Power Stripping Program, Project 495 (Fecteau Lake Option)	1993	Buteux	Analyse de roche, levé géologique, localisation de sondage, travaux de surface	Beauregard, A J, Gaudreault, D	Chimitec Ltee, Geologica Inc	Placer Dome Inc
GM 52631	Induced Polarization Survey, Fecteau Lake Project (495)	1993	Buteux	Levé de PP	Boileau, P	Val D'or Geophysique Ltee	Placer Dome Inc
GM 52716	Report On A Detailed Geological Survey, Project 494a (Buteux Property)	1993	Buteux	Analyse de roche, levé géologique, localisation de sondage	Beauregard, A J, Gaudreault, D	Chimitec Ltee, Geologica Inc	Placer Dome Inc
GM 52734	Report On The 1994 Winter Program From Pdc Properties In The Urban- Barry Segment Of The Abitibi Greenstone Belt	1994	Buteux Lespinay Marceau	Levé de PP, levé géologique, levé magnétique aérien, levé VLF aérien, localisation de sondage	Bussieres, Y	Sial Geosciences Inc, Val D'or Geophysique Ltee	Placer Dome Canada Ltee
GM 52735	High Sensitivity Electromagnetic And Magnetic Survey, Buteux Project	1994	Buteux Lespinay Marceau	Levé magnétique aérien, levé VLF aérien	Chakridi, R	Sial Geosciences Inc	Placer Dome Canada Ltee
GM 52736	Induced Polarization Survey, Fecteau Lake (495) And Buteux Option (494-A) Projects	1994	Buteux	Air, géochimie, levé de PP	Boileau, P, Turcotte, R	Val D'or Geophysique Ltee	Placer Dome Canada Ltee
GM 52943	Rapport Des Travaux De Terrain Automne 1993, Projet Le Tac	1993	La Ronde Le Tac Lesperance Margry Marin	Analyses, levé magnétique au sol, travaux de surface	Chenard, D		Explorations Diabior Inc, Minerais Lac Ltee
GM 53016	Report On Sampling Soquem/Monopros Joint Venture Properties Sqm- 001 To Sqm-022	1994	Bergeres Bosse Du Plessis Effiat Grevet	Till, géochimie	Le May, A S		Soquem
GM 53017	Logistic Report On High Sensitivity Magnetics Airborne Geophysical Survey, Miquelon- Desmaraisville	1994	Du Plessis Effiat Lesperance Mountain Muy	Levé magnétique aérien	Hamilton, E		Soquem
GM 53147	Report On Drilling Magnetic Anomalies Sqm- 006, 009 And Sqm-012, Lebel-Sur-Quevillon / Desmaraisville Area	1994	Bosse Mountain Nelligan Ralleau Ruette	Levé géologique, sondage au diamant	Girard, R, Le May, A S	los Services Geoscientifiques Inc	Soquem
GM 53324	Geophysical Interpretation Of Thirteen Aeromagnetic Anomalies In Lebel-Sur- Quevillon, Desmaraisville Area	1994	Bosse Du Plessis Effiat Lesperance Mountain	Levé magnétique aérien	Boucher, D R	Geonex Aerodat Inc, Monopros Ltd	Soquem
GM 53326	Rapport Des Travaux De Terrain Et De Prospection, Automne 1993 Et Proposition De Forages, Projet Diamant- Abior	1993	Anville Davost Gand Gradis Guercheville	Analyse de roche, levé géologique	Gauthier, N	Chimitec Ltee	Soquem

Report	Title	Year	Township	Work done	Author	Company	Claim holder
GM 53328	Logistic Report On High Sensitivity Magnetics Airborne Geophysical Survey	1993	Anville Davost Gradis Guercheville La Ribourde	Levé magnétique aérien	Marchand, P	Geonex Aerodat Inc	Soquem
GM 53738	Magnetic Survey And Geologic Compilation Report, Barry 5 Property	1996	Barry	Levé magnétique au sol	Robbins, J B	Golden Tag Resources Ltd	Ressources Jeton D'or Inc
GM 53745	Levés Geophysiques, Propriété Boudreault	1996	Carpiquet	Levé magnétique au sol, levé VLF au sol	Boileau, P	Val D'or Geophysique Ltee	Claims Boudreault
GM 53753	Magnetic Survey Report, Souart 1 Property	1996	Souart	Levé magnétique au sol	Robbins, J B	Exploration Jbr Enr, Golden Tag Resources Ltd	Ressources Jeton D'or Inc
GM 53754	Magnetic Survey And Geologic Compilation Report, Souart 11 Property	1996	Souart	Levé magnétique au sol	Robbins, J B	Exploration Jbr Enr, Golden Tag Resources Ltd	Ressources Jeton D'or Inc
GM 53775	Magnetic Survey And Geologic Compilation Report, Barry 18 Property	1995	Barry	Levé magnétique au sol	Robbins, J B	Exploration Jbr Enr, Golden Tag Resources Ltd	Ressources Jeton D'or Inc
GM 54009	Resultats Des Forages Bs-1 A -19, Propriété Barry-Souart	1996	Barry Souart	Analyse de roche, levé de PP, sondage au diamant	Chainey, D	Chimitec Ltee, Exploration Octopus Inc	Ressources Unifiees Oasis Inc, Societe De Developpement De La Baie James
GM 54011	Compilation Des Donnees Geophysiques Au Sol, Propriété Barry-Souart	1995	Barry Souart	Diagraphie EM, levé de PP, levé EM au sol, levé EMH, levé EM transitoire, levé magnétique au sol	Boileau, P	Exploration Octopus Inc, Val D'or Geophysique Ltee	Ressources Unifiees Oasis Inc, Societe De Developpement De La Baie James
GM 54038	Rapport Final Des Travaux, Ete 1995	1995		Analyse de roche, bloc erratique, levé EM au sol, travaux de surface	Poirier, M	Chimitec Ltee	Claims Mccormick, Claims Mcdonald
GM 54155	Reverse Circulation Overburden Drilling And Heavy Mineral Geochemical Sampling For Gold, Delafond Property	1994	Maseres	Analyses, mineraux lourds, géochimie	Averill, S A	Chemex Labs Ltd, Chimitec Ltee	Overburden Drilling Management Ltd, Ressources Aur Inc
GM 54328	Rapport Sur Des Levés Geophysiques Au Sol, Projet Panache Sud	1996	Carpiquet	Levé de PP, levé EM au sol, levé magnétique au sol	Boileau, P	Val D'or Sagax Inc	Republic Goldfields Inc
GM 54378	Report On Magnetic Et Electromagnetic Surveys, Macho South Property	1996	Souart	Levé magnétique au sol, levé VLF au sol	Robbins, B J	Exploration Jbr Enr, Val D'or Sagax Inc	Ressources Jeton D'or Inc
GM 54390	Rapport Sur Des Levés Geophysiques Au Sol, Projet Urban-Barry	1996	Barry Urban	Levé de PP, levé EM au sol, levé magnétique au sol	Berube, P, Potvin, H	Val D'or Sagax Inc	Ressources Orient Inc, Ressources Unifiées Oasis Inc
GM 54411	Geophysical Survey, Souart A Project	1995	Souart	Levé de PP, levé magnétique au sol	Lortie, P	Val D'or Geophysique Ltee	Mines Western Quebec Inc
GM 54418	Levés Geophysiques, Propriété Leo Audet	1997	Buteux	Levé magnétique au sol, levé VLF au sol	Chartre, E	Services Expl Enrg	Claims Audet, Claims Gauthier
GM 54419	Evaluation Geologiqiue, Propriété Buteux	1997	Buteux	- 301, 1070 YEI au 301	Munger, J	Jacques Munger Conseiller En Exploration Miniere	Claims Audet, Claims Gauthier
GM 54437	Geophysical Surveys, Souart B Project	1995	Souart	Levé de PP, levé magnétique au sol	Lortie, P	Val D'or Geophysique Ltee	Claims Lavoie
GM 54469	Magnetic Survey, Windfall-2 Property	1997	Urban	Levé magnétique au sol	Berube, D	Val D'or Sagax Inc	Claims Boudreault
GM 54476	Levé Magnétique, Projet Urban-Lacroix	1997	Lacroix Urban	Levé magnétique au sol	Lavoie, C	Geola Ltee	Ressources Sundust Inc
GM 54622	Logistical And Interpretive Report On Spectral Ip/Resistivity, Magnetometer And Vlf- Em Surveys Conducted On B-1 Grid	1997	Urban	Levé de PP, levé magnétique au sol, levé VLF au sol	Seara, J, Webster, B	Jvx Ltd	Les Explorations Carat Inc

Report	Title	Year	Township	Work done	Author	Company	Claim holder
GM 54623	Logistical And Interpretive Report On Spectral Ip/Resistivity, Magnetometer And VIf- Em Surveys Conducted On N-3 Grid	1997	Carpiquet	Levé de PP, levé magnétique au sol, levé VLF au sol	Mihelcic, J, Webster, B	Jvx Ltd	Claims Legault, Claims Robitaille
GM 54624	Logistical And Interpretive Report On Spectral Ip/Resistivity, Magnetometer And VIf- Em Surveys Conducted On B-2 Grid	1997	Carpiquet	Levé de PP, levé magnétique au sol, levé VLF au sol	Savic, A, Webster, B	Jvx Ltd	Claims Legault, Claims Robitaille
GM 54656	Levé Magnétique, Canton Urban	1997	Urban	Levé magnétique au sol	Chartre, E	Services Expl Enrg	Les Explorations Carat Inc
GM 54713	A Report On A Magnetic Survey Performed On The Bloc 43 Project	1997	Urban	Levé magnétique au sol	Vezina, B	Val D'or Sagax Inc	Les Explorations Carat Inc
GM 54761	Rapport Géologique, Propriétés Du Lac Barry	1996	Bailly Barry Lacroix Urban	Evaluation technique	Auclair, F	Geoexpl'au International	Ressources Xemac Inc
GM 54762	A Report On Geophysical Surveys, Barry Lake And Bailly North Projects	1997	Bailly Barry Lacroix Urban	Levé de PP, levé magnétique au sol, levé VLF au sol	Boileau, P	Val D'or Sagax Inc	Ressources Xemac Inc
GM 54996	Rapport Sur Des Levés Magnetometrique Et De Polarisation Provoquee, Projet Souart (Bloc C)	1997	Souart	Levé de PP, levé magnétique au sol	Berube, P, Sangala, P	Val D'or Sagax Inc	Claims Gibouleau
GM 55389	Rapport D'exploration, Projet Narcisse	1995	Marceau	Analyse de roche, levé géologique	Barrette, J P, Togola, N	Chemex Labs Ltd, los Services Geoscientifiques Inc	Claims Viger
GM 55390	Levés Magnetometrique Et Electromagnétique Tbf, Projet Narcisse	1995	Marceau	Levé magnétique au sol, levé VLF au sol	Gaucher, E, Poirier, M	Geosig Inc	Claims Viger
GM 55394	Rapport De Travaux D'exploration Consistant En Reconnaissance Géologique Assistee De VIf Et Beep-Mat, Echantillonnage Et Levé Geophysique, Projet Souart	1996	Souart	Analyse de roche, levé EM au sol, levé géologique, levé VLF au sol, sol, géochimie, till, géochimie	Lamothe, G	Chimitec Ltee, G.L. Geoservice Inc	Ressources Fancamp Ltee
GM 55396	Pionjar Basal Till Sampling, Fancamp Souart Project	1996	Souart	Till, géochimie	Smith, P H	Bondar-Clegg & Co Ltd, Chimitec Ltee	Ressources Fancamp Ltee
GM 55442	Rapport Final Des Travaux, Ete Et Automne 1996, Projet 176.01	1997	2913 3013 3014 3020 3024	Analyse de roche, bloc erratique, levé EM au sol, travaux de surface	Poirier, M	Chimitec Ltee, Geosig Inc	Explorateurs- Innovateurs De Quebec Inc
GM 55657	A Report On Geophysical Surveys, Macho Project	1998	Barry Souart	Levé EMH	Berube, D	Golden Tag Resources Ltd, Val D'or Sagax Inc	Ressources Jeton D'or Inc
GM 55697	Rapport D'evaluation Géologique, Propriété Urban-Barry	1996	Barry Urban	Analyse de roche, evaluation technique	Khobzi, A	Chimitec Ltee, Kamil Khobzi & Associes Inc	Ressources Orient Inc Et Al, Ressources Unifiees Oasis Inc
GM 55700	Resultats Des Decapages Et De L'echantillonnage De Roches, Propriété Panache-Nord	1996	Carpiquet	Analyse de roche, travaux de surface	Chainey, D	Chimitec Ltee, Ressources Orient Inc	Republic Goldfields Inc
GM 55702	Rapport Sur Des Levés Geophysiques Au Sol, Projet Panache-Nord	1996	Carpiquet	Levé de PP, levé magnétique au sol, levé VLF au sol	Boileau, P	Ressources Orient Inc, Val D'or Sagax Inc	Republic Goldfields Inc
GM 55947	Evaluation Report, Urban- Windfall Project	1997	Urban	Analyse de roche, evaluation technique, roche, géochimie	Gaudreault, D, Joly, M	Abilab Inc, Geologica Inc	Claims Boudreault, Les Explorations Carat Inc
GM 56185	Levé De Polarisation Provoquee, Projet Belmont	1998	Belmont Lacroix	Levé de PP	Plante, L	Geola Ltee	Ressources Aur Inc
GM 56190	Report On Geophysical Surveys On The Lacroix Project	1998	Lacroix	Levé magnétique au sol, levé VLF au sol	Boileau, P	Val D'or Sagax Inc	Ressources Xemac Inc

www.innovexplo.com

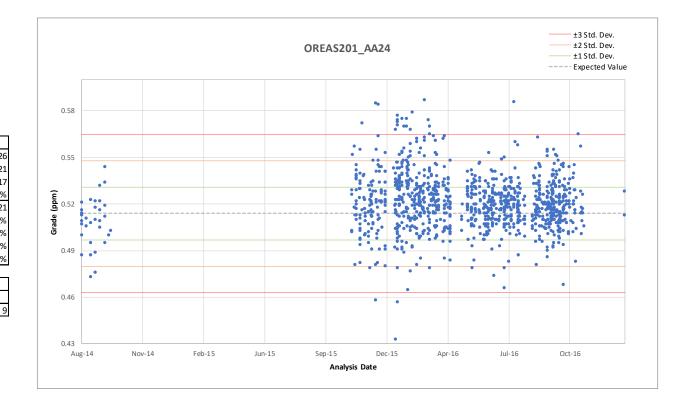
Report	Title	Year	Township	Work done	Author	Company	Claim holder
GM 56262	Report On Magnetic And Horizontal Loop E.M. (Maxmin li) Surveys, Macho South Project	1998	Souart	Levé EMH, levé magnétique au sol	Lambert, G	Gerard Lambert Geosciences, Golden Tag Resources Ltd	Ressources Jeton D'or Inc
GM 56322	Rapport Sur La Campagne D'exploration 1997, Propriété Belmont	1998	Belmont Buteux Lacroix	Analyse de roche, levé EM au sol, levé géologique, sol, géochimie	Cloutier, P, Lapointe, M	Chimitec Ltee	Ressources Aur Inc
GM 56327	Report On A Combined Helicopter-Borne Magnetic, Electromagnetic And VIf- Em Survey	1997	Belmont Buteux Lacroix Lespinay Urban	Levé magnétique aérien, levé VLF aérien	De Carle, R J	Aerodat Ltd	Ressources Aur Inc
GM 56340	Levé Magnétique, Projet Urban-Lacroix	1997	Lacroix Urban	Levé magnétique au sol	Lavoie, C	Geola Ltee	Ressources Sundust Inc
GM 56720	Rapport De Prospection, Projet Narcisse	1996	Bressani Lacroix Langloiserie Lespinay Machault	Analyse de roche, levé EM au sol, levé géologique, levé magnétique au sol, levé VLF au sol	Viger, J	Laboratoires Chemex Ltee	Claims Viger
GM 57564	Report On Induced Polarization Surveys, Souart - Macho River Joint Venture Property	1999	Barry Souart	Evaluation technique, levé de PP	Lambert, G	Geophysique Tmc, Gerard Lambert Geosciences	Ressources Jeton D'or Inc
GM 58063	Rapport D'evaluation, Bloc Macho / Bloc Windfall / Bloc Barry	1998	Lacroix Urban	Evaluation technique	Cloutier, J P	Geoconseil J P	Ressources Sundust Inc
GM 58065	Rapport Sommaire Sur Des Travaux Geophysiques Au Sol: Levés Magnétiques Champ Total, Propriété Urban	1998	Urban	Levé magnétique au sol	Lambert, G	Gerard Lambert Geosciences	Ressources Sundust Inc
GM 58142	Preliminary Report On Lake Yvonne Uranium Prospect	1954	Bressani	Analyse de roche, evaluation technique, levé magnétique aérien, levé scintillometrique aérien, localisation de sondage	Leclerc, A		Barnat Mines Ltd
GM 58143	Yvonne Lake Uranium Prospect	1955	Bressani	Localisation de sondage			Barnat Mines Ltd
GM 58429	Rapport De Prospection, Projet Lac Frank	1998	Buteux	Analyse de roche, levé e m au sol, levé magnétique au sol, travaux de surface	Lamothe, G	Les Laboratoires Xral	Claims Lamothe
GM 58432	Rapport Géologique, Projet Carcajou	1998	Buteux Lespinay	Analyse de roche, bloc erratique, levé e m au sol, levé magnétique au sol, sol, géochimie, travaux de surface	Saulnier, I	3521931 Canada Inc, Abilab Inc	Makamikex Lg Inc
GM 58488	Souart Project, Induced Polarization And Resistivity Survey	2000	Souart	Levé de PP, levé de résistivité	Lapointe, D	Geophysique Tmc, Val D'or Geosciences Services Inc	Ressources Jeton D'or Inc
GM 58907	Prospection Phase 2, Projet Buteux	2000	Buteux	Analyse de roche, levé EM au sol, levé géologique, levé magnétique au sol, travaux de surface	Mcnichols, D	Chimitec Ltee	Claims Desgagne, Claims Tremblay
GM 59155	Rapport De Surveillance De Decapement, Projet Emelie, 2001-A 2-312	2001	Bressani	Travaux de surface	Ouellet, R		Claims Desgagne, Claims Frigon
GM 59156	Prospection Avancee, Projet Emilie A-312, Secteur Urban-Barry	2001	Bressani	Analyse de roche, travaux de surface	Bellavance, Y	Chimitec Ltee	Claims Desgagne, Claims Frigon
GM 59233	Rapport De Travaux D'exploration Simplifie	2002	Buteux	Travaux de surface	Desgagne, L, Frigon, B		Claims Desgagne, Claims Frigon

www.innovexplo.com

Report	Title	Year	Township	Work done	Author	Company	Claim holder
GM 59316	Geological Report, Freeman East	2000	Bressani Buteux Lespinay Marceau	Analyse de roche, bloc erratique, geologie des depots meubles, levé EM au sol, levé géologique, levé magnétique au sol, travaux de surface	Bosum, S R, Gaucher, E	Explorateurs- Innovateurs De Quebec Inc, Laboratoire D'analyse Bourlamaque Ltee	
GM 59321	Projet L. Desgagne- Buteux, Secteur Urban- Barry	2001	Buteux	Analyse de roche, levé EM au sol, levé géologique, levé magnétique au sol, travaux de surface	Bellavance, Y, Desgagne, L	Chimitec Ltee, Corporation Miniere Inmet	Claims Desgagne, Claims Tremblay
GM 59322	Projet Desgagne- Bressani, Secteur Urban- Barry	2002	Bressani	Analyse de roche, levé géologique, travaux de surface	Bellavance, Y, Desgagne, L	Chimitec Ltee, Corporation Miniere Inmet	Claims Desgagne, Claims Frigon
GM 60236	Geological Report, Freeman East	2001		Analyse de roche, levé EM au sol, levé magnétique au sol, travaux de surface	Bosum, A, Gaucher, E	Explorateurs- Innovateurs De Quebec Inc, Laboratoire D'analyse Bourlamaque Ltee	Claims Bosum
GM 60741	Rapport Des Travaux De 2003, Propriété Du Lac Chanceux	2003		Analyse de roche, travaux de surface	Descarreaux, J	Als Chemex - Chimitec	Jean Descarreaux Et Associes Limitee
GM 60749	Rapport De Travaux D'exploration Simplifie	2003	Buteux	Analyse de roche, travaux de surface	Desgagne, L	Als Chemex - Chimitec, Lab D'analyse Bourlamaque Ltee	Claims Desgagne
GM 60867	Logistics And Interpretation Report On A Magnetic Field Survey On The Bailly TwpRouleau Area	2004	Bailly Lacroix	Levé magnétique au sol	Berube, P	Abitibi Geophysics Inc	Corporation D'or Kinross
GM 60931	Rapport De Surveillance De Decapement, Projet Larry-Desgagne-Buteux	2001	Buteux	Travaux de surface	Ouellet, R		Claims Desgagne
GM 60938	A Report On The Reconnaissance Prospecting And Sampling Of The Bressani Tantalum Property	2002	Bressani	Analyse de roche, travaux de surface	Coyle, T	Chimitec Ltee	Claims Fournier
GM 61002	Programme De Prospection Pour Le Diamant, Aire Centree Dans Le Secteur Caopatina	2002		Esker, géochimie, mineraux lourds, géochimie	Leclerc, A, Tremblay, M		Claims Leclerc
GM 61142	Ground Magnetic Field Survey, Barry Property	2004	Barry Souart Urban	Levé magnétique au sol	Berube, P	Abitibi Geophysics Inc	Ressources Freewest Canada Inc, Ressources Murgor Inc
GM 61197	Gps-Positioned Magnetic Field Survey, Eagle River Property	2004	Belmont Lespinay	Levé magnétique au sol	Berube, P	Abitibi Geophysique	Ressources Freewest Canada Inc, Ressources Murgor Inc
GM 61262	Gps-Positioned Magnetic Field Survey, Windfall Property	2004	Urban	Levé magnétique au sol	Berube, P	Abitibi Geophysique	Ressources Freewest Canada Inc, Ressources Murgor Inc
GM 61348	Final Report, Ralleau Project, Sheilann Lake	1956	Ralleau	Analyse de roche, travaux de surface	Russell, G A	Bourlamaque Assay Office	Cyprus Expl Corp Ltd
GM 61404	Resistivity / Induced Polarization Survey, Eagle River Mining Property	2004	Belmont Lespinay	Levé de PP, levé de résistivité	Berube, P	Abitibi Geophysics Inc	Ressources Freewest Canada Inc, Ressources Murgor Inc
GM 61430	Suivi Au Sol D'un Levé Electromagnétique Heliporte Vtem, Propriété Riviere De L'aigle	2004	Belmont Lespinay	Analyse de roche, levé EM au sol, levé magnétique au sol, levé VLF au sol, travaux de surface	Laforest, J	Laboratoire D'analyse Bourlamaque Ltee, Les Ressources Tectonic	Ressources Freewest Canada Inc, Ressources Murgor Inc

Report	Title	Year	Township	Work done	Author	Company	Claim holder
GM 61431	Report On A Helicopter- Borne Time Domain Electromagnetic Geophysical Survey, Chibougamau Area	2004	Belmont Lespinay	Levé EM aérien, levé magnétique aérien	Bagrianski, A	Geotech Ltd	Ressources Freewest Canada Inc, Ressources Murgor Inc
GM 61524	Logistics And Interpretation Report On A Magnetic Field Survey On The Bailly Twp - Rouleau Area	2004	Lacroix Urban	Levé magnétique au sol	Berube, P	Abitibi Geophysique Inc	Ressources Unifiees Beaufield Inc
GM 61555	Rapport Sommaire De Travaux D'exploration, Projet St-Cyr	2004	Belmont	Analyse de roche, levé magnétique au sol, travaux de surface	Rougerie, Y	Laboratoire D'analyse Bourlamaque Ltee	Ressources Abitex Inc
GM 61560	Rapport Des Travaux De Prospection Effectues Sur La Propriété Panache	2004	Carpiquet	Analyse de roche, levé EM au sol, levé magnétique au sol, travaux de surface	Laforest, J	Als Chemex	Les Ressources Tectonic Inc
GM 61737	Rapport Des Travaux De 2004, Propriété Du Lac Chanceux	2005	Lacroix	Analyse de roche, analyses, travaux de surface	Descarreaux, J, Tremblay, L	Als Chemex, los Services Geoscientifiques Inc	Jean-Descareaux Et Associes Ltee
GM 61763	Rapport De Travaux D'exploration Simplifie, Projet Desgagne Gold- Smv	2005	Buteux	Travaux de surface	Desgagne, L		Claims Desgagne
GM 61866	Campagne De Forage Automne 2004-Hiver 2005, Propriété Eagle River	2005	Lespinay	Analyse de roche, levé de PP, sondage au diamant	Berube, P, Gagnon, R	Abitibi Geophysics Inc, Als Chemex	Ressources Freewest Inc, Ressources Murgor Inc
GM 61867	Horizontal-Loop Electromagnetic Survey, Eagle River Property	2005	Belmont Lespinay	Levé EMH	Rivest, H	Abitibi Geophysics Inc	Ressources Freewest Inc, Ressources Murgor Inc
GM 61966	Report Of Surface Exploration, 2004 And 2005, Magnum Property	2005	Barry Urban	Analyse de roche, levé de PP, levé magnétique au sol, levé VLF au sol	Fekete, M	Als Chemex - Chimitec, Amador Gold Corp	Glacier Gems Inc
GM 62278	Ground Geophysical Surveys Executed On The Lockout Project	2005	Barry Souart	Levé magnétique au sol, levé VLF au sol	Boileau, P		Hinterland Metals Inc
GM 62344	Rapport Des Travaux De 2005, Propriété Du Lac Chanceux	2006	Belmont Lacroix	Localisation de sondage, travaux de surface	Descarreaux, J		Jean Descarreaux Et Associes Limitee
GM 62346	Levé De Résistivité / Polarisation Provoquee, Projet Lac Chanceux	2005	Belmont Lacroix	Levé de PP, levé de résistivité	Dubois, M	Abitibi Geophysique Inc	Jean Descarreaux Et Associes Limitee
GM 62402	Levé Magnétique Au Sol Effectue Sur Le Projet Carpiquet	2006	Carpiquet	Levé magnétique au sol, travaux de surface	Boileau, P	Geophysique Tmc	Claims Robert
GM 62919	Rapport D'une Campagne D'echantillonnage D'eskers Et D'analyse De Mineraux Lourds Secteur Chapais-Chibougamau (32g), Quebec	2005		Esker, géochimie, fluvioglaciare, géochimie	De Chavigny, P, De Corta, H	Table Jamesienne De Concertation Miniere	
GM 62921	Rapport De La Campagne D'echantillonage Des Depots Meubles Du Secteur Quevillon- Desmaraisville	2003		Mineraux lourds, géochimie	De Corta, H	Table Jamesienne De Concertation Miniere	
GM 63066	Rapport Géologique, Projet Buteux	2007	Buteux	Analyse de roche, levé géologique	Gagnon, R	Explolab Inc	Claims Desgagne, Societe D'exploration Miniere Vior Inc
GM 63077	Rapport De Travaux D'exploration Simplifie	2007	Carpiquet	Analyse de roche, travaux de surface	Robert, J	Techni-Lab	Claims Robert
GM 63078	Rapport De Travaux D'exploration Simplifie	2007	Carpiquet	Analyse de roche, travaux de surface	Robert, J	Techni-Lab	Claims Robert
GM 63239	Rapport Des Travaux Géologiques 2006-2007, Projet Buteux-Fecteau	2007	Buteux	Analyse de roche, evaluation technique, levé géologique, travaux de surface	Chagnon, R, Chenard, D	Als Chemex, Laboratoire Expert Inc	Claims Desgagne, Societe D'exploration Miniere Vior Inc

Report	Title	Year	Township	Work done	Author	Company	Claim holder
GM 63240	Rapport D'un Levé De Polarisation Provoquee Effectue Sur La Propriété Buteux-Fecteau	2007	Buteux	Levé de PP, levé de résistivité	Hubert, J M	Geophysique Tmc, Mb Geosolutions	Claims Desgagne, Societe D'exploration Miniere Vior Inc
GM 63629	Levés De Magnetometrie Et De Résistivité Polarisation Provoquee, Rapport D'interpretation, Propriété Buteux Grilles 1 Et 2	2008	Buteux	Levé de PP, levé de résistivité, levé magnétique au sol	Dubois, M	Abitibi Geophysique Inc	Societe D'exploration Miniere Vior Inc
GM 63732	Report On The 2007 Winter Channel Sampling Program, Ralleau Project	2008	Ralleau	Analyse de roche, travaux de surface	Corriveau, J L, Proulx, M	Als Chemex, Geo-Consilium	Megastar Developments Corporation
GM 63934	Rapport D'interpretation Sur Des Travaux Geophysiques Heliportes, Levés Magnetometriques Et Electromagnétiques Heliportes De Type Vtem, Propriété Kennedy	2008	Langelier Lavoie Tourouvre	Levé magnétique aérien, levé vtem	Hefford, S, Lambert, G	Geotech Ltd, Gerard Lambert Geosciences	Societe D'exploration Miniere Vior Inc
GM 63965	Rapport De Travaux D'exploration Simplifie, Projet Lac Yvonne	2008	Bressani	Analyse de roche, levé EM au sol, levé magnétique au sol, levé scintillometrique au sol, levé VLF au sol, travaux de surface	Lamothe, G	Activation Laboratories Ltd, Laboratoire Expert Inc	Claims De France, Montero Mining And Exploration Ltd
GM 64000	Report On The Nicole Property	2008	Bressani Lespinay	Compilation	D'amours, I		Diagnos Inc
GM 64080	Rapport D'exploration Simplifie	2008	Bressani	Analyse de roche, levé géologique, levé scintillometrique au sol	Desgagne, L	Als Chemex	Claims Desgagne, Claims Frigon
GM 64158	Interpretation Report, Helicopter-Borne Time Domain Electromagnetic Vtem Survey, Ralleau Grid	2008	Mountain Ralleau Wilson	Levé magnétique aérien, levé vtem	Cifuentes, C	Abitibi Geophysics Inc, Geotech Ltd	Megastar Developments Corporation
GM 64176	Rapport De Travaux D'exploration Simplifie, Projet Thubiere	2008	Carpiquet	Analyse de roche, travaux de surface	Robert, J	Laboratoire D'analyse Bourlamaque Ltee	Claims Robert
GM 64247	Ni 43-101 Qualifying Report, The Urban West Property	2008	Carpiquet	Evaluation technique	Theberge, D	Solumines	Exploration Amseco Ltee
GM 64257	Report On A Helicopter- Borne Versatile Time Domain Electromagnetic Geophysical Survey, Buteux-Fecteau Properties	2008	Buteux Marceau	Levé magnétique aérien, levé vtem	Hefford, S, Legault, J	Geotech Ltd	Societe D'exploration Miniere Vior Inc
GM 64258	Rapport D'interpretation Sur Levés Magnetometriques Et Electromagnétiques Heliportes De Type Vtem, Propriété Buteux-Fecteau	2008	Buteux Marceau	Levé magnétique aérien, levé vtem	Lambert, G	Lambert Geosciences Ltee	Societe D'exploration Miniere Vior Inc
GM 64328	Ground Magnetic Survey Executed On The Stellar- Urban Property	2007	Belmont Lacroix Urban	Levé magnétique au sol	Boileau, P	Geophysique Tmc	Claims Lavoie
GM 64329	Rapport D'evaluation Technique Sur Le Potentiel En Mineralisation Aurifere De La Propriété Urban	2008	Belmont Lacroix Urban	Evaluation technique	Calame, A, Violette, B M	Stellar Pacific Ventures Inc	Claims Lavoie
GM 64470	Ground Magnetic Survey Executed On The Amseco-Urban Property	2007	Lacroix Urban	Levé magnétique au sol	Boileau, P	Geophysique Tmc, Services Miniers Lemco Inc	Exploration Amseco Ltee

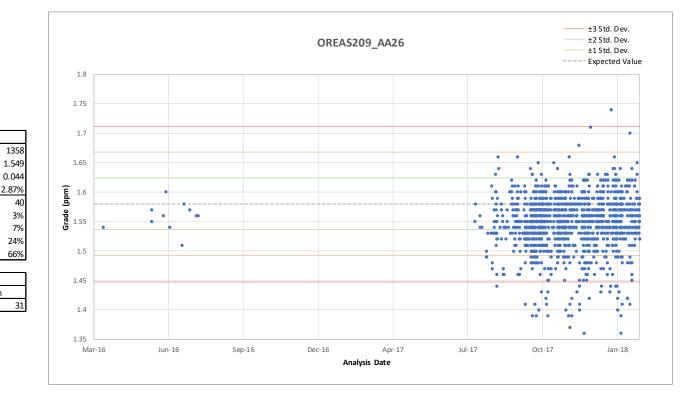

Report	Title	Year	Township	Work done	Author	Company	Claim holder
GM 64997	Report Of Exploration And Recommendations, August 2008 - October 2008 Exploration Program, Rouleau Lake Property	2010	Barry Urban	Analyse de roche, levé géologique	Frappier- Rivard, D	Als Chemex	Ressources Unifiees Beaufield Inc
GM 65026	Levé De Résistivité / Polarisation Provoquee, Projet Barry	2009	Barry Carpiquet Souart	Levé de PP	Dubois, M	Abitibi Geophysique	Claims Lavoie, Ressources Metanor Inc
GM 65032	Rapport De Travaux D'exploration Simplifie, Lac Yvonne	2010	Bressani	Levé EM au sol, levé géologique, levé magnétique au sol	Lamothe, G		Montero Mining And Exploration Ltd
GM 65033	Technical Report Of A Ground Magnetic Survey, Project Lac Yvonne	2010	Bressani	Levé magnétique au sol	St-Hilaire, C	Geophysique Camille St-Hilaire Inc	Montero Mining And Exploration Ltd
GM 65099	Rapport Sur Une Campagne De Prospection, Propriété U- Dor	2008	Belmont	Analyse de roche, levé géologique, travaux de surface	Roby, M	Als Chemex, S.E.M.A. Enr	Claims Roby
GM 65345	Rapport De Travaux D'exploration Simplifie, Projet Lac Yvonne	2010	Bressani	Levé magnétique au sol, levé spectrometrique au sol, travaux de surface	Lamothe, G		Montero Mining And Exploration Ltd
GM 65611	Final Ni 43-101 Technical Report, Ralleau Project	2011	Ralleau	Analyse de roche, levé géologique	Stephens, P	Mrb & Associates, Semico Ltd	Megastar Developments Corporation
GM 65706	Rapport De Travaux D'exploration Simplifie, Projet Barry-Urban Bloc Riviere Panache, Bloc Du Milieu	2010	Carpiquet Urban	Levé géologique	Cloutier, J P		Exploration Amseco Ltee
GM 65726	Technical Report Of A Ground Magnetic Survey Phase 2, Project Lac Yvonne	2011	Bressani	Levé magnétique au sol	St-Hilaire, C	Geophysique Camille St-Hilaire Inc, Gl Geoservice Inc	Montero Mining And Exploration Ltd
GM 65779	Echantillonnage De Sediments Glaciaires, Propriété Lac Lacroix	2011	Lacroix	Till, géochimie	Gagnon, R	Als Minerals, Explolab Inc	Claims Duval
GM 65784	Ground Magnetic Survey Executed On The Lac Aux Loutres Property	2010	Barry Souart	Levé magnétique au sol	Boileau, P	Geophysique Tmc	Exploration Amseco Ltee
GM 66032	Technical Report On The Geological Mapping, Soil Sampling And The Geophysical Survey Of The Trove Property	2011	Barry Souart	Analyse de roche, levé géologique, levé magnétique au sol, levé VLF au sol, sol, géochimie	Bedard, E	Activation Laboratories Ltd	Atocha Resources Inc
GM 66210	Levé De Polarisation Provoquee, Projet Lac Fecteau	2011	Buteux	Levé de PP, travaux de surface	Tshimbalanga, S	Geosig Inc	Claims Lamothe
GM 66235	Till Sampling Program For 2010 On Lespinay, Hazeur And Lac Surprise Gold Properties	2011	Bressani Druillettes Hazeur Langloiserie Lespinay	Analyses, fluvioglaciare, géochimie	Charbonneau, R	Als Minerals, Consultants Inlandsis Enr	Northern Superior Resources Inc
GM 66405	Levé Geophysique DEMagnetometrie, Projet Lac Fecteau	2012	Buteux	Levé magnétique au sol	Tshimbalanga, S	Geosig Inc	Claims Lamothe
GM 66453	Levé Magnétique Au Sol Effectue Sur Le Projet Windfall	2012	Belmont Urban	Levé magnétique au sol	Boileau, P	Geophysique Tmc Inc	9187-1400 Quebec Inc
GM 66472	Magnetic Field And Vlf Electromagnetic Surveys, Windfall South Property	2012	Barry Maseres Souart	Levé magnétique au sol, levé VLF au sol	Berube, P, Loader, T W G	Abitibi Geophysics Inc	Solitaire Minerals Corporation
GM 66518	Compilation And Geological Field Work Of 2011, Revolver Property	2012	Belmont Lacroix	Analyse de roche, levé géologique	Brassard, B	Als Minerals	Claims Lebel, Garnet Gold Inc
GM 67227	Technical Report Of A Ground Radiometric Survey, Phase 3, Lac Yvonne Project	2012	Bressani	Levé radiometrique au sol	St-Hilaire, C	Geophysique Camille St-Hilaire Inc	Montero Mining And Exploration Ltd

Report	Title	Year	Township	Work done	Author	Company	Claim holder
GM 67391	Report On The 2012 Till Sampling Survey, Windfall Property, Murgor Claim Block	2013	Urban	Analyses, till, géochimie	Charbonneau, R	Als Chemex, Inlandsis Consultants	Cliffs Chromite Ontario Inc, Ressources Murgor Inc
GM 67925	Simplified Exploration Work Report, Baker Street Property	2013	Buteux Coursol Lacroix Lagace	Analyse de roche, travaux de surface	Coyle, P T	Als Minerals, Tech2mine Inc	Claims Coyle
GM 68264	Levé Magnétique Au Sol Effectue Sur Le Projet Thubiere	2014	Carpiquet	Levé magnétique au sol	Boileau, P	Les Explorations Carat Inc	Claims Robert
GM 68608	Report On The 2014 Glacial Sediment Sampling Survey, Windfall Lake Property	2014	Belmont Urban	Analyse de roche, analyses, fluvioglaciare, géochimie	Charbonneau, R	Als Minerals, Consultants Inlandsis Enr	Eagle Hill Exploration Corporation
GM 68964	Assessment Work Report, Geological Compilation, Part Of The Baker Street Property	2015	Buteux Coursol Lacroix Lagace	Analyse de roche, evaluation technique, levé géologique	Langton, J	Als Minerals, Mrb & Associates	Claims Coyle
GM 69123	Technical Report On The Ralleau Property	2015	Ralleau Wilson	Analyse de roche, levé géologique	Moar, R	Als Minerals	Megastar Developments Corporation

APPENDIX III - CRM CHARTS BASED ON ASSAY RESULTS RECEIVED AFTER NOVEMBER 13, 2014 AND BEFORE MARCH 5, 2018

- OREAS 201 (AA24) with theorical value of 0.514 g/t Au
- OREAS 209 (AA26) with theorical value of 1.58 g/t Au
- OREAS 218 (AA26) with theorical value of 0.531 g/t Au
- OREAS 220 (AA26) with theorical value of 0.866 g/t Au
- OREAS 220 (FA450) with theorical value of 0.866 g/t Au
- OREAS 223 (FA450) with theorical value of 1.78 g/t Au
- OREAS 229 (AA26) with theorical value of 12.11 g/t Au
- OREAS 229 (GRAV22) with theorical value of 12.11 g/t Au
- OREAS 60c (AA24) with theorical value of 2.47 g/t Au
- OREAS 61e (AA26) with theorical value of 4.43 g/t Au
- OREAS 61e (FA450) with theorical value of 4.43 g/t Au
- OREAS 62e (AA26) with theorical value of 9.13 g/t Au

www.innovexplo.com


Summary Statistics

Expected Values							
Mean	0.514						
Standard Deviation	0.017						
Coefficient of Variation (CV)	3.31%						
Observed Valu	105						

Observed values		
Number of Sam	ples	1120
N	lean	0.52
Standard Devia	tion	0.01
Coefficient of Variation	(CV)	3.33%
Fa	iled	2:
Failu	re %	2%
% Within 3 SD of Certified N	lean	5%
% Within 2 SD of Certified N	lean	21%
% Within 1 SD of Certified N	lean	72%

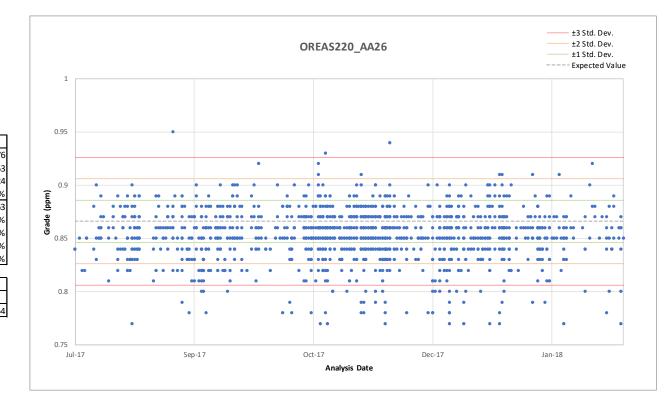
Gross Outliers	
Less than 0.429 ppm and greater than 0.5	599 ppm
Number of Samples	9

www.innovexplo.com

Expected Values		
Mean	1.580	
Standard Deviation	0.044	
Coefficient of Variation (CV)	2.78%	
Observed Values		
Number of Samples		1358
Mean		1.549
Standard Deviation		0.044
Coefficient of Variation (CV)		2.87%

Coefficient of Variation (CV)	2.87%
Failed	40
Failure %	3%
% Within 3 SD of Certified Mean	7%
% Within 2 SD of Certified Mean	24%
% Within 1 SD of Certified Mean	66%

	Gross Outliers		
ſ	Less than 1.36 ppm and greater than 1.8 ppm		
I	Number of Samples	31	

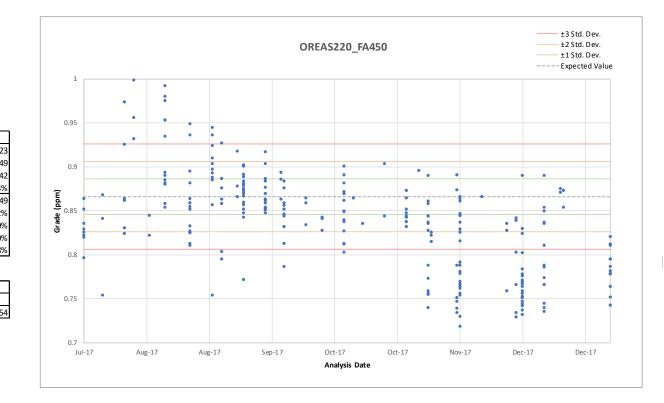


Expected Values		
Mean	0.531	
Standard Deviation	0.017	
Coefficient of Variation (CV)	3.20%	
Observed Values		

Number of Samples	2058
Mean	0.527
Standard Deviation	0.017
Coefficient of Variation (CV)	3.23%
Failed	27
Failure %	1%
% Within 3 SD of Certified Mean	4%
% Within 2 SD of Certified Mean	23%
% Within 1 SD of Certified Mean	72%

Gross Outliers		
Less than 0.446 ppm and greater than 0.616 ppm		
Number of Samples	29	

www.innovexplo.com

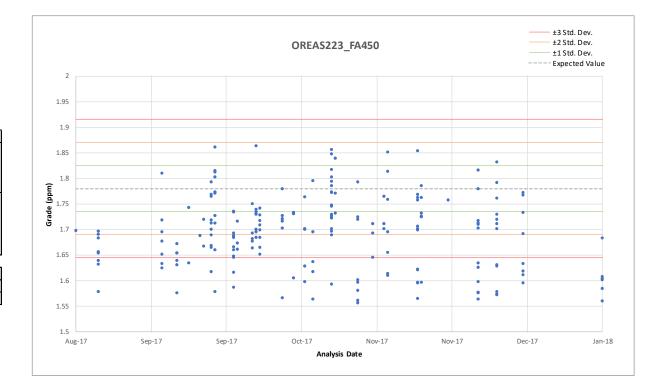


Expected Values	
Mean	0.866
Standard Deviation	0.020
Coefficient of Variation (CV)	2.31%

Observed Values		
Number of Samples	1376	
Mean	0.853	
Standard Deviation	0.024	
Coefficient of Variation (CV)	2.87%	
Failed	63	
Failure %	5%	
% Within 3 SD of Certified Mean	7%	
% Within 2 SD of Certified Mean	26%	
% Within 1 SD of Certified Mean	62%	

Gross Outliers		
Less than 0.766 ppm and greater than 0.966 ppm		
Number of Samples	54	

www.innovexplo.com

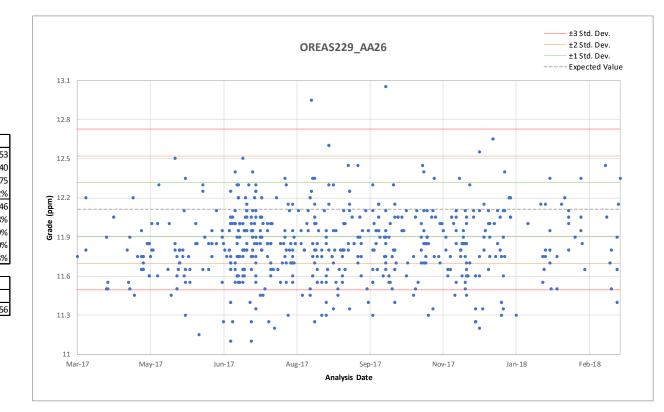


Expected Values	
Mean	0.866
Standard Deviation	0.020
Coefficient of Variation (CV)	2.31%

Observed Values		
Number of Samples	223	
Mean	0.849	
Standard Deviation	0.042	
Coefficient of Variation (CV)	4.94%	
Failed	49	
Failure %	22%	
% Within 3 SD of Certified Mean	10%	
% Within 2 SD of Certified Mean	30%	
% Within 1 SD of Certified Mean	38%	

Gross Outliers		
Less than 0.766 ppm and greater than 0.966 ppm		
	Number of Samples	54

www.innovexplo.com

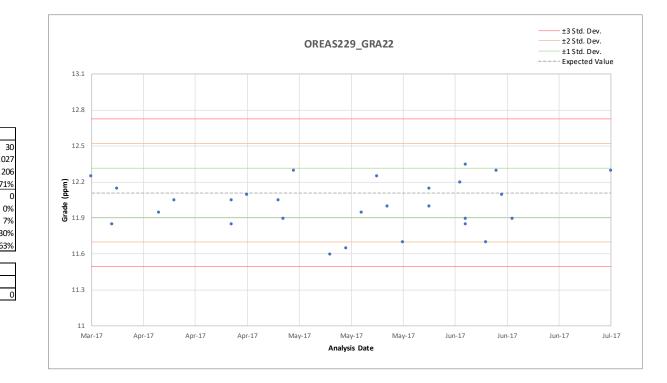


Expected Values	
Mean	1.780
Standard Deviation	0.045
Coefficient of Variation (CV)	2.53%

Observed Values	
Number of Samples	203
Mean	1.694
Standard Deviation	0.072
Coefficient of Variation (CV)	4.26%
Failed	54
Failure %	27%
% Within 3 SD of Certified Mean	17%
% Within 2 SD of Certified Mean	35%
% Within 1 SD of Certified Mean	21%

Gross Outliers	
Less than 1.555 ppm and greater than 2.005	5 ppm
Number of Samples	24

www.innovexplo.com



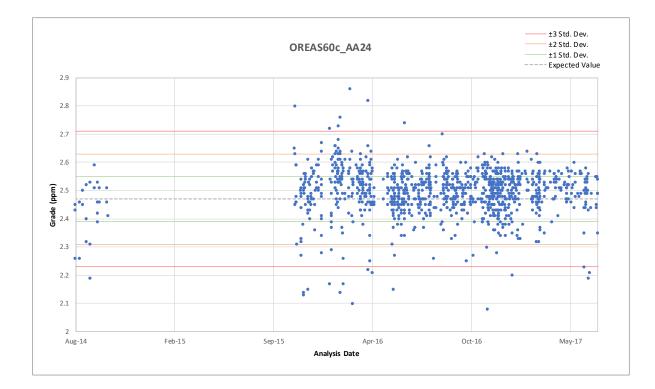
Expected Values	
Mean	12.110
Standard Deviation	0.206
Coefficient of Variation (CV)	1.70%

Observed Values	
Number of Samples	553
Mean	11.840
Standard Deviation	0.275
Coefficient of Variation (CV)	2.32%
Failed	46
Failure %	8%
% Within 3 SD of Certified Mean	19%
% Within 2 SD of Certified Mean	40%
% Within 1 SD of Certified Mean	33%

Gross Outliers	
Less than 11.08 ppm and greater than 13.	.14 ppm
Number of Samples	56

www.innovexplo.com

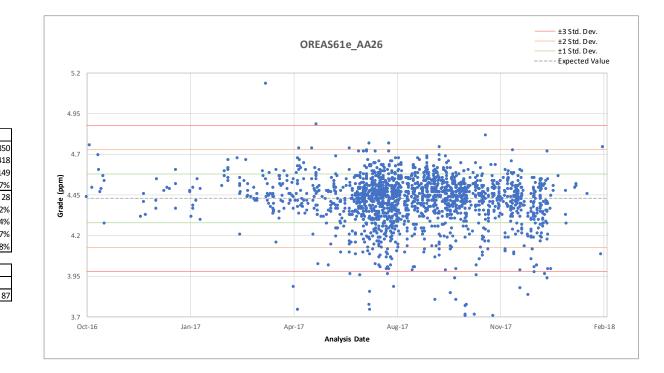
Summary Statistics


Г

Expected Values	
Mean	12.110
Standard Deviation	0.206
Coefficient of Variation (CV)	1.70%

Observed Values	
Number of Samples	30
Mean	12.027
Standard Deviation	0.206
Coefficient of Variation (CV)	1.71%
Failed	0
Failure %	0%
% Within 3 SD of Certified Mean	7%
% Within 2 SD of Certified Mean	30%
% Within 1 SD of Certified Mean	63%

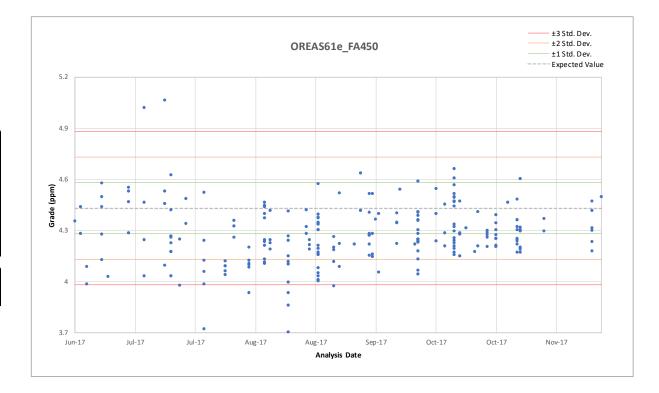
Gross Outliers
Less than 11.08 ppm and greater than 13.14 ppm
Number of Samples


www.innovexplo.com

Expected Values		
Mean	2.470	
Standard Deviation	0.080	
Coefficient of Variation (CV)	3.24%	
Observed V	/alues	
Numb	per of Samples	1063
	Mean	2.496
Stand	dard Deviation	0.083
Coefficient of	Variation (CV)	3.32%
	Failed	22
	Failure %	2%
% Within 3 SD of 0	Certified Mean	3%
% Within 2 SD of 0	Certified Mean	23%
% Within 1 SD of 0	Certified Mean	73%

Gross Outliers	
Less than 2.07 ppm and greater than 2.8	7 ppm
Number of Samples	12

www.innovexplo.com

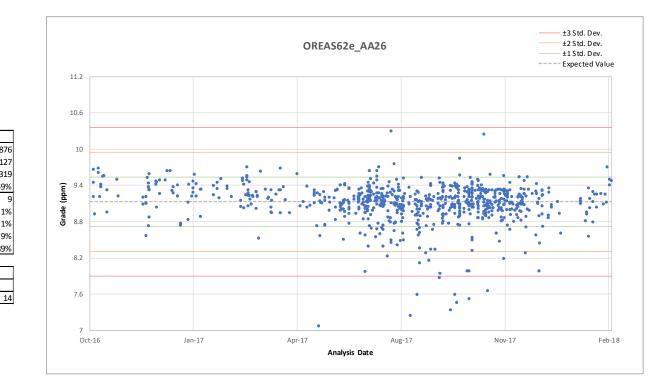


Expected Values	
Mean	4.430
Standard Deviation	0.150
Coefficient of Variation (CV)	3.39%

Observed Values	
Number of Samples	1850
Mean	4.418
Standard Deviation	0.149
Coefficient of Variation (CV)	3.37%
Failed	28
Failure %	2%
% Within 3 SD of Certified Mean	4%
% Within 2 SD of Certified Mean	17%
% Within 1 SD of Certified Mean	78%

Gross Outliers			
Less than 3.68 ppm and greater than 5.18	sppm		
Number of Samples	8		

www.innovexplo.com



Expected Values				
Mean	4.430			
Standard Deviation	0.150			
Coefficient of Variation (CV)	3.39%			

Mean 4.275 Standard Deviation 0.175 Coefficient of Variation (CV) 4.19% Failed 10 Failure % 4% % Within 3 SD of Certified Mean 14%	Observed Values	
Standard Deviation 0.175 Coefficient of Variation (CV) 4.19% Failed 10 Failure % 4% % Within 3 SD of Certified Mean 14% % Within 2 SD of Certified Mean 39%	Number of Samples	234
Coefficient of Variation (CV)4.19%Failed10Failure %4%% Within 3 SD of Certified Mean14%% Within 2 SD of Certified Mean39%	Mean	4.279
Failed 10 Failure % 4% % Within 3 SD of Certified Mean 14% % Within 2 SD of Certified Mean 39%	Standard Deviation	0.179
Failure %4%% Within 3 SD of Certified Mean14%% Within 2 SD of Certified Mean39%	Coefficient of Variation (CV)	4.19%
% Within 3 SD of Certified Mean14%% Within 2 SD of Certified Mean39%	Failed	10
% Within 2 SD of Certified Mean 39%	Failure %	4%
	% Within 3 SD of Certified Mean	14%
% Within 1 SD of Certified Mean 43%	% Within 2 SD of Certified Mean	39%
	% Within 1 SD of Certified Mean	43%

Gross Outliers				
Less than 3.68 ppm and greater than 5.18 ppm				
Number of Samples 1				

www.innovexplo.com

Expected Values				
Mean	9.130			
Standard Deviation	0.410			
Coefficient of Variation (CV)	4.49%			

Observed Values				
Number of Samples	876			
Mean	9.127			
Standard Deviation	0.319			
Coefficient of Variation (CV)	3.49%			
Failed	9			
Failure %	1%			
% Within 3 SD of Certified Mean	1%			
% Within 2 SD of Certified Mean	9%			
% Within 1 SD of Certified Mean	89%			

Gross Outliers			
Less than 7.08 ppm and greater than 11.18 ppm			
Number of Samples	1		

APPENDIX IV - ALS CERTIFICATE FOR THE INDEPENDENT RESAMPLING BY INNOVEXPLO

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: +1 (604) 984 0221 Télécopieur: +1 (604) 984 0218 www.alsglobal.com/geochemistry À: INNOVEXPLO INC. 560-B, 3E AVENUE VAL-D'OR QC J9P 1S4 Page: 1 Nombre total de pages: 2 (A) plus les pages d'annexe Finalisée date: 29-AOUT-2017 Compte: INNOVEX

CERTIFICAT VO17149212

Projet: IE-AUDIT-2017

Ce rapport s'applique aux 30 échantillons de carotte forage soumis à notre laboratoire de Val d'Or, QC, Canada le 19-JUIL-2017.

Les résultats sont transmis à:

PIERRE-LUC RICHARD

CORPORATIF WEBTREIVE

PRÉPARATION ÉCHANTILLONS				
CODE ALS	DESCRIPTION			
WEI-21	Poids échantillon reçu			
BAG-01	Entreposage pulp de ref.			
LOG-24	Entrée pulpe - Reçu sans code barre			
CRU-QC	Test concassage QC			
PUL-QC	Test concassage QC			
LOG-22	Entrée échantillon - Reçu sans code barre			
DRY-22	Séchage - Temp. max. 60 C			
CRU-32	Granulation 90 % <2 mm			
SPL-21	Échant. fractionné - div. riffles			
PUL-32	Pulvériser 1 000 g à 85 % < 75 um			

	PROCÉDURES ANALYTIQUE	S
CODE ALS	DESCRIPTION	INSTRUMENT
Au-GRA22	Au 50 g fini FA-GRAV	WST-SIM
OA-GRA08	Densité relative - échantillon global	WST-SEQ
Au-AA24	Au 50 g FA fini AA	AAS

À: INNOVEXPLO INC. ATTN: PIERRE-LUC RICHARD 560-B, 3E AVENUE VAL-D'OR QC J9P 1S4

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication. ***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Nacera Amara Signature: Nacera Amara, Laboratory Manager, Val d'Or

ALS

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: +1 (604) 984 0221 www.alsglobal.com/geochemistry À INNOVEXPLO INC. 560-B, 3E AVENUE VAL-D'OR QC J9P 1S4 Page: 2 - A Nombre total de pages: 2 (A) plus les pages d'annexe Finalisée date: 29-AOUT-2017 Compte: INNOVEX

Projet: IE-AUDIT-2017

CERTIFICAT D'ANALYSE V017149212

Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA24 Au ppm 0.005	Au-GRA22 Au ppm 0.05	CA-GRA08 5.G. Unity 0.01	
057001		0.56	2.02		2.91	
057002		1.18	9.18		2.86	
057003		1.51	6.53		2.86	
057004		1.11	8.10		2.95	
057005		0.98	0.969		2.72	
057006		1.01	2.94	1000 Aut - 1	2.76	
057007		0.98	>10.0	24.4	2.94	
057008		1.09	2.55		3.23	
057009		1.07	3.77		3.02	
057010		1.17	>10.0	29.7	3.02	
057011		1.23	>10.0	57.4	2.86	
057012		0.98	2.85		2.86	
057013		1.20	7.75		2.89	
057014		0.10	7.75			
057015		1.03	0.982		2.76	
057016		0.88	>10.0	12.45	2.91	
057017		0.65	3.38		3.06	
057018		1.30	4.38		3.89	
057019		0.47	>10.0	39.6	3.14	
057020		2.36	>10.0	27.5	2.93	
057021		1.05	0.154	1222444454	1202.23	
057022		0.62	>10.0	<0.05	3.02	
057023		1.25	7.72		2.94	
057024		0.59	3.57		3.31	
057025		0.62	>10.0	24.0	2.92	
057026		1.12	2.15	17222253	2.75	
057027		0.68	>10.0	13.65	3.57	
057028		0.59	>10.0	17,85	2.76	
057029		0.65	2.78		2.84	
057030		0.65	7.75		2.71	

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS)	ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: +1 (604) 984 0221 Télécopieur: +1 (604) 984 0218 www.alsglobal.com/geochemistry	Å: INNOVEXPLO INC. 560-B, 3E AVENUE VAL-D'OR QC J9P 1S4 Projet: IE-AUDIT-2017	Page: Annexe 1 Total # les pages d'annexe: 1 Finalisée date: 29-AOUT-2017 Compte: INNOVEX
(ALS)		CERTIFICAT D'ANALYS	SE VO17149212
	COMMENTAIRE	E DE CERTIFICAT	
		ADRESSE DE LABORATOIRE	2
Applique à la Méthode:	Traité à ALS Val d'Or, 1324 Rue Turcotte, Val d'Or, QC, Au-AA24 Au-GRA22 CRU-QC DRY-22 OA-GRA08 PUL-32 WEI-21	Canada. BAG-01 LOG-22 PUL-QC	CRU-32 LOG-24 SPL-21